header logo image


Page 21«..10..20212223..3040..»

Archive for the ‘Genetics’ Category

Concert Genetics Presents Real-World Data on Utilization of NGS-Based Diagnostic Tests in NCCN 2020 Abstract – Yahoo Finance

Wednesday, April 1st, 2020

NASHVILLE, Tenn., April 1, 2020 /PRNewswire/ --Concert Genetics, a technology company dedicated to advancing precision medicine, today announced the publication ofreal-world data on utilization and coding variability in medical claims for Next-Generation Sequencing (NGS)-based diagnostic tests. The study was done in collaboration with Merck, known as MSD outside the United States and Canada, and focuses on diagnostic testing among cancer patients in the U.S. It was accepted for presentation in the General Poster Session at the National Comprehensive Cancer Network's NCCN 2020 Annual Conference and is available online from JNCCNJournal of the National Comprehensive Cancer Network.

"The breathtaking speed of innovation in precision medicine is outpacing the healthcare system's ability to adapt," said Rob Metcalf, CEO of Concert Genetics. "As a result, the real-world data for observational research is often unavailable, too sparse, or insufficiently granular for evidence development. Concert's focus is delivering transparency and connectivity in genetic testing to enable precision medicine, and we were delighted to utilize our proprietary data and patented analytics to make this research possible."

The joint abstract is titled "Real-World Utilization and Coding Variability in Medical Claims for Next-Generation Sequencing (NGS)-Based Diagnostic Tests Among Cancer Patients in the U.S." It was scheduled to be presented at NCCN 2020, which was postponed due to COVID-19. The abstract is available at the following URL: https://jnccn.org/view/journals/jnccn/18/3.5/article-pHSR20-083.xml.

Concert's proprietary method for collecting and analyzing data in this space is described in U.S. Patent No. 10,223,501: "Tracking, Monitoring, and Standardizing Molecular and Diagnostic Testing Products and Services."

About Concert GeneticsConcert Genetics is a software and managed services company that advances precision medicine by providing thedigital infrastructure for reliable and efficient management of genetic testing. Concert's market-leading genetic test order management platform leverages a proprietary database of the U.S. clinical genetic testing market (today more than 140,000 testing products) and integrates with leading electronic health record and laboratory information management systems. Concert also provides genetic testing management solutions to leading health plans across the U.S. Learn more at http://www.ConcertGenetics.com.

CONTACT

Nick Tazik Concert Genetics (615) 861-2634 ntazik@concertgenetics.com

View original content to download multimedia:http://www.prnewswire.com/news-releases/concert-genetics-presents-real-world-data-on-utilization-of-ngs-based-diagnostic-tests-in-nccn-2020-abstract-301033558.html

SOURCE Concert Genetics

See the rest here:
Concert Genetics Presents Real-World Data on Utilization of NGS-Based Diagnostic Tests in NCCN 2020 Abstract - Yahoo Finance

Read More...

Study Probes Interaction of Genetics and Neural Wiring in ADHD – PsychCentral.com

Wednesday, April 1st, 2020

A new study comparing genetics and the neural wiring of the brain suggests a diagnosis of attention-deficit/hyperactivity disorder (ADHD) results from a combination of factors. Investigators discovered that it takes many common genetic variations combining together in one individual to increase risk substantially.

At the same time, neuroimaging (MRI) experts have found differences in how the brains of people diagnosed with ADHD are functionally connected. However, its unclear how genetic risk might be directly related to altered brain circuitry in individuals diagnosed with ADHD.

In the new study, researchers focused their imaging analyses on selected brain regions, looking specifically at the communication between those regions and the rest of the brain in children with the diagnosis.

They discovered that one brain regions connectivity was linked to a higher risk of ADHD. However, a second, different part of the brain seemed to compensate for genetic effects and reduce the chances of an ADHD diagnosis.

The authors believe this research will lead to a better understanding of how genetic risk factors alter different parts of the brain to change behaviors and why some people at higher genetic risk do not exhibit ADHD symptoms.

The study appears in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging.

We are now in a phase with enough data to answer some questions about the underlying genetics of a disorder that in the past have been difficult to elucidate, said senior author Damien Fair, Ph.D.

Previous imaging studies had shown different functional connectivity, and we assume those have a genetic basis.

ADHD is a neurodevelopmental psychiatric disorder that affects about 5 percent of children and adolescents and 2.5 percent of adults worldwide. The disorder is characterized by inattentive or hyperactive symptoms with many variations.

The paper focuses on 315 children between the ages of 8 and 12 who participated in a longitudinal ADHD study that began in 2008 at the Oregon Health & Science University in Portland. Fair, a neuroscientist and imaging researcher, and co-author Joel Nigg, Ph.D., a pediatric psychologist participated in the study. Robert Hermosillo, Ph.D., a postdoctoral researcher in Fairs lab, led the study.

The research team selected three areas of the brain based on a brain tissue database that showed where ADHD risk genes were likely to alter brain activity. To measure the brain communication to-and-from these regions on each side of the brain, the researchers used resting-state non-invasive magnetic resonance imaging (MRI) scans.

To begin to bridge genetic and neuroimaging studies of ADHD, researchers used MRI to scan the brains of children. Two regions previously associated with ADHD stood out. In one, a higher ADHD genetic risk correlated with a more active brain circuit anchored by the nucleus accumbens (orange arrow). Interestingly a weaker connection anchored by the caudate nucleus (blue arrow) seemed to protect children at high genetic risk from ADHD behaviors.

Next, they calculated a cumulative ADHD genetic risk score in the children, based on recent genome-wide studies, including a dozen higher-risk genetic regions reported two years ago by a large international collaboration called the Psychiatric Genetics Consortium.

In one brain region anchored by the nucleus accumbens, they found a direct correlation with genetics. Increased genetic risk means stronger communication between the visual areas and the reward centers, explained Hermosillo.

Another brain region anchored by the caudate yielded more puzzling results until the researchers tested its role as a mediator between genetics and behavior.

The less these two regions talk to each other, the higher the genetic risk for ADHD, said Hermosillo. It seems to provide a certain resiliency against the genetic effects of ADHD. Even among those with high risk for ADHD, if these two brain regions are communicating very little, a child is unlikely to end up with that diagnosis.

A third region, the amygdala, showed no correlation between connectivity to the other brain regions and the genetics.

According to the authors, the findings suggest that a genetic score alone will not be enough to predict ADHD risk in individuals because the results show both a genetic and neural contribution toward an ADHD diagnosis.

A future diagnostic tool will likely need to combine genetics and brain functional measures. The brain is not at the mercy of genes, added Hermosillo. Its a dynamic system not preprogrammed for disorders. It has the capacity to change.

Source: Elsevier

Related Articles

Read the rest here:
Study Probes Interaction of Genetics and Neural Wiring in ADHD - PsychCentral.com

Read More...

Yann Joly on the fight against genetic discrimination – McGill Reporter

Wednesday, April 1st, 2020

Yann Joly, Research Director of the Centre of Genomics and Policy

Research Director of the Centre of Genomics and Policy and Associate Professor at the Department of Human Genetics, Yann Joly is a Lawyer Emeritus from the Quebec Bar and a Fellow of the Canadian Academy of Health Sciences. He is currently a member of the Quebec task force on theCOVID-19 Biobank.

Last week, Joly and his collaborators from 16 countries announced the establishment of the international Genetic Discrimination Observatory (GDO). A world first, the GDO is an online platform committed to preventing the misuse of a patients genetic information. This is particularly important within the current context of the COVID-19 pandemic when researchers are collecting samples and data from patients in order to better understand this new disease and develop effective vaccines or therapeutics.

In this Q&A, Joly gives readers more information on genetic discrimination and what is being done to combat it.

Genetic discrimination (GD) means treating people differently from the rest of the population or unfairly profiling them based on actual or presumed genomic and other predictive medical data. The genetic information contained in an individuals DNA can uniquely identify or provide some information about a person, including future probabilities that this individual will develop diseases. Other predictive health information, such as biomarkers, can also be used to discriminate and should also be considered under the GD heading.

This information can be of interest to third parties like insurers, employers, or government officials. Like sexual, ethnic or disability-based discrimination, genetic discrimination is a source of exclusion and can limit the social and professional opportunities of a person thus becoming a source of psychological distress.

There are documented cases of GD reported in studies carried out in a limited number of countries based on predictive test results and family history for a handful of severe single-gene conditions in the context of life insurance or employment. The available evidence is fragmentary, and the methodology used in many studies is inconsistent.

The Genetic Non-Discrimination Act (hereinafter S-201) was passed in April 2017 and is currently applicable in Canada. While it does not solve all the challenges posed by genetic discrimination, it is an important first step. The Act generally makes it a criminal offense to require a person to undergo a genetic test or to report the results as a condition precedent to the provision of goods and services. However, the Quebec Court of Appeal recently declared that the core elements of S-201 were not constitutionally valid.

This decision was appealed to the Supreme Court of Canada and we are currently waiting for their decision on the matter. In the meantime, S-201 continue to be applied. If the Supreme Court is of a similar opinion to that of the Court of Appeal, it could be invalidated.

In addition to the protection provided by S-201, Canadian privacy laws would fully apply to genetic data, which is considered personal information.

Genetic information is increasingly shared across national borders or transcending them, thus limiting the effectiveness of protections built solely around national approaches. Strictly legal solutions, because they tend to be static, are also challenged to keep pace with rapidly evolving science such as genetics.

At its core discrimination is a social phenomenon that needs to be addressed collaboratively and internationally by all stakeholders. The GDO will provide the platform to undertake this important work, which will include documenting instances of genetic discrimination, identifying most effective preventing measures and conveying information, tools and good practices to all stakeholders including the public.

COVID-19 presents Quebecers with an unprecedented health threat that requires us to stand together as a society and take action to protect one another and help find medical solutions to the disease. The COVID-19 Biobank provides us a unique opportunity to learn more about the biological foundations of the disease, individuals at risk and preventive solutions.

The risk of discrimination associated with providing a biological sample and medical information to the Biobank is very small. The data provided is research information that is not clinically validated and should be of no interest to most third parties. Moreover, the collected information is coded, and protected by confidentiality laws and robust security measures. Furthermore, data access will be subject to ethics approval and in some cases controlled access measures.

See more here:
Yann Joly on the fight against genetic discrimination - McGill Reporter

Read More...

Genetic Technologies Limited Announces Market Update on Sales, Early Test Results and Launch of Consumer Initiated Testing – BioSpace

Wednesday, April 1st, 2020

MELBOURNE, Australia, April 01, 2020 (GLOBE NEWSWIRE) -- Molecular diagnostics company Genetic Technologies Limited(ASX: GTG; NASDAQ: GENE, Company), provides the following update to the market.

Colorectal test sales commence

As announced to the market on 31 January 2020, the Company has fully commissioned its Australian Laboratory for the provisioning of its generation 3 breast cancer test (GeneType for Breast Cancer), with sales having commenced during the quarter. We are pleased to report that this is now accompanied by the first-to-market GeneType for Colorectal Cancer test with sales also having now commenced.

Medical practitioner support

Both tests have been well received by medical practitioners, with over 15 clinics in Australia having agreed to offer the GeneType portfolio of tests. Overall, in excess of 100 test kits having been requested and approximately half of those samples have been received into the Melbourne laboratory during the first 4 weeks on market.

High risk breast cancer patients detected

An interim analysis of those patients who received the GeneType for Breast Cancer test in Australia has revealed that 4 patients have already been identified as potentially being at high risk of developing breast cancer. It is highly significant that these patients were not eligible for hereditary mutation testing and would not have been identified as high risk during routine health checks.

Clinical utility and reimbursement initiatives Genetic Technologies continues to progress its in-house R&D program in support of the tests. Data derived from large scale cohort studies, have confirmed that both the discrimination and calibration of both GeneType tests are excellent and set the stage for progressing our plans to develop clinical utility evidence in support of our reimbursement strategy.

Clinical utility studies have been designed to support both the breast and colorectal cancer tests and the Company is currently engaging with potential clinical collaborators to complete these studies at the earliest opportunity. As alluded to above, the evidence is building that the GeneType tests have the potential to personalize individual screening recommendations.

