header logo image


Page 16«..10..15161718..3040..»

Archive for the ‘Genetic medicine’ Category

The Prostate Cancer Foundation Collaboration With Pan-Cancer Consortium Clarifies And Promotes Consistent Use Of Common Terms For Biomarker And…

Friday, July 10th, 2020

LOS ANGELES, July 7, 2020 /PRNewswire/ -- The Prostate Cancer Foundation (PCF) has collaborated with aconsortium of 41 leading patient advocacy organizations, professional societies and industry partners to publish a white paper detailing recommendations for the use of testing terminology in precision medicine for patient education throughout the cancer community. Use of consistent language will significantly improve patient awareness and understanding of potentially life-saving testing options available for both new cancer diagnoses and progression or recurrence of disease. In prostate cancer, testing is a crucial tool that may reveal additional treatment options and/or information for a man's family about their own cancer risk.

Research shows that despite widespread acceptance of the importance of testing, actual testing rates lag far behind best-practice recommendations for both biomarker testing for somatic (acquired) mutations and other biomarkers, and for germline genetic testing for identifying germline (inherited) mutations (also known as variants). Analysis by The Consistent Testing Terminology Working Group(Working Group) indicates that language disparity is a primary obstacle to patient communication with providers about testing for their specific cancer type. Further, development of consistent language can increase patient understanding and communication, facilitate shared decision making, support value-based care and assure concordance in policy development.

"Both types of testing biomarker testing and genetic testing for inherited cancer risk are important in the care of prostate cancer patients," said Dr. Andrea Miyahira, Director of Global Research and Scientific Communications at PCF. "One example is the very recent approval of medications for men with advanced prostate cancer and certain mutations in their tumor or inherited mutations that would be revealed through testing. Therefore, clear terminology and understanding between patients and providers is all the more vital. PCF supports this valuable collaboration across cancer types."

The Working Group is a consortium of 20 cancer patient advocacy groups representing solid tumor and hematologic malignancies, three professional societies, and 18 pharmaceutical and diagnostic companies and testing laboratories. Over the course of many years, multiple activities, led by numerous individual patient advocacy organizations and professional societies have developed the groundwork for this effort. The Working Group has launched a multi-faceted dissemination and communications effort to ensure that its recommendations and supporting materials are widely available among all key stakeholders within the cancer ecosystem, including providers, patient advocacy organizations, guidelines agencies, payers, and policymakers.

In developing its recommendations, the Working Group, first convened in 2019 by LUNGevity Foundation, identified 33 terms related to biomarker, genetic and genomic testing that were being used in patient education and clinical care within the different cancer communities. In many cases, multiple terms were used to describe the same test. Various testing modalities, the source of testing samples, and the multiplicity of gene mutations currently identifiable by testing, were contributing factors in this often-confusing overlap.

In the final analysis, three umbrella descriptor terms emerged as recommendations from the Working Group's milestone exploration: "Biomarker testing"was selected as the preferred term for tests that identify characteristics, targetable findings or other test results originating from malignant tissue and blood; "genetic testing for an inherited mutation" and "genetic testing for inherited cancer risk" were selected as consensus terms for tests used to identify germline (inherited) mutations.

"Far too many patients across all cancer types are still missing out on essential tests for biomarkers and inherited mutations indicating cancer risk," said Michelle Shiller, DO, AP/CP, MGP, Co-Medical Director of Genetics at Baylor Sammons Cancer Center and Staff Pathologist at Baylor University Medical Center. "With rates of biomarker testing and genetic testing for an inherited mutation at sub-optimal levels for numerous patient populations, patients are not benefiting from biomarker-directed care or not learning about their inherited cancer risk. Confusion around testing terms is a driving factor in this undertesting and ultimately has a detrimental impact on patient care."

"When someone is diagnosed with cancer, they're swept into a whirlwind of bewildering words and complex, pressing decisions. Our Working Group's goal is to help calm that storm of confusion with clear and consistent language that facilitates communication and medical decision-making. A unified voice and message from providers, industry and the patient advocacy community about testing is absolutely vital to optimal cancer care," saidNikki Martin, Director of Precision Medicine Initiatives at LUNGevity Foundation.

An abstract on the Working Group's recommendations was published in May 2020 as part of the American Society of Clinical Oncology (ASCO) Annual Meeting Virtual Library. The White Paper can be viewed in its entirety athttp://www.commoncancertestingterms.org/.

About LUNGevity Foundation LUNGevity Foundation is the nation's leading lung cancer organization focused on improving outcomes for people with lung cancer through research, education, policy initiatives, and support and engagement for patients, survivors, and caregivers. LUNGevity seeks to make an immediate impact on quality of life and survivorship for everyone touched by the diseasewhile promoting health equity by addressing disparities throughout the care continuum. LUNGevity works tirelessly to advance research into early detection and more effective treatments, provide information and educational tools to empower patients and their caregivers, promote impactful public policy initiatives, and amplify the patient voice through research and engagement. The organization provides an active community for patients and survivorsand those who help them live better and longer lives.