Tele-health and Consumer Initiated testing to relieve practitioner stress and opens access to Mass consumer markets

Notwithstanding the above, the Company is taking an aggressive and pro-active response to the current COVID-19 pandemic. In light of world-wide recommendations on social distancing, which is impacting on our ability to fully engage with physicians, we have brought forward our plans to introduce a Consumer Initiated Testing (CIT) Platform. The Company is in the final stages of choosing an independent provider network who will oversee patient ordering of the consumer-initiated testing (CIT) pipeline. This sales pipeline deviates from a traditional sales approach that targets clinicians and instead allows patients to request a test directly, with clinician oversight of the testing process through an independent provider network and telemedicine. When a consumer is interested in purchasing a GeneType product, a clinician from this independent network will review the patient health history before confirming whether or not the patient may proceed with testing. The independent clinician will then order the test for the patient and will also review the final test results prior to delivering them back to the patient

In an age where primary care clinicians are overburdened by large patient volume and thus restricted to short clinical visits, certain disease risk assessments are often overlooked, particularly if the patient is asymptomatic, or visually healthy.

The current push to adopt telemedicine as recently announced by Australias minister for Health Minister Greg Hunt is exactly on point with GTGs CIT platform strategy and has been in development by GTG over the past 3 months.

Personalized proactive approach to health

Understanding a patients risk of developing disease can lead to earlier screening, more frequent and alternative surveillance methods, options for risk-reducing medications, and at the very least, some suggested lifestyle changes. However, in order to be proactive about screening and prevention measures, patients and physicians alike, must understand the patients risk of developing disease. By allowing our GeneType risk assessment product lines to be requested via CIT, we are enabling a patient to take a proactive approach to his/her healthcare.

Dr George Muchnicki Acting CEO and Justyn Stedwell Company SecretaryOn behalf of the Board of DirectorsGenetic Technologies Limited+61 3 9412 7000

About Genetic Technologies Limited

Genetic Technologies Limited (ASX: GTG; Nasdaq: GENE) is a diversified molecular diagnostics company. GTG offers cancer predictive testing and assessment tools to help physicians proactively manage patient health. The Companys lead products GeneType for Breast Cancer for non-hereditary breast cancer and GeneType for Colorectal Cancer are clinically validated risk assessment tests and are first in class.

Genetic Technologies is developing a pipeline of risk assessment products.

For more information, please visit http://www.gtglabs.com.

Investor Relations and Media (US)Dave Gentry, CEORedChip CompaniesOffice: 1 800 RED CHIP (733 2447)Cell: US 407 491 4498dave@redchip.com

Caution Regarding Forward-Looking Statements

This press release contains forward-looking statements Words such as may, should, could, would, predicts, potential, continue, expects, anticipates, future, intends, plans, believes, estimates, and similar expressions, as well as statements in future tense, often signify forward-looking statements. Forward-looking statements should not be read as a guarantee of future performance or results and may not be accurate indications of when such performance or results will be achieved. Forward-looking statements are based on information that the Company has when those statements are made or managements good faith belief as of that time with respect to future events, and are subject to risks and uncertainties that could cause actual performance or results to differ materially from those expressed in or suggested by the forward-looking statements. The Company assumes no obligation to publicly update or revise its forward-looking statements as a result of new information, future events or otherwise.

See the rest here:
Genetic Technologies Limited Announces Market Update on Sales, Early Test Results and Launch of Consumer Initiated Testing - BioSpace

Read More...

Genetic analysis of the coronavirus gives scientists clues about how its spreading – The Verge

Wednesday, April 1st, 2020

As the coronavirus spreads around the globe, it has mutated in tiny, subtle ways. Those mutations arent cause for concern, and so far, dont appear to be making the virus any more or less dangerous. But scientists can use those slight changes to track the virus from person to person, and location to location.

If we identify a new outbreak cluster in one state, and theres a question of whether its related to a previous cluster or not, the small mutational changes can help you figure out if theyre connected, says Patrick Boyle, a synthetic biologist at Ginkgo Bioworks.

The coronavirus is made up of around 29,000 building blocks of genetic material called nucleotides. Like other biotechnology companies and labs, Ginkgo has the technology to take a sample of the virus and read out the full sequence of those nucleotides. For the most part, the sequence will be the same in each sample. But the virus makes copies of itself within a human host, and sometimes, it can make mistakes switching one or two nucleotides out for another. The version of the virus with those changes can then be passed on when that person infects someone else.

Ginkgo is repurposing its systems, which normally dont sequence viruses, to analyze as many samples of the coronavirus as possible. The goal is to help build out the maps that show how the virus jumped from one person to the next. Theyre hoping to scale up to be able to publish the full genetic sequence of 10,000 virus samples a day.

Despite the skyrocketing numbers of COVID-19 cases in the US, only a limited number of virus samples collected in the country have been sequenced in full. Scientists have more sequences from Washington state than other places. Consequently, they know more about the trajectory of the outbreak in Washington than they know about outbreaks in other states.

Some of that genetic data is how Trevor Bedford, a virologist at the Fred Hutchinson Cancer Research Center, was able to link a case of COVID-19 diagnosed on February 27 in Washington to a case that was diagnosed in late January in the state indicating that the virus had been circulating locally, and undetected, for that entire time. It also showed that the January case sparked a cluster of illnesses that spread through the community.

Other states are starting to do the same kind of detective work, using genetic sequences to help clarify their outbreaks. An analysis of nine virus samples collected in Connecticut showed that the some were related to viruses found in Washington state, which suggests that the coronavirus was spreading domestically, not being repeatedly brought in from other countries. The analysis has not yet been peer-reviewed or published. Other preliminary research examined virus samples from northern California, and found that the coronavirus was introduced to the area at multiple points.

One challenge in expanding the number of virus sequences available, Boyle says, is obtaining patient samples to analyze. Labs in the US and other countries that are running tests for the virus receive hundreds or thousands of patient samples each day. But the focus of those labs is checking a sample to see if the coronavirus is there and the patient has COVID-19 or if it isnt. The emphasis on testing and diagnosing patients is critical to track the pandemic, Boyle says.

The problem is, it only gives you a positive or negative answer, he says. Tests dont provide any extra information about the particular virus in each patient. Ginkgo plans to partner with testing labs, so that they can take a closer look at the virus in a patient sample after the testing is done. Other labs and groups worldwide are embarking on similar projects: a research consortium in the United Kingdom, for example, has over $20 million in funding to sequence samples. Boyle says that Gingko is coordinating with some other labs interested in this work.

Theyre also making sure that they can access the chemicals and other supplies they need to run the genetic analysis, Boyle says. We want to make sure that our supply stream is not competing with the supply stream that keeps the testing running.

Expanding the number of coronavirus sequences available will give scientists a picture of the outbreak, in the US and around the world. Along with testing, its one way scientists can keep track of the viruss movements and help to rein it in.

Read the original post:
Genetic analysis of the coronavirus gives scientists clues about how its spreading - The Verge

Read More...

Science to the rescue? How modern genetics could help save the world from coronavirus – Alliance for Science – Alliance for Science

Wednesday, April 1st, 2020

Humanity really has only two options to confront the coronavirus pandemic currently sweeping the planet. The first is to mount a rolling program of lockdowns and other drastic social distancing strategies to restrain the pace of the virus epidemic, with a view to gradually building up natural herd immunity among the human population.

That strategy, especially if combined with successful anti-viral drug treatments and a massively upscaled testing effort, should give some relief. But it would come at the likely cost of many millions of deaths and incalculable worldwide economic damage, hitting especially hard in countries with little resilience and limited healthcare infrastructure.

The second approach is to develop a vaccine, and to do so as rapidly as possible. A fully effective vaccine would not just tame COVID-19 but possibly eradicate it altogether as the world successfully did with smallpox and is on the verge of doing with polio (both also viral diseases).

These two approaches will most likely be concurrent: the first will buy us time, while the second provides an exit strategy from a constant pattern of repeating lockdowns and travel restrictions that could otherwise go on for years.

With the current total of confirmed cases rapidly closing in on one million worldwide, the true picture is most likely that many tens of millions of people have already caught COVID-19. Humanitys most desperate challenge, therefore, is to find an effective vaccine.

Fortunately, science is already stepping up. History was made on March 16, when the first clinical trial volunteer was injected with an investigational vaccine for coronavirus at the Kaiser Permanente Washington Health Research Institute in Seattle.

The volunteer was mother-of-two Jennifer Haller, a 43-year-old Seattle resident who told National Public Radio that she wanted to do something because theres so many Americans that dont have the same privileges that Ive been given.

The vaccination was produced by Moderna, with the first batch being delivered to the US National Institutes of Health a remarkable 42 days after the viral genome was first sequenced in China.

This Phase 1 trial does not yet test the efficacy of the vaccine against COVID-19. Carried out over six weeks among a group of 45 healthy adult volunteers aged between 18 and 55, it will test the basic safety of the proposed vaccine and its ability to stimulate an immune response in the human body.

Although the Phase 1 trial will continue with the Seattle-area recruits being monitored for a whole year, the urgency of the global situation means that the collaborators will likely rush to Phase 2 at the same time, testing the ability of the vaccine to prevent infection by the novel coronavirus SARS-CoV-2 that causes COVID-19.

The Moderna vaccine trial is a world first not just for the particular disease target but because it is one of a whole new potential class of vaccines that employ messenger RNA (mRNA) to program human cells to produce the viral proteins that trigger an immune response, rather than injecting proteins or viral particles directly, as have most previous vaccines.

This natural role of mRNA is why Modernas approach is so quick. Normal vaccines have to be produced from actual viruses, which are grown within chicken eggs and then refined into sufficient quantities to be directly injected once weakened or killed into the human body. This takes months, at a minimum, and is difficult to scale quickly.

For the mRNA approach, all that was needed was the correct viral genetic sequence, which in the case of SARS-CoV-2 encodes for the spike proteins that enable the virus to gain entry into human respiratory cells. This genetic sequence for the viral protein can then be encoded into mRNA synthetically generated in a lab a rapid process that is easy to scale.

Thats the good news. The bad news is that the mRNA approach, while undoubtedly quick and versatile, is so new that it has yet to be fully proven in any vaccine in either humans or animals. Some tests have shown efficacy against rabies, for example, but others have shown little lasting immune response.

The mRNA approach is therefore a moon-shot rather than a marathon. Even so, Moderna is optimistic enough to already be making plans to produce millions of doses intended for health workers initially as early as this fall.

Other companies and partnerships are also racing to develop a vaccine using the same mRNA approach. One of these, the German firm CureVac, generated so much interest that President Trump reportedly tried to acquire it in order to ensure any potential vaccine would be available to Americans first.

Like Moderna, CureVacs efforts are supported financially by CEPI the international Coalition for Epidemic Preparedness Innovations, which has raised over $700 million from governments around the world and philanthropic foundations like the Bill & Melinda Gates Foundation (which also supports the Cornell Alliance for Science) and Wellcome.

While Moderna has been able to restart vaccine projects originally intended for MERS and SARS, CureVac has already achieved some success with an mRNA vaccine against rabies virus in humans. In a Phase 1 trial doses as low as a millionth of a gram of mRNA vaccine were sufficient to fully protect humans against rabies, it reported in January.

Such small doses offer major promise for immunizing huge numbers of people if CureVac is able to achieve the same success with SARS-CoV-2 as it has with rabies and move rapidly into Phase 2 trials to further demonstrate real efficacy.

Also in Germany, BioNTech and Pfizer are racing to shift their mRNA vaccine work from influenza to SARS-CoV-2, and are aiming to start clinical trials as soon as April. As part of a broader collaboration, BioNTech has already demonstrated that an mRNA vaccine protected mice and non-human primates against Zika virus, raising hopes for similar effectiveness against COVID-19.

RNAs double-stranded cousin, DNA, is also being deployed in a novel but equally promising vaccine system against the coronavirus. The approach is related, but rather than injecting mRNA directly into cells so that it can produce viral proteins, DNA is inserted, which in turn produces mRNA inside cells to do the same job.

This DNA is not intended to integrate into the genome of the target cell in humans indeed if this happens, damaging mutations might occur. Instead, DNA is formed into circular plasmids which operate separately to the integral genetic material inside a cells nucleus. Like genomic DNA however, these plasmids are read and transcribed via mRNA into viral proteins which can then prime the bodys immune system against a later invasion by the real virus.

The US-based Inovio Pharmaceuticals announced on 12 March that it had received a grant of $5 million from the Bill & Melinda Gates Foundation to accelerate the testing of a DNA vaccine for COVID-19, with a view to starting Phase 1 clinical trials in April.

Inovio has another advantage: its DNA vaccine INO-4700 was the only vaccine candidate against MERS to progress to Phase 2 trials demonstrating, at least initially, the potential feasibility of the DNA approach. The US Department of Defense with an eye to protecting its military personnel all over the world against COVID-19 has pumped another $11.9 million into INO-4800. The company has also demonstrated protection in early trials using its DNA vaccine against Chikungunya, Zika and influenza viruses.

CEPI is not putting all its eggs in one basket, however. As well as DNA and RNA systems, another promising approach for a COVID-19 vaccine is to use a genetically engineered measles vaccine a strategy supported by a $5 million CEPI grant split between collaborating institutions Themis in Vienna, Institut Pasteur in France and the University of Pittsburghs Center for Vaccine Research.

This takes the live attenuated measles virus vaccine a vaccine with a long history of safe use, having been used to immunize billions of children over the last 40 years and uses reverse genetics technology to insert new genes coding for proteins expressed by other viruses. These then induce an immune response against the new virus whose genetic material has been introduced.

The research team aims to have a COVID-19 candidate vaccine ready for animal testing as soon as April, with wider tests in human volunteers by the end of the year.

Measles virus is not the only candidate for the vector approach. Chinese scientists have reported that they are about to proceed to Phase I human trials with a vaccine candidate starting at the pandemics epicenter in Wuhan. The scientists have genetically engineered a replication-defective adenovirus type 5 (Ad5) as a vector to express the SARS-CoV-2 spike protein, with the resulting vaccine candidate named Ad5-nCoV.

This is perhaps the easiest approach, as all that has to happen is for the engineered harmless adenovirus to infect patients in order to trigger the production of antibodies which should be effective against invading novel coronavirus too. The Chinese company CanSion Biologics has successfully demonstrated this approach with another fully completed vaccine against Ebola, Ad5-EBOV, which is already on the market in China.

A more tried-and-tested approach already widely used to produce flu vaccines is to grow viral proteins directly: these are then injected as a vaccine into human patients so that the immune system is already primed against the real pathogen when it attempts to infect the body. Usually chicken eggs are used, but to speed things up insect cell lines are becoming the preferred option for the coronavirus pandemic.

Here genetics is again an important component: the company Novavax uses a baculovirus vector to genetically engineer an insect cell line originally isolated decades ago from the ovaries of the fall armyworm. The baculovirus transports genes into the insect cells, which program them to manufacture viral proteins that are correctly folded and biologically active, more reliably enabling the human immune system to produce antibodies against them.

According to Novavax, its resulting recombinant protein nanoparticles then self-assemble into a structure that approximates the actual virus, helping enhance the immune response. It claims to have already tested this system in RSV virus, a recalcitrant pathogen that has so far resisted attempts at a vaccine. This approach looks promising enough that CEPI has pumped $4 million in so far with a view to launching Phase I trials by late spring 2020.

In a similar way, the company Sanofi is taking a snippet of genetic code from SARS-CoV-2 and splicing it also via baculovirus into insect cell lines. Its advantage, made in a pitch to the US government that resulted in a big cash injection, is that it already has an FDA-approved facility that could make 600 million doses a year of any resulting vaccine.

Plants can also be engineered to produce viral proteins. The company Medicago is working with genetically modified tobacco plants with this aim in mind. To speed things up, instead of adding new genes to the nucleus of cells and regenerating entire plants from these single cells (as happens with conventional plant genetic engineering), it uses the Agrobacterium vector in a vacuum to transfer recombinant DNA directly into the nucleus of fully-grown leaf cells. This DNA enables the production of the desired viral proteins without ever being integrated into the genome, enabling proteins to be harvested from transformed leaves within a matter of days.

Using this system, Medicago claims to have produced a virus-like particle of the coronavirus within just 20 daysof the SARS-CoV-2 genetic sequence becoming available. The government of Canada quickly put millions of dollars behind the effort as a result.

Astonishingly, given that the coronavirus pandemic is now threatening to devastate societies and economies around the planet on a scale second only to a world war, this effort is still short of cash. CEPI has issued an urgent call for funding, seeking to raise $2 billion: it says just $375 billion by the end of March would enable four-to-six vaccine candidates to move rapidly towards phase 2/3 trials.

Scientists are also hoping desperately that SARS-CoV-2 does not rapidly mutate as influenza viruses tend to do, which would likely reduce the effectiveness of any single vaccine. So far, according to researchers studying 1,000 samples of the virus from around the world, this seems not to be the case.

This means that the race to find a vaccine, and to do so in sufficient time to salvage the situation before the world tips into an economic depression and millions of people die, has a decent chance of success and that any successful vaccine would likely confer lasting immunity.

Meanwhile, all of humanity is waiting. And if the scientists do succeed in this urgent challenge, it will very likely be due to modern genetics. Though genetic engineering was once a dirty word, it now could literally help save the world.

View original post here:
Science to the rescue? How modern genetics could help save the world from coronavirus - Alliance for Science - Alliance for Science

Read More...

NeuBase Therapeutics Announces Positive, Preclinical Data Validating its Novel Genetic Therapy PATrOL Platform – Yahoo Finance

Wednesday, April 1st, 2020

Demonstrates broad biodistribution, including across the blood-brain barrier into the central nervous system, and into skeletal muscle, in non-human primates (NHPs) after systemic administration

Durable and therapeutically relevant drug concentrations achieved in NHPs after single intravenous dose

Potent cell-based activity and allele-specific enrichment in patient-derived cell lines

Platform validation data supports expansion of the therapeutic pipeline into new organ systems previously unreachable with first-generation antisense oligonucleotide technology

Management to hold a conference call today at 8 a.m. ET

PITTSBURGH, March 31, 2020 (GLOBE NEWSWIRE) -- NeuBase Therapeutics, Inc. (Nasdaq:NBSE) (NeuBase or the Company), a biotechnology company developing next-generation antisense oligonucleotide (ASO) therapies to address genetic diseases, today announced positive preclinical data from its pharmacokinetics studies in non-human primates (NHPs) and in vitro pharmacodynamics data in patient-derived cell lines. NeuBase believes these data validate the key advantages of the proprietary NeuBase peptide-nucleic acid (PNA) antisense oligonucleotide (PATrOL) platform and support the Companys decision to advance the development of its Huntingtons disease (HD) and myotonic dystrophy type 1 (DM1) programs, as well as the potential expansion of its therapeutic pipeline into other indications.

Dr. George Church, professor of genetics at Harvard Medical School and member of the National Academy of Sciences, stated, Given the activity and broad biodistribution observed in these studies and the potential for easier target definition, I believe the PATrOL technology may have a potent impact on the future of drug development and treatment of genetic diseases.

Non-Human Primate Pharmacokinetic Study

Quantitative whole-body autoradiography was performed on NHPs.A PATrOL-enabled compound was radio-labeled, and theresulting material was injected into NHPs at 5 mg/kg via a bolus tail vein injection. At four hours, twelve hours, and seven days post-dosing, NHPs were sacrificed andsectioned into 40 m slices.Slices were exposed to autoradiography imaging plates alongside a dilution series of radioactive PNA in whole blood.Upon imaging, the dilution series enabled an analysis of the amount of compound in each of the tissues. In addition, prior to sacrifice, whole blood, urine, and feces were collected from the NHPs at specified timepoints.The major conclusions from this study include:

Rapid uptake of compound out of the bodys circulation after systemic intravenous administration, with a half-life in circulation of approximately 1.5 hours;

Compound penetrates every organ system studied, including the central nervous system and skeletal muscle;

Compound crosses the blood-brain barrier and into the key deep brain structures, including the caudate, supporting a key capability for the development of the Companys lead program in HD; Delivery of the compound to skeletal muscle, the primary organ system that is affected in DM1;Because both HD and DM1 have manifestations outside of the primary affected organ, the broad biodistribution of the compounds may enable a potential whole-body therapeutic solution in both indications.

96% of administered compound remained in vivo after a one-week period (latest timepoint tested);Redistribution over one week after administration between organ systems enriches concentrations in key brain regions up to two-fold, including in those deep brain structures most relevant for HD;Retention of ~90% of compound concentrations achieved in skeletal muscle over the course of one-week post-single-dose administration; and

Patient-Derived Huntingtons Cell Line Pharmacodynamic Studies

Multiple Huntingtons disease candidate compounds were incubated with HD-derived cells and assayed for their toxicity and their ability to selectively knock down mutant huntingtin protein (mHTT) expression by engaging with the CAG repeat expansion in the huntingtin (HTT) gene transcript. Multi-well plates were seeded with cells and candidates were added to the culture at various concentrations.Cells were grown for three days and thereafter assayed for cell death.Cell pellets were also collected, lysed, and run on gradient SDS-PAGE gels.Following the transfer of the proteins to a membrane, the membrane was probed with anti-huntingtin and anti-beta-actin antibodies.Secondary antibodies were used to image the immunoblots.The beta-actin bands were used to normalize the amount of protein across the wells.The amounts of mutant and wild type huntingtin protein in treated cells were compared to untreated cells to determine the level of knockdown.The major conclusions from this study include:

Story continues

Activity in engaging target disease-causing transcripts and knocking-down resultant malfunctioning mHTT protein levels preferentially over normal HTT protein knock-down; and

Dose limiting toxicities were not observed relative to a control either at or above the doses demonstrating activity in human cells in vitro.

In addition, PATrOL enabled compounds were generally well-tolerated in vivo after systemic administration, both after single dose administration in NHPs and multi dose administration in mice for over a month.

We believe the PATrOL platform has the potential to create drugs that are easy for patients to take at infrequent intervals after they have tested positive for a genetic disease but before symptoms emerge, said Dietrich Stephan, Ph.D., chief executive officer of NeuBase. We believe the best way to effectively manage degenerative genetic diseases is to get ahead of the disease process, and we believe that can only be achieved with early diagnosis coupled with well-tolerated, effective, and easily administered therapies.

Dr. Robert Friedlander, chief medical officer of NeuBase and member of the National Academy of Medicine, stated, An allele specific approach that can be systemically administered and cross the blood brain barrier would be an ideal drug profile for many untreatablegenetic diseases.I believe that NeuBase is moving towards realizing this goal.

The intersection of the NHP pharmacokinetic data and the in vitro patient-derived pharmacodynamic data provides a roadmap to create a pipeline of therapeutic candidates which can reach target tissues of interest after systemic administration and achieve the desired activity at that dose. NeuBase believes the data from these studies support the advancement of the Companys HD and DM1 programs into lead optimization and subsequent IND-enabling studies, as well as provide a roadmap for the future expansion of the Companys therapeutic pipeline into other indications, including oncology.

Dr. Sam Broder, former Director of the National Cancer Institute of the National Institutes of Health and member of the National Academy of Sciences, stated, I believe that the NeuBase strategy of targeting transcripts before they become dangerous mutant proteins has the potential to deliver a dramatic improvement in our collective capabilities to effectively treat a wide range of genetic diseases, including some of the most deadly cancers, by targeting driver mutations and accelerating immunotherapy capabilities.

Conference Call

NeuBase Therapeutics, Inc. will discuss these data and next steps for development during a webcasted conference call with slides today, March 31, 2020, at 8:00 a.m. ET. The live and archived webcast of this presentation can be accessed through the IR Calendar page on the Investors section of the Companys website, http://www.neubasetherapeutics.com. The dial-in details for the call are 877-451-6152 (domestic) or +1-201-389-0879 (international), and conference ID: 13701118. The archived webcasts will be available for approximately 30 days following the presentation date.

About NeuBase Therapeutics

NeuBase Therapeutics, Inc. is developing the next generation of gene silencing therapies with its flexible, highly specific synthetic antisense oligonucleotides. The proprietary NeuBase peptide-nucleic acid (PNA) antisense oligonucleotide (PATrOL) platform is designed to permit the rapid development of targeted drugs, thereby potentially increasing the treatment opportunities for the hundreds of millions of people affected by rare genetic diseases, including those that can only be treated through accessing of secondary RNA structures. Using PATrOL technology, NeuBase aims to first tackle rare, genetic neurological disorders.