Comprehensive resources include a medically vetted and patient-centric website, a toll-free HELPLine for support, the International Lung Cancer Survivorship Conference, and an easy-to-use Clinical Trial Finder, among other tools. All of these programs are to achieve our visiona world where no one dies of lung cancer. LUNGevity Foundation is proud to be a four-star Charity Navigator organization. Please visit http://www.LUNGevity.org to learn more.

About the Prostate Cancer Foundation The Prostate Cancer Foundation (PCF) is the world's leading philanthropic organization dedicated to funding life-saving prostate cancer research. Founded in 1993 by Mike Milken, PCF has raised more than $830 million in support of cutting-edge research by more than 2,200 research projects at 220 leading cancer centers in 22 countries around the world. Thanks in part to PCF's commitment to ending death and suffering from prostate cancer, the death rate is down more than 50% and countless more men are alive today as a result. PCF research now impacts more than 73 forms of human cancer by focusing onimmunotherapy, the microbiome, and food as medicine. For more information, visit PCF.org.

Media Contact: Donald Wilson Prostate Cancer Foundation (310) 428-4730 [emailprotected]

SOURCE Prostate Cancer Foundation

Homepage

Read the rest here:
The Prostate Cancer Foundation Collaboration With Pan-Cancer Consortium Clarifies And Promotes Consistent Use Of Common Terms For Biomarker And...

Read More...

Genetic fingerprints of first COVID19 cases help manage pandemic – News – The University of Sydney

Friday, July 10th, 2020

Genomic sequencing explained

Genomic sequencing creates a genetic fingerprint of organisms and maps the order of how chemical building blocks of a genome are organised.

The researchers looked at how the virus genetic sequence was organised by detecting and translating minute differences in each new infection. A genetic family tree was created showing which COVID-19 positive cases were connected and to track clusters.

The more fingerprints we took, and the critical information collected from the contact tracers, the easier it became to identify if someone contracted COVID-19 from a known cluster or case, said Dr Rockett.

Very early on we were able to discover cases which werent linked to a known cluster or case. This informed state and federal governments that community transmission was happening, and led to the border closures, revision of testing policies and other measures that stopped further spread of the virus.

Dr Rockett and her team managed to produce these genomic data so quickly because they leveraged years of experience in using genome sequencing to track down food-borne pathogens such as salmonella, during food poisoning outbreaks, and transmission of tuberculosis.

The study is a behind the scenes look at the complex and coordinated effort by virologists, bioinformaticians and mathematical modellers alongside clinicians and public health professionals.

Dr Rocketts lab is the dedicated facility hosted by NSW Health Pathology providing genomic sequencing data to NSW Health professionals working at the frontline of managing the pandemic.

Genome sequencing is the key to unlocking the puzzle of local transmission, and its critical that we continue to invest in this research to advance our ability to contain the virus in the long-term not just to trace locally acquired cases, but also to identify new cases once border restrictions are lifted and travel resumes, says Dr Rockett.

More:
Genetic fingerprints of first COVID19 cases help manage pandemic - News - The University of Sydney

Read More...

Jacobs School researchers collecting COVID-19 data – UB Now: News and views for UB faculty and staff – University at Buffalo Reporter

Friday, July 10th, 2020

Researchers in the Jacobs School of Medicine and Biomedical Sciencescontinue to spearhead a number of projects related to the COVID-19 global health pandemic.

Peter L. Elkin, professor and chair of biomedical informatics, says several current studies are focused on data collection that can be used to better understand how to combat COVID-19.

Much of the work is being completed through the Clinical and Translational Science Awards (CTSA) consortium, of which UB is a member. It is one of more than 50 medical research institutions across the nation currently receiving CTSA program funding from the National Institutes of Health.

One such project is the launch of the National COVID Cohort Collaborative (N3C), a joint program between the National Center for Data to Health and the National Center for Advancing Translational Sciences.

Elkin says the projects aim is to build a warehouse of COVID-19 data for the entire CTSA consortium and for otherinterested contributing health care organizations.

This is intended to hold all patient data (inpatient and outpatient) on COVID-tested patients from all of the CTSA hubs, he says. It entails a cloud-based method for data collection on the COVID-19 pandemic.

We are working closely with N3C to see how this can be designed and implemented in astandardized and timely fashion.

The goal of developing a national-level COVID-19 database is to facilitate research and improve recruitment to clinical trials, he says.

N3C is looking to address the many difficult questions raised by the COVID-19 global emergency, such as:

UB is also a member of COMBATCOVID, a New York State initiative to save case report formson all hospital admissions for upper respiratory infections,including all patients tested for COVID-19 or patients who are suspected to have COVID-19.

The statewide consortium will collect and analyze the results from all the CTSA institutions in the state.

It is being run out of New York University, and I am participating from our site as our CTSA informatics core director, Elkin says. I am working on the design and data governance.

The data use agreements are being signed, and the database design and data definitions are being built, he adds. This larger row-level dataset will allow us to ask questions that would notbe possible at any one institution.

In UBs Department of Biomedical Informatics, Elkin and Frank D. LeHouillier, senior programmer and analyst, are involved in the project.

Clinical researchers in the Jacobs School who are involved include:

Researchers in the Department of Biomedical Informatics have also developed a validated microbiome platform that finds infected persons with COVID-19 whether symptomatic or not using deep sequencing of stool microbiome samples.