Safe Harbor Statement under the Private Securities Litigation Reform Act of 1995

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act. These forward-looking statements include, among other things, statements regarding the Companys goals and plans and the Companys pharmacokinetics and pharmacodynamics studies. These forward-looking statements are distinguished by use of words such as will, would, anticipate, expect, believe, designed, plan, or intend, the negative of these terms, and similar references to future periods. These views involve risks and uncertainties that are difficult to predict and, accordingly, our actual results may differ materially from the results discussed in our forward-looking statements. Our forward-looking statements contained herein speak only as of the date of this press release. Factors or events that we cannot predict, including those described in the risk factors contained in our filings with the U.S. Securities and Exchange Commission, may cause our actual results to differ from those expressed in forward-looking statements. The Company may not actually achieve the plans, carry out the intentions or meet the expectations or projections disclosed in the forward-looking statements, and you should not place undue reliance on these forward-looking statements. Because such statements deal with future events and are based on the Companys current expectations, they are subject to various risks and uncertainties and actual results, performance or achievements of the Company could differ materially from those described in or implied by the statements in this press release, including: the Companys plans to develop and commercialize its product candidates; the Companys plans to commence clinical trials in Huntingtons disease and myotonic dystrophy type 1 and to potentially expand the pipeline into other indications; the utility of the preclinical data generated in existing studies performed by the Company in determining the results of potential future clinical trials and of the potential benefits of the PATrOL platform technology; the timing of initiation of the Companys planned clinical trials; the timing of the availability of data from the Companys clinical trials; the timing of any planned investigational new drug application or new drug application; the Companys plans to research, develop and commercialize its current and potential future product candidates; the clinical utility, potential benefits and market acceptance of the Companys current and potential future product candidates; the Companys commercialization, marketing and manufacturing capabilities and strategy; the Companys ability to protect its intellectual property position; and the requirement for additional capital to continue to advance these product candidates, which may not be available on favorable terms or at all, as well as those risk factors in our filings with the U.S. Securities and Exchange Commission. Except as otherwise required by law, the Company disclaims any intention or obligation to update or revise any forward-looking statements, which speak only as of the date hereof, whether as a result of new information, future events or circumstances or otherwise.

NeuBase Investor Contact:Dan FerryManaging DirectorLifeSci Advisors, LLCDaniel@lifesciadvisors.comOP: (617) 535-7746

NeuBase Media Contact:Travis Kruse, Ph.D.Russo Partners, LLCtravis.kruse@russopartnersllc.comOP: (212) 845-4272

See the rest here:
NeuBase Therapeutics Announces Positive, Preclinical Data Validating its Novel Genetic Therapy PATrOL Platform - Yahoo Finance

Read More...

GeneDx Celebrates 20 Year History as Pioneer In Genetic Sequencing and Testing – BioBuzz

Wednesday, March 18th, 2020

GeneDx, a global leader in genomics andpatient testing, is celebrating its remarkable 20th anniversary throughout themonth of March.

The Gaithersburg, Maryland company has played an important role in the history of genetic sequencing and the rise of the BioHealth Capital Region as a global biohealth cluster. GeneDx was the very first company to commercially offer NGS (Next Generation Sequencing) testing in a CLIA (Clinical Laboratory Improvement Amendments) lab and has been at the leading edge of genetic sequencing and testing for two decades. The companys whole exome sequencing program and comprehensive testing capabilities are world-renowned.

In its storied 20 yearhistory, GeneDx has provided genetic testing to patients in over 55 countries.The company is known globally as world-class experts in rare and ultra-rarediseases.

In 2000, GeneDx was founded by former National Institutes of Health (NIH) scientists Dr. Sherri Bale and Dr. John Compton. These two genomics experts and thought leaders started GeneDx to complete an important mission: To provide rare and ultra-rare disease patients and families with diagnostic services that were not commercially available at that time.

Prior to launching GeneDx, Bale spent 16 years at NIH, the last nine as Head of the Genetic Studies Section in the Laboratory of Skin Biology. She has been a pioneer during her storied career, publishing over 140 papers, chapters and books in the field. Her 35-year career includes deep experience in clinical, cytogenetic, and molecular genetics research.

Before partnering with Bale to form GeneDx, Compton was an investigator at the Jackson Laboratory, and for the last nine years as a senior scientist in the Genetics Studies Section at the NIH. Comptons work on the molecular genetics of inherited skin disease and expertise in laboratory methodology is known throughout the world. Compton has remarkable experience in the development and application of molecular biological techniques to answer questions about genetics and epidermal differentiation.

GeneDx, like manysuccessful BHCR life science companies, had a humble start, operating initiallyout of the Technology Development Center incubator. Just six years later,GeneDx was acquired by BioreferenceLabs for approximately $17M.

From there, the companylaunched its first array CGH (Comparative Genomic Hybridization) or aCGH testin 2007. An array CGH is also called microarray analysis, which is a atechnique enabling high-resolution, genome-wide screening of segmental genomiccopy number variations (NIH). By 2008, GeneDx had launched its Cardiology NextGeneration Sequencing Panel and by 2011 the company had commercialized itsneurology testing program. In 2012, GeneDx launched its Whole Exome Sequencing (XomeDx) for which it has become so well known in the genomicfield. A year later its Inherited Cancer Panels hit the market. 2018 saw thecompany achieve a significant milestone when it announced ithad performed clinical Exome Sequencing on more than 100,000 individuals.

Both Bale and Comptonhave since retired and GeneDx is currently led by Chief Medical Officer Dr. Gabriele Richard;Chief Innovation Officer Kyle Retterer, MS;Rhonda Brandon, MS

Chief InformationOfficer; and Dr. Sean Hofherr, FACMG, CLIA Laboratory Director & ChiefScientific Officer.

GeneDx has come a longway from its incubator headquarters over the past two decades. With over 450employees, the company continues to deliver on its mission to provide crucialdiagnostic genetic testing capabilities to patients and families across theglobe.

Happy Anniversary GeneDX. Heres to many more.

Steve has over 20 years experience in copywriting, developing brand messaging and creating marketing strategies across a wide range of industries, including the biopharmaceutical, senior living, commercial real estate, IT and renewable energy sectors, among others. He is currently the Principal/Owner of StoryCore, a Frederick, Maryland-based content creation and execution consultancy focused on telling the unique stories of Maryland organizations.

Read the original post:
GeneDx Celebrates 20 Year History as Pioneer In Genetic Sequencing and Testing - BioBuzz

Read More...

Half of people in the US would sell their genetic data for $95 – New Scientist News

Wednesday, March 18th, 2020

By Jason Arunn Murugesu

Jochen Tack / Alamy

As consumer genetic testing has risen in popularity, awareness of the value of genetic data has lagged behind. A survey of people in the US has found that 50 per cent would hand over their genetic data for $95 (70), on average.

Forrest Briscoe at Pennsylvania State University and his colleagues surveyed more than 2000 people about the use of genetic data, which can be stored in databases for police use, at direct-to-consumer genetic test firms, and for medical research.

I really felt like we needed updated information about how the public views these databases, says Briscoe. They are growing quickly, in number and size, but the information being used to inform design and governance is outdated.

Advertisement

The participants, a representative sample of the US population, watched a 3-minute video detailing both the commercial value of genomic data and genetic privacy issues. This included a statement that consumer genetic testing firm 23andMe sells access to its databaseto pharmaceutical firms for $140 per individuals data.

The participants were then split into five groups and asked whether they would grant access to their genetic data either as a donation or in exchange for money to one of five types of organisation: a non-profit hospital, a pharmaceutical company, a tech firm, a university research lab and a US federal research agency.

While 38 per cent said they wouldnt share their data, 50 per cent said they would if they were paid, and 12 per cent said they would do it for free.

The type of organisation that would use their data didnt affect willingness to share. That was a surprise, says Briscoe. We think this makes the case for a common governance framework for DNA databases, whoever they are owned by.

Those who said they wanted to be paid, expected a median of $130, but said they would accept $95 if they also received a health and ancestry report based on their genetic data. People who said they would give their data away said they would pay an average of $75 for such a report.

These results demonstrate the growing interest in maintaining a degree of control over personal information, says Tim Caulfield at the University of Alberta, Canada. The public has been told for decades that this research is essential and valuable and potentially profitable. They may be thinking, Okay, I believe you. Pay me.

Journal reference: PLoS One, DOI: 10.1371/journal.pone.0229044

More on these topics:

See the article here:
Half of people in the US would sell their genetic data for $95 - New Scientist News

Read More...

Free coronavirus sequencing kits for researchers offered by U-M startup – University of Michigan News

Wednesday, March 18th, 2020

ANN ARBORAs doctors, scientists and governments try to get a grip on COVID-19, the University of Michigan startup Arbor Biosciences is providing free kits to capture the genetic code of virus samples.

Variations in that code reveal how the virus has morphed over timefor instance, enabling it to change from an animal disease to one that can be passed from one human to another.

The information could help shed light on how the genes of the virus, SARS-CoV-2, cause the symptoms of the disease COVID-19. But more important in the long run, it could help reveal the factors that enabled the virus to become infectious in humans.

By making the kit free, Arbor Biosciences brings more talent to the table fighting the new coronavirus. Cash-strapped research groups could test ideas within weeks, rather than having to revise a locked-down budget or go through the slow process of applying for a grant.

Jean-Marie Rouillard, an assistant research scientist in chemical engineering at U-M and co-founder and director of technology at Arbor Biosciences, and Alison Devault, director of genomics at Arbor Biosciences, answered questions about the kit and what it could do.

Why is genetic sequencing important for understanding the coronavirus outbreak?

Rouillard: In order to truly understand the evolutionary history of a virus like this one, researchers need to study similar or related viral genome sequences from many different contexts, such as wild animal populations. We anticipate that researchers will use our panel to reconstruct the genetic sequences of the virus SARS-CoV-2formerly known as the 2019 novel coronavirusfrom a variety of human and animal samples.

Many examples of genome sequences are needed to track a diseases historical spread. Already, genetic sequencing has suggested that coronavirus may have been circulating in Washington state since mid-January. In addition, genetic sequencing can help researchers understand how specific parts of the genome are linked to certain disease-causing properties, which may help inform the choice of appropriate medical treatments.

What does your panel do?

Devault: The myBaits Expert kit for the SARS-CoV-2 retrieves and isolates fragments of the viruss genome from any type of sample, such as blood from an infected animal or person. We use known portions of the SARS-CoV-2 sequence to design baits that capture the fragments. Then, a researcher uses specialized software to digitally reconstruct an entire viral genome sequence.

How could it help with outbreaks like COVID-19?

Devault: We expect the research results from using our panel to be more relevant to preventing the next outbreak. The panel is not designed to diagnose, treat or cure a given patient. But it can be used to help determine which animal species are potential sources of COVID-19. In addition to identifying which animals pose a risk now, this use helps the global research community understand when and why this novel pathogenic virus emerged. If we know the conditions that enabled SARS-CoV-2 to appear, we may be able to prevent a future virus from following the same pathway.

How did you start offering these kits for free?

Devault: Several weeks ago, we received a request for such a panel from a researcher, which we were happy to manufacture very quickly and provide to them for free. We felt that due to the overall urgency of understanding the context of this disease, it was clear that we should make comprehensive study kits freely available ASAP to all members of the virology research community that wish to use this tool. While I hope no one would need to write a grant just to afford our kits, funding allocations can create barriers for new applications that dont fit into pre-approved budgets.

Since we announced the panel, weve heard from multiple different virology research groups that would like to use the kit, based in many different countries in North America, Europe and Asia. We were able to scale up production to ensure that we have enough kit materials in stock to quickly respond to all researcher requests.

Arbor Biosciences was started in 2005 by Rouillard and Erdogan Gulari, a professor of chemical engineering at U-M, under the name Biodiscovery LLC. Its technology has enabled some of the most difficult genetic sequencing successes, including the DNA of a horse that lived 700,000 years ago.

Continued here:
Free coronavirus sequencing kits for researchers offered by U-M startup - University of Michigan News

Read More...

Race Is Real, But It’s Not Genetic – SAPIENS

Wednesday, March 18th, 2020

Please note that this article includes an image of human remains.

A friend of mine with Central American, Southern European, and West African ancestry is lactose intolerant. Drinking milk products upsets her stomach, and so she avoids them. About a decade ago, because of her low dairy intake, she feared that she might not be getting enough calcium, so she asked her doctor for a bone density test. He responded that she didnt need one because blacks do not get osteoporosis.

My friend is not alone. The view that black people dont need a bone density test is a longstanding and common myth. A 2006 study in North Carolina found that out of 531 African American and Euro-American women screened for bone mineral density, only 15 percent were African American womendespite the fact that African American women made up almost half of that clinical population. A health fair in Albany, New York, in 2000, turned into a ruckus when black women were refused free osteoporosis screening. The situation hasnt changed much in more recent years.

Meanwhile, FRAX, a widely used calculator that estimates ones risk of osteoporotic fractures, is based on bone density combined with age, sex, and, yes, race. Race, even though it is never defined or demarcated, is baked into the fracture risk algorithms.

Lets break down the problem.

First, presumably based on appearances, doctors placed my friend and others into a socially defined race box called black, which is a tenuous way to classify anyone.

Race is a highly flexible way in which societies lump people into groups based on appearance that is assumed to be indicative of deeper biological or cultural connections. As a cultural category, the definitions and descriptions of races vary. Color lines based on skin tone can shift, which makes sense, but the categories are problematic for making any sort of scientific pronouncements.

Second, these medical professionals assumed that there was a firm genetic basis behind this racial classification, which there isnt.

Third, they assumed that this purported racially defined genetic difference would protect these women from osteoporosis and fractures.

The view that black people dont need a bone density test is a longstanding and common myth.

Some studies suggest that African American womenmeaning women whose ancestry ties back to Africamay indeed reach greater bone density than other women, which could be protective against osteoporosis. But that does not mean being blackthat is, possessing an outward appearance that is socially defined as blackprevents someone from getting osteoporosis or bone fractures. Indeed, this same research also reports that African American women are more likely to die after a hip fracture. The link between osteoporosis risk and certain racial populations may be due to lived differences such as nutrition and activity levels, both of which affect bone density.

But more important: Geographic ancestry is not the same thing as race. African ancestry, for instance, does not tidily map onto being black (or vice versa). In fact, a 2016 study found wide variation in osteoporosis risk among women living in different regions within Africa. Their genetic risks have nothing to do with their socially defined race.

When medical professionals or researchers look for a geneticcorrelateto race, they are falling into a trap: They assume thatgeographic ancestry, which does indeed matter to genetics, can be conflated with race, which does not. Sure, different human populations living in distinct places may statistically have different genetic traitssuch as sickle cell trait (discussed below)but such variation is about local populations (people in a specific region), not race.

Like a fish in water, weve all been engulfed by the smog of thinking that race is biologically real. Thus, it is easy to incorrectly conclude that racial differences in health, wealth, and all manner of other outcomes are the inescapable result of genetic differences.

The reality is that socially defined racial groups in the U.S. and most everywhere else do differ in outcomes. But thats not due to genes. Rather, it is due to systemic differences in lived experience and institutional racism.

Communities of color in the United States, for example, often have reduced access to medical care, well-balanced diets, and healthy environments. They are often treated more harshly in their interactions with law enforcement and the legal system. Studies show that they experience greater social stress, including endemic racism, that adversely affects all aspects of health. For example, babies born to African American women are more than twice as likely to die in their first year than babies born to non-Hispanic Euro-American women.

Systemic racism leads to different health outcomes for various populations. The infant mortality rate, for example, for African American infants is double that for European Americans. Kelly Lacy/Pexels

As a professor of biological anthropology, I teach and advise college undergraduates. While my students are aware of inequalities in the life experiences of different socially delineated racial groups, most of them also think that biological races are real things. Indeed, more than half of Americans still believe that their racial identity is determined by information contained in their DNA.

For the longest time, Europeans thought that the sun revolved around the Earth. Their culturally attuned eyes saw this as obvious and unquestionably true. Just as astronomers now know thats not true, nearly all population geneticists know that dividing people into races neither explains nor describes human genetic variation.

Yet this idea of race-as-genetics will not die. For decades, it has been exposed to the sunlight of facts, but, like a vampire, it continues to suck bloodnot only surviving but causing harm in how it can twist science to support racist ideologies. With apologies for the grisly metaphor, it is time to put a wooden stake through the heart of race-as-genetics. Doing so will make for better science and a fairer society.

In 1619, the first people from Africa arrived in Virginia and became integrated into society. Only after African and European bond laborers unified in various rebellions did colony leaders recognize the need to separate laborers. Race divided indentured Irish and other Europeans from enslaved Africans, and reduced opposition by those of European descent to the intolerable conditions of enslavement. What made race different from other prejudices, including ethnocentrism (the idea that a given culture is superior), is that it claimed that differences were natural, unchanging, and God-given. Eventually, race also received the stamp of science.

Swedish taxonomist Carl Linnaeus divided humanity up into racial categories according to his notion of shared essences among populations, a concept researchers now recognize has no scientific basis. Wikimedia Commons

Over the next decades, Euro-American natural scientists debated the details of race, asking questions such as how often the races were created (once, as stated in the Bible, or many separate times), the number of races, and their defining, essential characteristics. But they did not question whether races were natural things. They reified race, making the idea of race real by unquestioning, constant use.

In the 1700s, Carl Linnaeus, the father of modern taxonomy and someone not without ego, liked to imagine himself as organizing what God created. Linnaeus famously classified our own species into races based on reports from explorers and conquerors.

The race categories he created included Americanus, Africanus, and even Monstrosus (for wild and feral individuals and those with birth defects), and their essential defining traits included a biocultural mlange of color, personality, and modes of governance. Linnaeus described Europeaus as white, sanguine, and governed by law, and Asiaticus as yellow, melancholic, and ruled by opinion. These descriptions highlight just how much ideas of race are formulated by social ideas of the time.

In line with early Christian notions, these racial types were arranged in a hierarchy: a great chain of being, from lower forms to higher forms that are closer to God. Europeans occupied the highest rungs, and other races were below, just above apes and monkeys.

So, the first big problems with the idea of race are that members of a racial group do not share essences, Linnaeus idea of some underlying spirit that unified groups, nor are races hierarchically arranged. A related fundamental flaw is that races were seen to be static and unchanging. There is no allowance for a process of change or what we now call evolution.

There have been lots of efforts since Charles Darwins time to fashion the typological and static concept of race into an evolutionary concept. For example, Carleton Coon, a former president of the American Association of Physical Anthropologists, argued in The Origin of Races (1962) that five races evolved separately and became modern humans at different times.

One nontrivial problem with Coons theory, and all attempts to make race into an evolutionary unit, is that there is no evidence. Rather, all the archaeological and genetic data point to abundant flows of individuals, ideas, and genes across continents, with modern humans evolving at the same time, together.

In this map, darker colors correspond to regions in which people tend to have darker skin pigmentation. Reproduced with permission from Dennis ONeil.

A few pundits such as Charles Murray of the American Enterprise Institute and science writers such as Nicholas Wade, formerly of The New York Times, still argue that even though humans dont come in fixed, color-coded races, dividing us into races still does a decent job of describing human genetic variation. Their position is shockingly wrong. Weve known for almost 50 years that race does not describe human genetic variation.

In 1972, Harvard evolutionary biologist Richard Lewontin had the idea to test how much human genetic variation could be attributed to racial groupings. He famously assembled genetic data from around the globe and calculated how much variation was statistically apportioned within versus among races. Lewontin found that only about 6 percent of genetic variation in humans could be statistically attributed to race categorizations. Lewontin showed that the social category of race explains very little of the genetic diversity among us.

Furthermore, recent studies reveal that the variation between any two individuals is very small, on the order of one single nucleotide polymorphism (SNP), or single letter change in our DNA, per 1,000. That means that racial categorization could, at most, relate to 6 percent of the variation found in 1 in 1,000 SNPs. Put simply, race fails to explain much.

In addition, genetic variation can be greater within groups that societies lump together as one race than it is between races. To understand how that can be true, first imagine six individuals: two each from the continents of Africa, Asia, and Europe. Again, all of these individuals will be remarkably the same: On average, only about 1 out of 1,000 of their DNA letters will be different. A study by Ning Yu and colleagues places the overall difference more precisely at 0.88 per 1,000.

The circles in this diagram represent the relative size and overlap in genetic variation in three human populations. The African population circle (blue) is largest because it contains the most genetic diversity. Genetic diversity in European (orange) and Asian (green) populations is a subset of the variation in Africa. Reproduced by permission of the American Anthropological Association.Adapted from the original, which appeared in the book RACE.Not for sale or further reproduction.

The researchers further found that people in Africa had less in common with one another than they did with people in Asia or Europe. Lets repeat that: On average, two individuals in Africa are more genetically dissimilar from each other than either one of them is from an individual in Europe or Asia.

Homo sapiens evolved in Africa; the groups that migrated out likely did not include all of the genetic variation that built up in Africa. Thats an example of what evolutionary biologists call the founder effect, where migrant populations who settle in a new region have less variation than the population where they came from.

Genetic variation across Europe and Asia, and the Americas and Australia, is essentially a subset of the genetic variation in Africa. If genetic variation were a set of Russian nesting dolls, all of the other continental dolls pretty much fit into the African doll.

What all these data show is that the variation that scientistsfrom Linnaeus to Coon to the contemporary osteoporosis researcherthink is race is actually much better explained by a populations location. Genetic variation is highly correlated to geographic distance. Ultimately, the farther apart groups of people are from one another geographically, and, secondly, the longer they have been apart, can together explain groups genetic distinctions from one another. Compared to race, those factors not only better describe human variation, they invoke evolutionary processes to explain variation.

Those osteoporosis doctors might argue that even though socially defined race poorly describes human variation, it still could be a useful classification tool in medicine and other endeavors. When the rubber of actual practice hits the road, is race a useful way to make approximations about human variation?

When Ive lectured at medical schools, my most commonly asked question concerns sickle cell trait. Writer Sherman Alexie, a member of the Spokane-Coeur dAlene tribes, put the question this way in a 1998 interview: If race is not real, explain sickle cell anemia to me.

In sickle cell anemia, red blood cells take on an unusual crescent shape that makes it harder for the cells to pass through small blood vessels. Mark Garlick/Science Photo Library/AP Images

OK! Sickle cell is a genetic trait: It is the result of an SNP that changes the amino acid sequence of hemoglobin, the protein that carries oxygen in red blood cells. When someone carries two copies of the sickle cell variant, they will have the disease. In the United States, sickle cell disease is most prevalent in people who identify as African American, creating the impression that it is a black disease.

Yet scientists have known about the much more complex geographic distribution of sickle cell mutation since the 1950s. It is almost nonexistent in the Americas, most parts of Europe and Asiaand also in large swaths of Northern and Southern Africa. On the other hand, it is common in West-Central Africa and also parts of the Mediterranean, Arabian Peninsula, and India. Globally, it does not correlate with continents or socially defined races.

In one of the most widely cited papers in anthropology, American biological anthropologist Frank Livingstone helped to explain the evolution of sickle cell. He showed that places with a long history of agriculture and endemic malaria have a high prevalence of sickle cell trait (a single copy of the allele). He put this information together with experimental and clinical studies that showed how sickle cell trait helped people resist malaria, and made a compelling case for sickle cell trait being selected for in those areas. Evolution and geography, not race, explain sickle cell anemia.

What about forensic scientists: Are they good at identifying race? In the U.S., forensic anthropologists are typically employed by law enforcement agencies to help identify skeletons, including inferences about sex, age, height, and race. The methodological gold standards for estimating race are algorithms based on a series of skull measurements, such as widest breadth and facial height. Forensic anthropologists assume these algorithms work.

Skull measurements are a longstanding tool in forensic anthropology. Internet Archive Book Images/Flickr

The origin of the claim that forensic scientists are good at ascertaining race comes from a 1962 study of black, white, and Native American skulls, which claimed an 8090 percent success rate. That forensic scientists are good at telling race from a skull is a standard trope of both the scientific literature and popular portrayals. But my analysis of four later tests showed that the correct classification of Native American skulls from other contexts and locations averaged about two incorrect for every correct identification. The results are no better than a random assignment of race.

Thats because humans are not divisible into biological races. On top of that, human variation does not stand still. Race groups are impossible to define in any stable or universal way. It cannot be done based on biologynot by skin color, bone measurements, or genetics. It cannot be done culturally: Race groupings have changed over time and place throughout history.

Science 101: If you cannot define groups consistently, then you cannot make scientific generalizations about them.

Wherever one looks, race-as-genetics is bad science. Moreover, when society continues to chase genetic explanations, it misses the larger societal causes underlying racial inequalities in health, wealth, and opportunity.