Elkin is working with postdoctoral associate Sapan Mandloi in using a National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database to collect and process metagenomics data for the organism classified as human gut metagenome.

The more than 300,000 samples are divided into 3,464 projects, according to Mandloi.

We are performing comparison of all samples raw sequences with SARS-Cov-2 genome using a NCBI SRA Taxonomy Analysis Tool (STAT), which utilizes precomputed k-mer dictionary databases and gene-specific profiling, Mandloi says. This allows us to perform geographic mapping of samples identified across the world.

Some 9,720 samples were identified as potential cases of colonization for COVID-19, which were mostly from the U.S., China, Australia and the U.K., he adds.

The ability to identify and track this trafficking of genetic material is vital as a public health topic, he says. As of now, this large pool of genetic data remains largely untapped for clinical surveillance using the combined strategy of gene-based profiling and k-mer-based classification on raw genomic data.

Continued here:
Jacobs School researchers collecting COVID-19 data - UB Now: News and views for UB faculty and staff - University at Buffalo Reporter

Read More...

If you have this blood type, studies show youre at higher risk for the coronavirus – San Francisco Chronicle

Friday, July 10th, 2020

The roulette wheel that decides who lives and dies from the coronavirus is weighted by the type of blood coursing through the veins of victims, gifting some with innate resistance and dooming others to misery and torment.

Infectious disease specialists say the worldwide pandemic is especially cruel to people with type A blood, which apparently lacks certain compounds that help fight off the disease.

A study published June 17 in the New England Journal of Medicine found that people with type A blood have a higher risk of contracting the disease and suffering complications. The analysis, conducted by an international team of scientists, also showed that people with type O blood were at least partially protected from the virus.

It was one of several recent reports on the phenomenon, which epidemiologists say is not unique to COVID-19.

People with Type A blood... are more likely to have severe disease and death than people with other types, said John Swartzberg, an infectious-disease specialist at UC Berkeley. It doesn't surprise me because we know that blood types are associated with other infectious diseases.

Blood type is determined by a gene that tells the body what blood cell proteins to make. The different types, A, B, AB or O, have different antigens, which determine their properties, including weaknesses and strengths. A blood type that is positive means that persons red blood cells carry a protein called Rh, also known as the RhD antigen. Negative blood type does not.

Epidemiologists have long known that blood type plays a role in how peoples bodies react to infectious diseases, and type A positive and negative appears to be among the most problematic.

For example, people with type A blood have a higher chance of developing certain cancers, particularly stomach cancer. All the different types of blood have agreeable and disagreeable qualities, but type A is associated with higher levels of the stress hormone cortisol, according the National Institutes of Health.

Swartzberg said people with type A blood are also more likely to contract the most virulent form of malaria, known as plasmodium falciparum. The protozoan parasite is transmitted through the bite of a female mosquito.

On the other hand, people with type O blood are less likely to develop inflammation during infections, suffer from heart disease, pancreatic cancer or contract parasitic diseases like falciparum.

The Journal of Medicine study sequenced the genomes of 1,980 COVID-19 patients in Spain and Italy who had suffered respiratory failure and compared their results with an approximately equal number of people who were not sick. The researchers concluded that people with type A blood had as much as a 45 percent higher risk of getting severely ill from the coronavirus.

Another study, of more than 2,000 people in China last March, also found that blood group A had a significantly higher risk of coronavirus infection. That information aligns with other studies, most of them not yet peer reviewed.

In each case, type O blood was linked to lower risk and less severe illness. A study by the genomics site 23andMe calculated that people with blood type O were 9% to 18% less likely to contract COVID-19 than people with other types of blood.

Type O blood is handy in other ways. O positive is the most common blood type, and O negative is compatible with all other types of blood. Because O negative blood can be given to anybody, it is commonly used for transfusions.

Studies have shown that people with type O blood also get fewer blood clots, a serious problem among COVID-19 patients.

SARS-CoV-2, the specific coronavirus that causes COVID-19, is essentially a tiny parasite that uses its tell-tale spike proteins to latch onto the much larger human cells, like pepper on an egg. The virus uses the cells receptors to worm its way inside, where it replicates itself billions of times and spreads throughout the body.

There are a variety of factors that influence vulnerability to COVID-19 infection, including old age, underlying medical conditions and possibly race, although the high mortality rate among minorities is more likely related to poverty and a lack of medical care. A study, published Wednesday in Nature, said Latino and African Americans are three times more likely than white people to be infected by the coronavirus and nearly twice as likely to die.

Men are hospitalized and die from the virus more often than women, a disparity that researchers have linked to testosterone, the male sex hormone.

Researchers know that the coronavirus targets ACE2 receptors, a protein on the surface of human cells that normally helps regulate blood pressure. Peter Chin-Hong, a professor of medicine and infectious diseases at UCSF, said the genes that make the ACE2 receptors are next to the genes that provide the blood type codes.

Because they are so close to each other they influence each other in ways we don't understand, Chin-Hong said. Things are next to each other for a reason.

Nobody knows exactly how the coronavirus operates, but some scientists believe the virus, when it infects a new host, carries with it genetic coding blood type antigens from its last victim. Apparently, type O blood adapts better to the coronavirus coding.

Swartzberg said this may have something to do with the types of carbohydrates, or sugars, on the surface of red blood cells.

The type A carbohydrate may facilitate the entrance of the protozoan into the red blood cell, causing more severe infection, Swartzberg said. People with type O blood, which doesnt have any of those carbohydrates, may be somewhat protected.

George Rutherford, a UCSF infectious disease specialist, said caucasians of Mediterranean descent have the highest percentage of type A blood.

Most of these (blood type) observations are from Italy and Spain, which have had horrendous COVID outbreaks, Rutherford said.

A big puzzle is that blood type doesnt seem to matter when it comes to African Americans and other people of color. Type O blood is more common among African Americans a little more than half carry that type yet African Americans have disproportionately high infection rates. The same goes for Latinos, 57 percent of whom carry type O blood.

Its an indication, Rutherford said, that socioeconomic problems like poverty, obesity and stress may be bigger factors in who gets the disease and how ill they become than blood type.

Peter Fimrite is a San Francisco Chronicle staff writer. Email: pfimrite@sfchronicle.com Twitter: @pfimrite

View post:
If you have this blood type, studies show youre at higher risk for the coronavirus - San Francisco Chronicle

Read More...

NIH researchers reframe dog-to-human aging comparisons – National Institutes of Health

Friday, July 10th, 2020

News Release

Thursday, July 9, 2020

Comparing epigenetic differences between humans and domestic dogs provides an emerging model of aging.

One of the most common misconceptions is that one human year equals seven dog years in terms of aging. However, this equivalency is misleading and has been consistently dismissed by veterinarians. A recent study, published in the journalCell Systems, lays out a new framework for comparing dog-to-human aging. In one such comparison, the researchers found the first eight weeks of a dogs life is comparable to the first nine months of human infancy, but the ratio changes over time. The research used epigenetics, a process by which modifications occur in the genome, as a biological marker to study the aging process. By comparing when and what epigenetic changes mark certain developmental periods in humans and dogs, researchers hope to gain specific insight into human aging as well.

Researchers performed a comprehensive analysis and quantitatively compared the progression of aging between two mammals, dogs and humans. Scientists at the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, and collaborators at the University of California (UC) San Diego, UC Davis and the University of Pittsburgh School of Medicine carried out the research.

All mammals experience the same overarching developmental timeline: birth, infancy, youth, puberty, adulthood and death. But researchers have long sought specific biological events that govern when such life stages take place. One means to study such a progression involves epigenetics gene expression changes caused by factors other than the DNA sequence itself. Recent findings have shown that epigenetic changes are linked to specific stages of aging and that these are shared among species.

Researchers focused on one type of epigenetic change called methylation, a process in which molecules called methyl groups are attached to particular DNA sequences, usually parts of a gene. Attaching to these DNA regions effectively turns the gene into the "off" position. So far, researchers have identified that in humans, methylation patterns change predictably over time. These patterns have allowed the creation of mathematical models that can accurately gauge the age of an individual called "epigenetic clocks."

But these epigenetic clocks have only been successful in predicting human age. They do not seem to be valid across species, such as in mice, dogs, and wolves. To see why the epigenetic clocks in these other species differed from the human version, researchers first studied the epigenetic changes over the lifetime of a domestic dog and compared the resultsobtained with humans.

Dogs are a useful model for such comparisons because much of their environment, diet, chemical exposure, and physiological and developmental patterns are similar to humans.

"Dogs experience the same biological hallmarks of aging as humans, but do so in a compressed period, around 10 to 15 years on average, versus over 70 years in humans. This makes dogs invaluable for studying the genetics of aging across mammals, including humans," said Elaine Ostrander, Ph.D., NIH Distinguished Investigator and co-author of the paper.

Dr. Ostrander and her colleagues in Trey Ideker's laboratory at UC San Diego took blood samples from 104 dogs, mostly Labrador retrievers, ranging from four weeks to 16 years of age. They also obtained previously published methylation patterns from 320 people, whose ages ranged from 1 to 103 years. The researchers then studied and compared the methylation patterns from both species.

Based on the data, researchers identified similar age-related methylation patterns, specifically when pairing young dogs with young humans or older dogs with older humans. They did not observe this relationship when comparing young dogs to older humans and vice versa.

The study also found that groups of specific genes involved in development can explain much of the similarity, which had similar methylation patterns during aging in dogs and humans.

"These results suggest that aging can, in part, be explained by a continuum of changes beginning in development," said Dr. Ideker. "The programs of development are expressed incredibly strongly at defined periods when the pup is in the womb and childhood. But equally strongly are systems that clamp down to stop it. In a sense, we are looking at aging as the residual 'afterburn' of those powerful forces."

The researchers also attempted to correlate the human epigenetic clock with dogs, using this as a proxy for converting dog years to human years.

The new formula is more complicated than the "multiply by seven" method. When dogs and humans experience similar physiological milestones, such as infancy, adolescence and aging, the new formula provided reasonable estimates of equivalent ages. For example, by using the new formula, eight weeks in dogs roughly translates to nine months in humans, which corresponds to the infant stage in both puppies and babies. The expected lifespan of senior Labrador retrievers, 12 years, correctly translates to 70 years in humans, the worldwide average life expectancy.