To be clear, what I am saying is that human biogenetic variation is real. Lets just continue to study human genetic variation free of the utterly constraining idea of race. When researchers want to discuss genetic ancestry or biological risks experienced by people in certain locations, they can do so without conflating these human groupings with racial categories. Lets be clear that genetic variation is an amazingly complex result of evolution and mustnt ever be reduced to race.

Similarly, race is real, it just isnt genetic. Its a culturally created phenomenon. We ought to know much more about the process of assigning individuals to a race group, including the category white. And we especially need to know more about the effects of living in a racialized world: for example, how a societys categories Race is real, it just isnt genetic. Its a culturally created phenomenon.and prejudices lead to health inequalities. Lets be clear that race is a purely sociopolitical construction with powerful consequences.

It is hard to convince people of the dangers of thinking race is based on genetic differences. Like climate change, the structure of human genetic variation isnt something we can see and touch, so it is hard to comprehend. And our culturally trained eyes play a trick on us by seeming to see race as obviously real. Race-as-genetics is even more deeply ideologically embedded than humanitys reliance on fossil fuels and consumerism. For these reasons, racial ideas will prove hard to shift, but it is possible.

Over 13,000 scientists have come together to formand publicizea consensus statement about the climate crisis, and that has surely moved public opinion to align with science. Geneticists and anthropologists need to do the same for race-as-genetics. The recent American Association of Physical Anthropologists Statement on Race & Racism is a fantastic start.

In the U.S., slavery ended over 150 years ago and the Civil Rights Law of 1964 passed half a century ago, but the ideology of race-as-genetics remains. It is time to throw race-as-genetics on the scrapheap of ideas that are no longer useful.

We can start by getting my friendand anyone else who has been deniedthat long-overdue bone density test.

Read the original:
Race Is Real, But It's Not Genetic - SAPIENS

Read More...

Patriot Shield Announces Partnership with HempLogic, Launches New Propagation and Distribution Program for 2020 Season – Associated Press

Wednesday, March 18th, 2020

Press release content from Globe Newswire. The AP news staff was not involved in its creation.

Click to copy

Denver, Colorado, March 16, 2020 (GLOBE NEWSWIRE) -- Patriot Shield, a leader in hemp logistics and security, is launching a new structured propagation program for hemp farmers for the 2020 growing season. Partnering with HempLogic, a global leader in hemp growing services, Patriot Shield is providing premium seeds from its genetics catalog, placed in potting trays with soil and nutrients, and pre-acclimated to the fields they will grow in.

Patriot Shield is offering this propagation program directly to farmers for as little as $0.50 per unit, cutting out middlemen to reduce upfront costs and enabling farmers to gain more control over their seedlings and clones. Farmers with limited capital can also take advantage of Patriot Shields financing terms, with only half of the investment due upfront and the other half due well after harvest. In addition, farmers can utilize Patriot Shields distribution channels, including its retail and wholesale subsidiary, Veteran HempCo, to further increase their return on investment.

We are very excited to help farmers start the 2020 growing season with superior seeds and service, lower initial costs, great financing, and more options to help sell their crop, said Andrew Ross, CEO of Patriot Shield. Our aim is to allow farmers to focus on what they do best: grow hemp.

In 2019, Patriot Shield transported over 4.5 million hemp seeds, starts, and clones for dozens of established genetics providers and licensed farms. The company has methodically selected and worked with leading global hemp geneticists and consultants to gain deep insights into genetic variables. The companys new structured propagation program for 2020 is a direct reflection of these strategic partnerships.

By advising farmers based on acres available, budget, knowledge, and experience with hemp, Patriot Shield links its catalog of partnered genetics to suit the needs of each individual client.

About Patriot Shield

Founded and managed by U.S. military veterans with deep expertise in logistics and security, Patriot Shield is a leading service provider to all areas of the supply chain in the American cannabis (hemp and marijuana) market, delivering end-to-end hemp logistics solutions from genetics consulting and seedling transport, to harvest strategy and processing, and product warehousing to distribution.

Patriot Shield ensures every link in the hemp supply chain is protected with custom security plans, a veteran guard force, and state-of-the-art technology, like tamper-proofing, GPS tracking, and video monitoring. Starting as a pioneer in the legal interstate transport of hemp in the U.S. through a landmark court case, now has operations or strategic partnerships across the US, including the key markets of California, Colorado, Oklahoma, and Pennsylvania.

# # #

Contact:800-267-8932

Attachment

-- Patriot Shield

Here is the original post:
Patriot Shield Announces Partnership with HempLogic, Launches New Propagation and Distribution Program for 2020 Season - Associated Press

Read More...

Genomics took a long time to fulfil its promise – The Economist

Wednesday, March 18th, 2020

Mar 12th 2020

THE ATOMIC bomb convinced politicians that physics, though not readily comprehensible, was important, and that physicists should be given free rein. In the post-war years, particle accelerators grew from the size of squash courts to the size of cities, particle detectors from the scale of the table top to that of the family home. Many scientists in other disciplines looked askance at the money devoted to this big science and the vast, impersonal collaborations that it brought into being. Some looked on in envy. Some made plans.

The idea that sequencing the whole human genome might provide biology with some big science of its own first began to take root in the 1980s. In 1990 the Human Genome Project was officially launched, quickly growing into a global endeavour. Like other fields of big science it developed what one of the programmes leaders, the late John Sulston, called a tradition of hyperbole. The genome was Everest; it was the Apollo programme; it was the ultimate answer to that Delphic injunction, know thyself. And it was also, in prospect, a cornucopia of new knowledge, new understanding and new therapies.

By the time the completion of a (rather scrappy) draft sequence was announced at the White House in 2000, even the politicians were drinking the Kool-Aid. Tony Blair said it was the greatest breakthrough since antibiotics. Bill Clinton said it would revolutionise the diagnosis, prevention and treatment of most, if not all, human diseases. In coming years, doctors increasingly will be able to cure diseases like Alzheimers, Parkinsons, diabetes and cancer by attacking their genetic roots.

Such hype was always going to be hard to live up to, and for a long time the genome project failed comprehensively, prompting a certain Schadenfreude among those who had wanted biology kept small. The role of genetics in the assessment of peoples medical futures continued to be largely limited to testing for specific defects, such as the BRCA1 and BRCA2 mutations which, in the early 1990s, had been found to be responsible for some of the breast cancers that run in families.

To understand the lengthy gap between the promise and the reality of genomics, it is important to get a sense of what a genome really is. Although sequencing is related to an older technique of genetic analysis called mapping, it produces something much more appropriate to the White House kitchens than to the Map Room: a recipe. The genes strung out along the genomes chromosomesbig molecules of DNA, carefully packedare descriptions of lifes key ingredients: proteins. Between the genes proper are instructions as to how those ingredients should be used.

If every gene came in only one version, then that first human genome would have been a perfect recipe for a person. But genes come in many varietiesjust as chilies, or olive oils, or tinned anchovies do. Some genetic changes which are simple misprints in the ingredients specification are bad in and of themselvesjust as a meal prepared with fuel oil instead of olive oil would be inedible. Others are problematic only in the context of how the whole dish is put together.

The most notorious of the genes with obvious impacts on health were already known before the genome was sequenced. Thus there were already tests for cystic fibrosis and Huntingtons disease. The role of genes in common diseases turned out to be a lot more involved than many had naively assumed. This made genomics harder to turn into useful insight.

Take diabetes. In 2006 Francis Collins, then head of genome research at Americas National Institutes of Health, argued that there were more genes involved in diabetes than people thought. Medicine then recognised three such genes. Dr Collins thought there might be 12. Today the number of genes with known associations to type-2 diabetes stands at 94. Some of these genes have variants that increase a persons risk of the disease, others have variants that lower that risk. Most have roles in various other processes. None, on its own, amounts to a huge amount of risk. Taken together, though, they can be quite predictivewhich is why there is now an over-the-counter genetic test that measures peoples chances of developing the condition.

In the past few years, confidence in sciences ability to detect and quantify such genome-wide patterns of susceptibility has increased to the extent that they are being used as the basis for something known as a polygenic risk score (PRS). These are quite unlike the genetic tests people are used to. Those single-gene tests have a lot of predictive value: a person who has the Huntingtons gene will get Huntingtons; women with a dangerous BRCA1 mutation have an almost-two-in-three chance of breast cancer (unless they opt for a pre-emptive mastectomy). But the damaging variations they reveal are rare. The vast majority of the women who get breast cancer do not have BRCA mutations. Looking for the rare dangerous defects will reveal nothing about the other, subtler but still possibly relevant genetic traits those women do have.

Polygenic risk scores can be applied to everyone. They tell anyone how much more or less likely they are, on average, to develop a genetically linked condition. A recently developed PRS for a specific form of breast cancer looks at 313 different ways that genomes vary; those with the highest scores are four times more likely to develop the cancer than the average. In 2018 researchers developed a PRS for coronary heart disease that could identify about one in 12 people as being at significantly greater risk of a heart attack because of their genes.

Some argue that these scores are now reliable enough to bring into the clinic, something that would make it possible to target screening, smoking cessation, behavioural support and medications. However, hope that knowing their risk scores might drive people towards healthier lifestyles has not, so far, been validated by research; indeed, so far things look disappointing in that respect.

Assigning a PRS does not require sequencing a subjects whole genome. One just needs to look for a set of specific little markers in it, called SNPs. Over 70,000 such markers have now been associated with diseases in one way or another. But if sequencing someones genome is not necessary in order to inspect their SNPs, understanding what the SNPs are saying in the first place requires that a lot of people be sequenced. Turning patterns discovered in the SNPs into the basis of risk scores requires yet more, because you need to see the variations in a wide range of people representative of the genetic diversity of the population as a whole. At the moment people of white European heritage are often over-represented in samples.

The first genome cost, by some estimates, $3bn

The need for masses of genetic information from many, many human genomes is one of the main reasons why genomic medicine has taken off rather slowly. Over the course of the Human Genome Project, and for the years that followed, the cost of sequencing a genome fell quicklyas quickly as the fall in the cost of computing power expressed through Moores law. But it was falling from a great height: the first genome cost, by some estimates, $3bn. The gap between getting cheaper quickly and being cheap enough to sequence lots of genomes looked enormous.

In the late 2000s, though, fundamentally new types of sequencing technology became available and costs dropped suddenly (see chart). As a result, the amount of data that big genome centres could produce grew dramatically. Consider John Sulstons home base, the Wellcome Sanger Institute outside Cambridge, England. It provided more sequence data to the Human Genome Project than any other laboratory; at the time of its 20th anniversary, in 2012, it had produced, all told, almost 1m gigabytesone petabyteof genome data. By 2019, it was producing that same amount every 35 days. Nor is such speed the preserve of big-data factories. It is now possible to produce billions of letters of sequence in an hour or two using a device that could easily be mistaken for a chunky thumb drive, and which plugs into a laptop in the same way. A sequence as long as a human genome is a few hours work.

As a result, thousands, then tens of thousands and then hundreds of thousands of genomes were sequenced in labs around the world. In 2012 David Cameron, the British prime minister, created Genomics England, a firm owned by the government, and tasked initially with sequencing 100,000 genomes and integrating sequencing, analysis and reporting into the National Health Service. By the end of 2018 it had finished the 100,000th genome. It is now aiming to sequence five million. Chinas 100,000 genome effort started in 2017. The following year saw large-scale projects in Australia, America and Turkey. Dubai has said it will sequence all of its three million residents. Regeneron, a pharma firm, is working with Geisinger, a health-care provider, to analyse the genomes of 250,000 American patients. An international syndicate of investors from America, China, Ireland and Singapore is backing a 365m ($405m) project to sequence about 10% of the Irish population in search of disease genes.

Genes are not everything. Controls on their expressionepigentics, in the jargonand the effects of the environment need to be considered, too; the kitchen can have a distinctive effect on the way a recipe turns out. That is why biobanks are being funded by governments in Britain, America, China, Finland, Canada, Austria and Qatar. Their stores of frozen tissue samples, all carefully matched to clinical information about the person they came from, allow study both by sequencing and by other techniques. Researchers are keen to know what factors complicate the lines science draws from genes to clinical events.

Today various companies will sequence a genome commercially for $600-$700. Sequencing firms such as Illumina, Oxford Nanopore and Chinas BGI are competing to bring the cost down to $100. In the meantime, consumer-genomics firms will currently search out potentially interesting SNPs for between $100 and $200. Send off for a home-testing kit from 23andMe, which has been in business since 2006, and you will get a colourful box with friendly letters on the front saying Welcome to You. Spit in a test tube, send it back to the company and you will get inferences as to your ancestry and an assessment of various health traits. The health report will give you information about your predisposition to diabetes, macular degeneration and various other ailments. Other companies offer similar services.