The group acknowledges that the dog-to-human years formula is largely based on data from Labrador retrievers alone. Hence, future studies with other dog breeds will be required to test the formula's generalizability. Because dog breeds have different life spans, the formula may be different among breeds.

Dr. Ostrander noted, "It will be particularly interesting to study long-lived breeds, a disproportionate number of which are small in size, versus breeds with a shorter lifespan, which includes many larger breeds. This will help us correlate the well-recognized relationship between skeletal size and lifespan in dogs."

The study also demonstrates that studying methylation patterns may be a useful method to quantitatively translate the age-related physiology experienced by one organism (e.g., humans) to the age at which physiology in a second organism is most similar (e.g., dogs). The group hopes that such translation may provide a useful tool for understanding aging and identifying ways to maximize healthy lifespans.

"This study, which highlights the relevance of canine aging studies, further expands the utility of the dog as a genetic system for studies that inform human health and biology," said Dr. Ostrander.

This press release describes a basic research finding. Basic research increases our understanding of human behavior and biology, which is foundational to advancing new and better ways to prevent, diagnose, and treat disease. Science is an unpredictable and incremental process each research advance builds on past discoveries, often in unexpected ways. Most clinical advances would not be possible without the knowledge of fundamental basic research.

NHGRI is one of the 27 institutes and centers at the National Institutes of Health. The NHGRI Extramural Research Program supports grants for research, and training and career development at sites nationwide. Additional information about NHGRI can be found at https://www.genome.gov.

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

###

Read more from the original source:
NIH researchers reframe dog-to-human aging comparisons - National Institutes of Health

Read More...

Worldwide genome research could change the course of medical history – The Big Smoke Australia

Friday, July 10th, 2020

We may have mapped the human genome in 2003, but a new worldwide study has discovered the links between our genes and the conditions that ail us.

In this time of extra focus on health, allow me one more story from the brave new world of medical research. Every day, twenty American war veterans kill themselves. That is fifteen percent of the total amount of Americans who take their own lives each year; a disproportionally high number. A few weeks ago, the American Department of Veteran Affairs learnt a little more about why that might be the case.

While trauma is involved, surprisingly so is genetics. Research that looked at an astounding 200,000 veterans, concluded that quite a few of them were susceptible to anxiety and depression even before they were sent to Afghanistan or another warzone. In fact, in an astonishing number, there was a problem with a gene called MAD1C1, that is also implicated in bipolar disease and schizophrenia. On top of that, there were five other genetic variants that are linked to anxiety that were more prevalent in this group. Obviously, this is important information. Not only will it now be possible to better predict who should and shouldnt go to war, but deaths can also be prevented by teaching people how to cope before the shit hits the fan.

With 200,000 participants, this research is the largest ever study into anxiety in the world. But it is not the only mass investigation into illness that is going on at the moment. In fact, bigger is definitely better at almost all laboratories on the planet. For instance, a few months ago researchers looked closer at insomnia than had ever been possible before: 1.3 million people were involved, and 956 genes were found that could hold the key to solving a problem that a third of the general population suffers from. An issue, too, that is implicated in all manner of mental health issues, as well as diabetes and cardiovascular disease.

This kind of research is part of Genome-Wide Association Studies that are taking place from New York to Melbourne and Cape Town to Oslo. As you may remember, in 2003 the Human Genome Project was completed, and that meant that suddenly researchers could look into genetic contributions to common diseases better than ever before.

Until the human genome was mapped, the only way to look at the role genes played in illnesses was to study families. That was relatively successful if they were suffering from a single gene disorder, but not so much if it was more complicated than that. But after humanity cracked the gene code in 2003, Biobanks started springing up everywhere. At the moment, weve got forty-five in NSW alone, and the largest in the southern hemisphere is at the RPA in Camperdown. It is run by NSW Health and stores more than three million human samples for use in research. Usually, that is left-over tissue from an operation, biopsy or blood test, of course, donated with written consent. At Camperdown, researchers can apply for access to those samples, so they can investigate whatever illness they are looking at at a much larger scale than pre-2003.

These studies, as usual, involve one group of people with an illness and a control group without. But because so many samples are available, it is possible to look at enormous populations. That means you are casting a wide net, but because there is no hypothesis before you start, anything can happen. The focus, of course, is finding the genes that are associated with a particular disease. And once youve found those, you can zoom in and look a little closer. This has two consequences: first of all, that you can know more about more illnesses much faster than before. Secondly, it is laying the groundwork for personalised medicine.

In the near future, it will no longer be one size fits all (like one type of chemo for everybody with bowel cancer, for instance). Treatments will be tailored to one individual patient, because when we know more about one persons particular gene make-up it is easier to design something that will be just right for them. Not just when they are already sick, but even in the prevention of that illness. Less guesswork, less adverse reactions to treatments, fewer mistakes.

Of course, there are limitations. Not everything can be explained by looking at genes, for instance, and every person responds differently to disease, which makes treatment still complicated. Also, completing a complete genome sequencing is still expensive. And the problem with quite a few of the Biobanks is that the owners of the samples are generally white and Western. Apart from that, just knowing which genes are associated with a disease is only the beginning.

The challenge is the road from that knowledge to new drugs, diagnostics and maybe prevention. Nevertheless, so far over three thousand GWA studies have been done, into almost two thousand different diseases. We now know more about what causes heart attacks (from a study started in 2004), have found a protein that is involved in producing macular degeneration and can pinpoint genes that are related to risky behaviour, like driving too fast, smoking, drinking and having high-risk sex. We have found the genes connected to intelligence, obesity, schizophrenia, childhood aggression, antisocial behaviour, depression and all manner of other things.

There are Biobanks in NSW that specialise in melanoma, stroke, sleep, childrens cancer, gynaecological issues and problems with the brain. I know it is a little brave new world, and we need to be careful it doesnt turn into an Orwellian nightmare. But limitless possibilities, and hope for those who are sick: there is something to be said for that, isnt there?

For this story I have used the following sources:

https://nsw.biobanking.org/locator

https://www.smh.com.au/healthcare/biggest-biobank-in-the-southern-hemisphere-to-revolutionise-medical-research-in-nsw-20171113-gzk5os.html

NSW Health Statewide Biobank

https://www.researchgate.net/publication/331328430_Genome-wide_analysis_of_insomnia_in_1331010_individuals_identifies_new_risk_loci_and_functional_pathways

https://www.researchgate.net/publication/330368016_Genome-wide_association_analyses_of_risk_tolerance_and_risky_behaviors_in_over_1_million_individuals_identify_hundreds_of_loci_and_shared_genetic_influences

https://www.researchgate.net/publication/330368016_Genome-wide_association_analyses_of_risk_tolerance_and_risky_behaviors_in_over_1_million_individuals_identify_hundreds_of_loci_and_shared_genetic_influences

https://edition.cnn.com/2020/01/09/health/anxiety-genetic-association-wellness-trnd/index.html?utm_source=twCNN&utm_content=2020-01-10T05%3A09%3A03&utm_medium=social&utm_term=link

https://www.mentalhealth.va.gov/suicide_prevention/data.asp

See the original post:
Worldwide genome research could change the course of medical history - The Big Smoke Australia

Read More...

Europe Genetic Testing Services Market is expected to reach US$ 5840.9 Million by 2027 with CAGR of 11.4%. – Owned

Friday, July 10th, 2020

Genetic tests, also called DNA tests, are used to identify changes in DNA sequences or chromosomal structures. Genetic testing also includes measuring the consequences of genetic alterations, such as RNA analysis as an output of gene expression, and biochemical analysis to measure specific protein outputs.

The Europe Genetic testing services market is expected to reach US$ 5,840.9 Mn in 2027 from US$ 2,521.6 Mn in 2019. The market is estimated to grow with a CAGR of 11.4% from 2020-2027.

Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. The results of genetic tests can help identify or rule out suspicious genetic conditions or determine the likelihood of someone developing or inheriting a genetic disorder.

A medical device is any device intended to be used for medical purposes. Medical devices benefit patients by helping health care providers diagnose and treat patients and helping patients overcome sickness or disease, improving their quality of life.

The healthcare industryis undergoing rapid transformations since a few years now. Various technological improvementshave been witnessedin the segments including diagnosis and treatment options for chronic diseases. The increase in incidences of chronic illnesses and the increasing ageing population are the primary factors fuelling the growth of healthcare segment.

The Europe Genetic Testing Servicesmarketis growing along with the healthcare industry, but the market is likely to slow down its growth due to the shortage of skilled professionals, suggests the Business Market Insights report.

The Business Market Insights subscription helps clients understand theongoingmarket trends,identifyopportunities, and make informed decisions through the reports in the Subscription Platform. The Industry reports available in the subscriptionprovidean in-depth analysis on various market topics and enable clients to line up remunerative opportunities. The reportsprovidethe market size & forecast, drivers, challenges, trends, and more.

Get free trial subscription and gain instant access to our market research reports at https://www.businessmarketinsights.com/TIPRE00009240/request-trial

France has well-developed policies and strategies in place for improving the prevention of hereditary cancers. Also, France is planning to develop a national plan for personalized medicine. Genomic Medicine France 2025, which was published in 2016, which appeals for healthcare and manufacturing firms to pilot genomic sequencing platforms. By 2020 the aim is to establish a network of centers able to process around 235,000 samples for whole genome sequencing.

These factorsare expectedto offer broad growth opportunities in the healthcare industry and this is expected to cause the demand forimmunochemistryassays in the market.

Business Market Insights reports focus upon clientobjectives, use standard research methodologies and exclusive analytical models, combined with robust business acumen, which providesprecise and insightful results.

Business Market Insights reports are usefulnot only forcorporate and academic professionalsbut also forconsulting, research firms,PEVCfirms, and professional services firms.

EUROPE GENETIC TESTING SERVICES MARKET SEGMENTATION

By Type

By Disease

By Service Provider

By Country

Companies Mentioned

Full Report subscription with pay as per requirement at https://www.businessmarketinsights.com/TIPRE00009240/checkout/basic/single/monthly

(30-day subscription plans proveto beverycost-effectivewith no compromise on the quality of reports)

Benefits with Business Market Insights

About Business Market Insights

Based in New York, Business Market Insights is a one-stop destination for in-depth market research reports from various industries including Technology, Media & Telecommunications, Semiconductor & Electronics, Aerospace & Defense, Automotive & Transportation, Biotechnology, Healthcare IT, Manufacturing & Construction, Medical Device, and Chemicals & Materials. The clients include corporate and academic professionals, consulting, research firms,PEVCfirms, and professional services firms.