Plenty of doctors and health professionals are understandably sceptical. Beyond the fact that many gene-testing websites are downright scams that offer bogus testing for intelligence, sporting ability or wine preference, the medical profession feels that people are not well equipped to understand the results of such tests, or to deal with their consequences.

An embarrassing example was provided last year by Matt Hancock, Britains health minister. In an effort to highlight the advantages of genetic tests, he revealed that one had shown him to be at heightened risk of prostate cancer, leading him to get checked out by his doctor. The test had not been carried out by Britains world-class clinical genomics services but by a private company; critics argued that Mr Hancock had misinterpreted the results and consequently wasted his doctors time.

23andMe laid off 14% of its staff in January

He would not be the first. In one case, documented in America, third-party analysis of genomic data obtained through a website convinced a woman that her 12-year-old daughter had a rare genetic disease; the girl was subjected to a battery of tests, consultations with seven cardiologists, two gynaecologists and an ophthalmologist and six emergency hospital visits, despite no clinical signs of disease and a negative result from a genetic test done by a doctor.

At present, because of privacy concerns, the fortunes of these direct-to-consumer companies are not looking great. 23andMe laid off 14% of its staff in January; Veritas, which pioneered the cheap sequencing of customers whole genomes, stopped operating in America last year. But as health records become electronic, and health advice becomes more personalised, having validated PRS scores for diabetes or cardiovascular disease could become more useful. The Type 2 diabetes report which 23andMe recently launched looks at over 1,000 SNPs. It uses a PRS based on data from more than 2.5m customers who have opted to contribute to the firms research base.

As yet, there is no compelling reason for most individuals to have their genome sequenced. If genetic insights are required, those which can be gleaned from SNP-based tests are sufficient for most purposes. Eventually, though, the increasing number of useful genetic tests may well make genome sequencing worthwhile. If your sequence is on file, many tests become simple computer searches (though not all: tests looking at the wear and tear the genome suffers over the course of a lifetime, which is important in diseases like cancer, only make sense after the damage is done). If PRSs and similar tests come to be seen as valuable, having a digital copy of your genome at hand to run them on might make sense.

Some wonder whether the right time and place to do this is at birth. In developed countries it is routine to take a pinprick of blood from the heel of a newborn baby and test it for a variety of diseases so that, if necessary, treatment can start quickly. That includes tests for sickle-cell disease, cystic fibrosis, phenylketonuria (a condition in which the body cannot break down phenylalanine, an amino acid). Some hospitals in America have already started offering to sequence a newborns genome.

Sequencing could pick up hundreds, or thousands, of rare genetic conditions. Mark Caulfield, chief scientist at Genomics England, says that one in 260 live births could have a rare condition that would not be spotted now but could be detected with a whole-genome sequence. Some worry, though, that it would also send children and parents out of the hospital with a burden of knowledge they might be better off withoutespecially if they conclude, incorrectly, that genetic risks are fixed and predestined. If there is unavoidable suffering in your childs future do you want to know? Do you want to tell them? If a child has inherited a worrying genetic trait, should you see if you have it yourselfor if your partner has? The ultimate answer to the commandment know thyself may not always be a happy one.

This article appeared in the Technology Quarterly section of the print edition under the headline "Welcome to you"

Go here to read the rest:
Genomics took a long time to fulfil its promise - The Economist

Read More...

Progressive Genetics to suspend manual milk recording due to Covid-19 – Agriland

Wednesday, March 18th, 2020

Progressive Genetics is suspending its manual milk recording service from 12:00pm tomorrow, Tuesday, March 17, due to the ongoing developments with Covid-19.

Taking measures to prevent the spread of the novel coronavirus, the agricultural services firm sent out a text to customers of its manual milk recording service earlier today, Monday, March 16, to inform them of the development.

The manual milk recording will be suspended for a two-week period and is expected to resume on Monday, March 30, according to the company.

Speaking to AgriLand about the decision, Progressive Genetics milk recording manager Stephen Connolly explained: We have to be responsible.

We want to protect our staff, our contractors and our farmers. Thats whats most important.

The manager assured that Electronic do it yourself (EDIY) milk recording will continue over the two-week period, adding:

We have a protocol in place to minimise contact with the farmer and if a farmer is under pressure with a [somatic] cell count issue or anything like that we will get EDIY staff to drop bottles out so that the farmer can do samples themselves, if there is a spike in cell count.

Commenting on the suspension, Connolly said: It is unfortunate and regrettable, but you need a bit of common sense. We do need to put best practice in place and then hopefully after the next two weeks we can get back manual milk recording.

We all have to play our part. Its trying to minimise everything as much as possible. We all need to do our bit, whether it be Progressive Genetics or farmers or the public, just to minimise the risk.

The manager reiterated that EDIY services remain in place, adding that strict protocols are being adhered to regarding minimising contact and disinfecting equipment between farms.

If a farmer has a problem, we will get bottles out to them for milk recording and cell count; we wont leave anyone in the lurch.

Were available to be contacted in the office or our supervisors are available to be contacted if farmers have any issues or anything like that well be on call.

Its just unfortunate. Its a challenge but we have to put common sense and peoples safety before anything else, Connolly concluded.

RELATED STORIES

See original here:
Progressive Genetics to suspend manual milk recording due to Covid-19 - Agriland

Read More...

There Are More Viruses on Earth Than There Are Stars in the Universe – Air & Space Magazine

Wednesday, March 18th, 2020

With the coronavirus SARS-CoV-2 on everyones mind these days, scientists are working to understand its characteristics. Tung Phan from the University of Pittburgh, for example, found many mutations in the genome of the virus, underlining its genetic diversity and the rapid evolution this pathogen is capable of.

This begs bigger questions, thoughlike what makes viruses so adaptable, and are they really alive?

First, their total number is staggering. It is estimated that there are 10 viruses for every bacterium on Earth. Curtis Suttle from the University of British Columbia in Vancouver compared the number of viruses in the oceans alone to the number of stars in the Universe, which is estimated to be 1023. Viruses outnumber stars by a factor of 10 million. If you lined them all up, that line would be 10 million light years long! To put it on a more conceivable scale, its been estimated that each day, more than 700 million viruses, mainly of marine origin, are deposited from Earths atmosphere onto every square meter of our planets surface.

The diversity of viruses is just as impressive. Some use DNA to pass on genetic information, some use RNA, and some use both during their life cycle. The information carrier can be single-stranded, double-stranded, or double-stranded with some regions being single-stranded. Viruses are like a natural lab seemingly playing around with genetic permutations and combinations. While most viruses are so small that they can only be observed directly with an electron microscope, others, like the giant Mimiviruses, reach the size of bacteria. When I worked in my lab with viruses that kill bacteriacalled bacteriophageswe did not count the actual viruses, but the number of bacteria they killed.

Viruses also have benefits. Most of the genetic information on Earth probably resides within them, and viruses are important for transferring genes between different species, increasing genetic diversity and ultimately enhancing evolution and the adaptation of various organisms to new environmental challenges. When life was first arising on Earth, they may have been critical to the evolution of the first cells. I imagine some kind of early Darwinian pond in which viruses and the first cells swapped genes with each other, nearly unimpeded, to come up with critical new adaptations, enhancing the survival of both under challenging early-Earth conditions.

So, are viruses alive?

It depends where we draw the border between non-life and life, which is likely a continuum toward increasing complexity. Does life require cells? Personally, I think thats a bithow should I say it?cell-centric rather than Earth-centric. In my view, viruses have to be counted as alive. We should recognize them as a fourth domain of life and not dismiss them, if only because they do in fact reproduce outside their own bodies. The parasitic bacteria that cause chlamydia are considered to be living. One hypothesis for the origin of viruses says that they, or at least some of them, could have evolved from bacteria that lost any genes not needed for parasitism. If so, could we say they evolved from living back to non-living?

Another thing I find intriguing: The more common RNA viruseslike the coronavirus behind the current pandemichave typically smaller genome sizes than DNA viruses, apparently because of a higher error-rate when replicating. Too many errors have the effect that natural selection disfavors them. It also limits the maximum size of these viruses.

This seems to support the hypothesis that life originated with an RNA world, and that for very primitive life RNA worked perfectly fine to pass on genetic information. As organisms grew in size, they required larger genomes and needed to transfer more information. At that point DNA outcompeted RNA as a type of informational code. But RNA survives as an essential part of terrestrial biology, as were seeing with the coronavirus SARS-CoV-2.

Like this article?SIGN UP for our newsletter

Original post:
There Are More Viruses on Earth Than There Are Stars in the Universe - Air & Space Magazine

Read More...

India-specific genome tests: The future of healthcare – Hyderus Cyf

Wednesday, March 18th, 2020

Could public health in India be better served by genome testing tailored specifically to the Indian population? The answer could be yes.

Diagnostic techniques have been built and developed for the developed markets so obviously, the cost structure is accordingly, argued Nikhil Jakatdar, chief executive officer (CEO) of GenePath Diagnostics in an interview with the Economic Times. The relevance of this test has been designed for the Caucasian population and so to bring it to India the challenge involves around how you make it relevant to the Indian genome.

This raises an important question. Given the genetic diversity of India, how can genetic testing kits tailored for the use on European genomes be fully optimised for testing within India? Keeping this in mind, to what extent would genetic testing kits built specifically with India in mind benefit Indias medical system?

The first study resulting from the GenomeAsia 100K project has revealed that Asia has at least ten distinct genetic ancestral lines, compared to the single genetic lineage found in northern Europe. Indias population is diverse, with many different ancestral lines in different regions. As such, genetics vary significantly across the country, meaning a single Indian genetic test would be an improvement on current testing methods, but would likely need a more tailored approach.

India represents almost twenty percent of the worlds population and is anticipated by some to become the worlds most populous nation in the coming decade. Despite this only 0.2 percent of fully mapped genomes in global databanks are of Indian origin.

However, despite Indias minuscule representation within global gene databases, numerous genes have been discovered among the Indian population that predispose individuals to certain diseases. A previous example of this was the finding that the Indian population has a high prevalence of a number of genes that are implicated as risk factors for diabetes. Some of these genes were found to be unique to the Indian subcontinent, indicating a unique risk factor to the Indian population. Knowledge of such genetic traits can allow for the healthcare system to adapt and focus on prevention in a way that is more effective among at-risk populations.

Tailoring genome testing to Indias population can allow for the tests to make note of these unique risk factors, granting far better accuracy when assessing an individuals chances of developing a condition in the future.

As Jakatdar notes in the interview, a lot of tests have been built from ground up through pure R&D [research and development] by us here [in India] so that is the huge milestone when you can actually create tests for Indian market built in India by companies in India. Many of these tests were designed for the US market, however, given the capacity for both research and production of new genetic testing products are already in the domestic market. The development of tests specifically for India is not a far-flung eventuality, but a very real possibility in the coming years.

Like Loading...

Related

Read more from the original source:
India-specific genome tests: The future of healthcare - Hyderus Cyf

Read More...

How the Brain Shuttles Genetic Code Within Its Cells to Grow and Create Memories – SciTechDaily

Wednesday, March 18th, 2020

A graphic representation of kinesin-2 transporting mRNA-protein complexes along the self-assembling highways of a neuron. mNRA localization signals read by the transport complex are indicated with capital Gs. Credit: S Maurer

It is the first time scientists have revealed how the brain shuttles genetic code within its cells.

Research published today (March 13, 2020) in Science Advances sheds new light on the molecular machinery that enables the shape, growth, and movement of neurons. It is the first time scientists have revealed how the brain shuttles genetic code within its cells, a process believed to be crucial for the formation and storage of long-term memories.

Brain cells, also known as neurons, are complex, specialized cells with long branches. To grow, neurons build proteins at specific locations of a branch so that they can form new protrusions, control the direction they move in and establish connections with other neurons. This process is especially important during brain development, helping different types of neurons find their place in the wider brain tissue. The genetic blueprint to build thousands of different types of useful proteins continuously travel around the cells branches in the form of mRNA, which is genetic information copied from DNA.