For Subscription contact

Business Market Insights

Phone :+442081254005E-Mail :[emailprotected]

Go here to read the rest:
Europe Genetic Testing Services Market is expected to reach US$ 5840.9 Million by 2027 with CAGR of 11.4%. - Owned

Read More...

How Accurate Are the Coronavirus Diagnostic and Antibody Tests? – Healthline

Friday, July 10th, 2020

Theres encouraging and not so encouraging news about COVID-19 testing.

The most common tests used to diagnose an infection with the novel coronavirus are almost 100 percent effective if administered correctly.

However, the same cant be said of tests to determine if youve already had the disease and have developed antibodies.

Experts say diagnostic testing is one of the most powerful public health tools for fighting the spread of the coronavirus.

The tests identify people who may need treatment. Results also trace those who have been in contact with other individuals to help prevent the transmission of the disease further. This can assist epidemiologists in determining how widely the virus has spread.

Testing makes the enemy visible, said Dr. Emily Volk, an assistant professor of pathology at the University of Texas-Health in San Antonio and president-elect of the College of American Pathologists (CAP).

There are two basic types of tests for the novel coronavirus. One type diagnoses an infection and the other tests for antibodies.

Diagnostic tests detect active infections. This is the test you want if you think youve been exposed to the coronavirus or are exhibiting symptoms of COVID-19.

There are currently two types of diagnostic tests available.

The RT-PCR nasopharyngeal tests are more widely used and more familiar. Most involve sticking a 6-inch swab deep into your nose to collect virus samples to test.

However, some more recently approved RT-PCR tests seek to avoid the discomfort associated with the nasopharyngeal swab tests by allowing samples to be collected via a shallow swab of the nose or by testing saliva for the presence of the virus.

If performed correctly, RT-PCR swab tests would be pretty close to 100 percent accurate, Volk told Healthline.

We should be diagnosing people with PCR tests because they are the most accurate, added Dr. Christina Wojewoda, a pathologist at the University of Vermont and vice chair of CAPs microbiology committee.

To get the most accurate results, RT-PCR tests should be conducted 8 days after suspected exposure or infection, to ensure that enough viral material is present to detect.

Some clinicians know that, but people who are swabbing may not be passing that information along, Wojewoda told Healthline.

Its also possible to administer the test too late, after the body has successfully fought off the disease, according to Dr. William Schaffner, professor of medicine in the division of infectious diseases at the Vanderbilt University School of Medicine in Tennessee and medical director of the National Foundation for Infectious Diseases.

The test must also be administered properly, which means inserting the swab 3 inches or so to reach the cavity where the nasal passages meet the pharynx.

If youve had this test and it wasnt uncomfortable, it wasnt done correctly, Schaffner told Healthline.

False-positive results, while rare, can occur with PCR tests, said Wojewoda, because the coronavirus genetic material may linger in the body long after recovery from an infection.

You cant tell if the person [had an infection] 3 days ago or 5 months ago, she said.

Swabs are also used to collect samples for antigen testing. These tests have the advantage of yielding faster results (hours rather than several days).

Theyre also less accurate than RT-PRC tests, mostly because they require test samples to contain large amounts of virus proteins to yield a positive result.

False-negative results from antigen tests may range as high as 20 to 30 percent.

If an antigen test is positive, you can believe it, said Wojewoda. If its negative, you have to question that.

As the name suggests, these tests look for antibodies made by your immune system in response to an infection with the new coronavirus.

Antibody tests are not diagnostic tests.

Antibodies can take several days or weeks to develop after you have an infection and may stay in your blood for several weeks after recovery, according to the Food and Drug Administration (FDA). Because of this, antibody tests should not be used to diagnose an active coronavirus infection.

Antibody tests also arent terribly useful.

Ideally, a positive antibody test would tell you that youve recovered from COVID-19 or a coronavirus infection and have immunity from future infections, allowing you to return to work, travel, and socialization without the risk of transmitting the infection or becoming sick again yourself.

However, researchers dont yet know whether the presence of antibodies means that you have immunity, whether you could still get sick from a different strain of the virus, or how long immunity lasts.

Antibody tests are problematic because they can be misused easily, said Volk. You may think if you have a positive antibody test that you dont have to wear a mask or conform to social distancing, but antibodies dont tell us that you have immunological armor against future infections.

Antibody tests also are subject to false-positive results.

The job of antibodies is to stick to things, so they can create a positive test result if they react to a different type of coronavirus, said Wojewoda.

Antibody tests show the most promise if the way the human body controls the coronavirus is with an antibody response, Wojewoda added. If not, it doesnt make any difference.

For example, she said, its T cells, not antibodies, that help the body fight an HIV infection.

Thats another piece of data that needs to be figured out before testing can be figured out, Wojewoda said.

Every COVID-19 test currently (and legally) available in the United States has been approved by the FDA under the agencys Emergency Use Authorization (EUA) protocol.

The EUA permits the FDA to allow unapproved medical products or unapproved uses of approved medical products to be used in an emergency to diagnose, treat, or prevent serious or life threatening diseases or conditions caused by chemical, biological, radiological and nuclear threat agents when there are no adequate, approved, and available alternatives.

That has allowed novel coronavirus tests to quickly hit the market without the research and testing normally required for FDA approval.

To date, the FDA has approved 130 different RT-PCR, antigen, and antibody tests for the new coronavirus.

Doing a full clinical trial takes a long time, but we need tests now, said Sherry Dunbar, PhD, senior director of global scientific affairs for Luminex Corporation, which manufactures a pair of PRC tests and has submitted an application to the FDA for emergency approval of a new antigen test.

Experts generally agree that the RT-PCR tests are more accurate and useful than antigen and antibody tests, which are better used as confirmatory tools.

Dunbar told Healthline that some testing labs are using multiple tests to anticipate shortages on testing products. Theyre also using the quicker tests when demand is high and the slower but more accurate tests on weekends or during slower times.

Wojewoda said that while some tests promise quicker results than others, the biggest limiting factor to turnaround results is shortages of reagents the chemicals used to do the testing.

Im not looking for a new test, she said. Those on the market are as accurate and fast as they need to be. We have the instruments we need to test. We just need more stuff to do it with.

As with most other things regarding the novel coronavirus, pathologists and testing labs are learning about COVID-19 on the fly, said Dunbar.

Never in my career have I seen anything like this, where the public is discussing and analyzing the data at the same time as the researchers, she said. Were basing our response on past knowledge of other viruses, but as we like to say, the bugs dont read the book. What happened in the past can help us prepare, but things will continue to evolve.

Read more here:
How Accurate Are the Coronavirus Diagnostic and Antibody Tests? - Healthline

Read More...

Takeda and the New York Academy of Sciences Announce 2020 Innovators in Science Award Winners – Business Wire

Friday, July 10th, 2020

NEW YORK & OSAKA, Japan--(BUSINESS WIRE)--Takeda Pharmaceutical Company Limited (Takeda) (TSE:4502/NYSE:TAK) and the New York Academy of Sciences announced today the Winners of the third annual Innovators in Science Award for their excellence in and commitment to innovative science that has significantly advanced the field of rare disease research. Each Winner receives a prize of US $200,000.

The 2020 Winner of the Senior Scientist Award is Adrian R. Krainer, Ph.D., St. Giles Foundation Professor at Cold Spring Harbor Laboratory. Prof. Krainer is recognized for his outstanding research on the mechanisms and control of RNA splicing, a step in the normal process by which genetic information in DNA is converted into proteins. Prof. Krainer studies splicing defects in patients with spinal muscular atrophy (SMA), a devastating, inherited pediatric neuromuscular disorder caused by loss of motor neurons, resulting in progressive muscle atrophy and eventually, death. Prof. Krainers work culminated notably in the development of the first drug to be approved by global regulatory bodies that can delay and even prevent the onset of an inherited neurodegenerative disorder.

Collectively, rare diseases affect millions of families worldwide, who urgently need and deserve our help. Im extremely honored to receive this recognition for research that my lab and our collaborators carried out to develop the first approved medicine for SMA, said Prof. Krainer. As basic researchers, we are driven by curiosity and get to experience the thrill of discovery; but when the fruits of our research can actually improve patients lives, everything else pales in comparison.

The 2020 Winner of the Early-Career Scientist Award is Jeong Ho Lee, M.D., Ph.D, Associate Professor, Korea Advanced Institute of Science and Technology (KAIST). Prof. Lee is recognized for his research investigating genetic mutations in stem cells in the brain that result in rare developmental brain disorders. He was the first to identify the causes of intractable epilepsies and has identified the genes responsible for several developmental brain disorders, including focal cortical dysplasias, Joubert syndromea disorder characterized by an underdevelopment of the brainstemand hemimegalencephaly, which is the abnormal enlargement of one side of the brain. Prof. Lee also is the Director of the National Creative Research Initiative Center for Brain Somatic Mutations, and Co-founder and Chief Technology Officer of SoVarGen, a biopharmaceutical company aiming to discover novel therapeutics and diagnosis for intractable central nervous system (CNS) diseases caused by low-level somatic mutation.

It is a great honor to be recognized by a jury of such globally respected scientists whom I greatly admire, said Prof. Lee. More importantly, this award validates research into brain somatic mutations as an important area of exploration to help patients suffering from devastating and untreatable neurological disorders.

The 2020 Winners will be honored at the virtual Innovators in Science Award Ceremony and Symposium in October 2020. This event provides an opportunity to engage with leading researchers, clinicians and prominent industry stakeholders from around the world about the latest breakthroughs in the scientific understanding and clinical treatment of genetic, nervous system, metabolic, autoimmune and cardiovascular rare diseases.

At Takeda, patients are our North Star and those with rare diseases are often underserved when it comes to the discovery and development of transformative medicines, said Andrew Plump, M.D., Ph.D., President, Research & Development at Takeda. Insights from the ground-breaking research of scientists like Prof. Krainer and Prof. Lee can lead to pioneering approaches and the development of novel medicines that