In this clip, packages of one to four yellow fluorescence-labeled mRNAs with an intact localization signal travel on microtubules assembled in a micro-chambers which is mounted onto a microscope. Blue mRNAs have mutated localization signal which are not recognized by the transport machinery. Credit: S Maurer and S Baumman

How neurons, the longest type of animal cell, get the correct genetic blueprints to the right place at the right time is an unanswered question. It was thought that they are transported by kinesins, elongated proteins with two feet that walk one foot over another to a target destination, but there was no direct evidence to prove this. Every living cell has a network of self-assembling highways to transport large molecular materials from one side to the other. Different vehicles busily move thousands of different cargoes around, with kinesins being the most common type.

Now scientists at the Centre for Genomic Regulation (CRG) in Barcelona have found that a type of kinesin called KIF3A/B can transport mRNAs, using another protein called adenomatous polyposis coli (APC) as an adaptor that binds both the kinesin and the mRNA-cargo. The proteins transport at least two types of mRNA which code for tubulin and actin, two types of proteins that neurons use to build their cellular skeleton. This is essential to shape the cell so that it can form new connections with other neurons.

The findings are of interest because mRNAs play a key role in the storage and formation of memories. Previous studies show that mRNAs coding for the protein beta-actin continuously travel along synapses, the junction between two neurons. When synapses repeatedly receive a signal, the mRNA is used to make beta-actin proteins, which are important for reinforcing synapses and strengthening the attachment between two neurons. Repeatedly stimulating a synapse continuously reinforces the junction, which is thought to be how memories form.

mRNAs travel across relatively vast distances. Here they make their way across a network of microtubule roads 40 micrometers long. A typical neuron is ten times this length. Automated tracking of transported RNAs (lower panel) reveals the transport velocity and number of mRNAs transported in the same package. Credit: S Maurer and S Baumann

Spanish neuroscientist Santiago Ramon y Cajal first proposed that our brains store memories by strengthening neuronal synapses, changing shape so that brain cells would firmly grasp one another and conduct signals more efficiently, says Sebastian Maurer, researcher at the Centre for Genomic Regulation and lead author of the study. More than a century later we are describing one essential mechanism likely underlying his theories, showing just how ahead of his time he was.

The researchers synthetically recreated cellular self-assembling highways using pure components in a test tube,?revealing the function of individual building blocks and how they work together to transport mRNAs. Purified proteins suspected to be important for neuronal mRNA transport were labeled with different fluorescent dyes and studied with a highly sensitive microscope that can detect the rapid movement of single molecules.?

The researchers found that mRNAs and their adaptor APC switch on the kinesins ignition, activating the protein. Transported mRNAs were found to have a special localization signal that control the efficiency by which different mRNAs are loaded onto the kinesin. Even slight alterations to this signal affected the mRNAs journey to its target destination, showing the sophisticated mechanisms brain cells develop to control the logistics of thousands of different messages. When not carrying cargo, the kinesins shifted to energy saving mode to save fuel until their next job.

Finding the exact vehicle needed to transport mRNA is like looking for a needle in a haystack, which is why most people thought what it was impossible saysSebastian Mauer. But we did it, which would not have been possible without the CRG or the Spanish governments public funding for risky projects.

We will continue to investigate the transport systems that make up a neurons complex logistical network. Understanding the molecular machinery underlying the development of brain cells will be key to combating global challenges like dementia and neurogenerative diseases.

Reference: 13 March 2020, Science Advances.

See the original post here:
How the Brain Shuttles Genetic Code Within Its Cells to Grow and Create Memories - SciTechDaily

Read More...

The potential pitfalls of an IVF add-on – Quartz

Wednesday, March 18th, 2020

At age 42, Amy Klein had already suffered three miscarriages and gone through several rounds of IVF. She wasnt done trying to have a baby. But she worried that her age likely meant that her eggs had chromosomal abnormalities that kept her from getting pregnant.

So starting in 2012, the health reporter opted for a controversial addition to the fertility toolkit: She went through four rounds of additional egg retrieval, and had those embryos frozen and genetically analyzed for abnormalities.

The basic in vitro fertilization (IVF) process kick-starts embryo formation by fertilizing an egg, or many, with sperm in a petri dish. Kleins plan was to add an optional and costly method called preimplantation genetic testing (PGT), to look for the most viable embryos in the bunch. Once the embryo reaches a stage called a blastocyst, technicians take a handful of cellssix or seven, aboutto test them for genetic abnormalities that could result in disease or miscarriage.

Read more:
The potential pitfalls of an IVF add-on - Quartz

Read More...

Dr. Philip Leder, Harvard researcher who illuminated the role of genetics in cancer, dies at 85 – The Boston Globe

Tuesday, March 10th, 2020

Dr. Leder, who more than 30 years ago became a co-holder of the first US patent on an animal, the OncoMouse, was 85 when he died Feb. 2 in his home in the Brookline part of Chestnut Hill of complications from Parkinsons disease.

In a tribute posted on a National Institutes of Health website, Dr. Michael M. Gottesman said Dr. Leder was among the worlds most accomplished molecular geneticists.

During Dr. Leders postdoctoral studies at the NIH in the early 1960s, he was recruited by Nirenberg to work on untangling the genetic code.

Their experiments definitively elucidated the triplet nature of the genetic code and culminated in its full deciphering helped set the stage for the revolution in molecular genetic research that Phil himself would continue to lead for the next three decades, wrote Gottesman, who is the NIHs deputy director for Intramural Research and chief of the Laboratory of Cell Biology at the Center for Cancer Research of the National Cancer Institute.

In a eulogy at Dr. Leders funeral, Dr. David Livingston, a Harvard geneticist, said he was brilliant, bold, very good-humored, and blessed with exceptional scientific insight and creativity.

Livingston, who had been Dr. Leders second research fellow at the NIH, added that early on, it became readily apparent that a natural eloquence infused his oral and written scientific discourse.

The groundbreaking research Dr. Leder and Nirenberg conducted came about in part because of the looming prospect of military service. Instead, he volunteered to serve in the US Public Health Service.

I got drafted, so I applied for a position in the Public Health Service, which supplied physicians and scientists to the National Institutes of Health in Bethesda, Dr. Leder said in a 2012 interview with a publication of the American Society for Biochemistry and Molecular Biology. A friend at NIH told me that I ought to meet Marshall Nirenberg because he was doing interesting experiments with the genetic code. Frankly, I didnt know anything about the genetic code. But I went to see Marshall, and he explained to me what he was doing and its importance.

Their research was in competition with work in another laboratory run by Severo Ochoa, a Nobel Prize-winner, and there was a mad race to the finish, Dr. Leder recalled.

I couldnt sleep for days at a time because of the excitement! I must admit it was very competitive; theres no question about that, he added. I would go to bed thinking about the next days experiments and then jump out of bed in the morning and rush to the laboratory. I stayed late at night. It was a lot of work but the intellectual excitement was enormous.

After about 18 years, Dr. Leder left the NIH at the outset of the 1980s to become founding chairman of Harvard Medical Schools department of genetics, where he stayed until 2008.

Working with Timothy Stewart in 1988, he was awarded the first patent on the OncoMouse, an animal genetically engineered to have a predisposition for cancer, which revolutionized the study and treatment of the disease, George Q. Daley, dean of the faculty of medicine at Harvard, said in a statement. Additionally, Phils research into Burkitts lymphoma was instrumental to understanding the origin of tumors with antibody-producing cells.

Dr. Leders many honors included the Albert Lasker Award for Basic Medical Research; the Heineken Prize from the Royal Netherlands Academy of Arts and Sciences; the US National Medal of Science; and the William Allan Medal from the American Society of Human Genetics.

For his many accomplishments, he was extremely modest. He really didnt like to talk about himself much, said his son Ben of Westwood. What he loved about science was the actual work, and thats what really motivated him.

Scientists such as Livingston, who worked with Dr. Leder early in their own careers, considered him a key mentor.

I shall miss Phil forever, Livingston said in his eulogy. Indeed, only rarely has a week passed when I havent thought of him. If the past is any prologue, my abiding hope will be that, when faced with a particularly potent scientific challenge, some of his mentoring magic will spontaneously take hold and point me in one of those special, Phil Leder-like directions.

Although Dr. Leders accomplishments were lasting, he began focusing more on family and subsequent generations as he neared and then entered his retirement years.

What a wonderful ride it has been, he wrote in 2001 for an anniversary report of his Harvard class. But I now see more clearly than ever before that whatever modest gift of knowledge my colleagues and I have been able to turn over to posterity, it has been poor by comparison to the thrill of seeing our grandchildren walk off into the future.

Born in Washington, D.C., on Nov. 19, 1934, Philip Leder grew up in Washington and in Arlington, Va., the only child of George Leder and Jacqueline Burke.

Dr. Leder graduated from Western High School in Washington and went to Harvard, from which he received a bachelors degree in 1956. He graduated from Harvard Medical School four years later.

In 1959, he married Aya Brudner. They had three children and worked together on research.

I continue to collaborate with my wife, Aya, in the remarkable field of molecular genetics, he wrote for the 40th anniversary report of his Harvard class. Lately, however, we find ourselves occasionally sneaking off to New Hampshire, where we have a second home, a canoe, snowshoes, and lots of opportunity to observe nature in real time.

A service has been held for Dr. Leder, who in addition to his wife, Aya, and son, Ben, leaves a daughter, Micki of Washington, D.C.; another son, Ethan of Bethesda, Md.; and eight grandchildren.

Ive discovered that great joy comes from grandchildren, Dr. Leder wrote 50 years after graduating from Harvard College.

Eight grandchildren, he added, can easily shrink a fairly successful career down to its appropriate proportions. In the next few years Ill retire from a life in genetics, which Ive loved, from the genetic code to the human genome. But I wont retire from those grandchildren, and I suspect that many of you feel exactly the same way.

Bryan Marquard can be reached at bryan.marquard@globe.com.

Continued here:
Dr. Philip Leder, Harvard researcher who illuminated the role of genetics in cancer, dies at 85 - The Boston Globe

Read More...

Genetic adaptions can lose their benefit over time – Nature Middle East

Tuesday, March 10th, 2020

Genetic variants that once protected ancient Arab nomads from the harsh desert environment may make modern Kuwaitis prone to metabolic disorders.

Modern-day Kuwaitis may suffer health problems thanks to genetic adaptations that once protected their Arab nomad ancestors from the harsh desert environment.Paulo Oliveira / Alamy Stock Photo Delving into the genetic history of a human population can help explain why some modern-day people have a greater propensity to certain diseases. One longstanding question is why Kuwaitis experience a high incidence of obesity and other metabolic syndromes.

Human genetic adaptation to extreme environments, such as high altitude and cold climates, has been increasingly explored in recent years, and I have always wondered about the adaptive trends in the desert-covered Arabian Gulf, says Muthukrishnan Eaaswarkhanth of the Dasman Diabetes Institute in Kuwait. We decided to explore adaptation in the Kuwaiti population using a genome-wide selection scanning technique, to see if we could find a stretch of DNA inherited from nomadic Arab ancestors that might explain contemporary health issues.

Eaaswarkhanth, with colleagues Fahd Al-Mulla and Thangavel Thanaraj, and co-workers in the US, analysed 662,750 genetic variants in 583 Kuwaitis. They searched for regions of the genome suggestive of positive selection over generations.

We used four different statistical methods to measure genetic variations that band together in a genome over time, and pinpointed differences both within the Kuwaiti population and compared with other global population groups, says Thanaraj.

Through this extensive analysis, the researchers identified a haplotype in Kuwaitis: a group of genetic variants that are conserved together as a sequence over time. This haplotype encompasses a single gene, TNKS, which has variations associated with metabolic disorders and high blood pressure.

In hunter-gatherer, nomadic populations, selecting for the TNKS haplotype provided a survival advantage, says Eaaswarkhanth. A rapid metabolic rate and higher blood pressure may have helped them survive extremely harsh environmental conditions and food scarcity in the Arabian Desert.

Crucially, the same DNA stretch becomes a killer during prosperous periods and under more sedentary lifestyles, leading to a modern-day population prone to obesity, diabetes, hypertension and cardiovascular disease.

Were extending this study to other Arabian Peninsula populations to fully understand the evolutionary story, says Al-Mulla. Further, we hope to conduct functional experiments that could help in disease diagnosis, management and prevention in the region.

More here:
Genetic adaptions can lose their benefit over time - Nature Middle East

Read More...

Page 21«..10..20212223..3040..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick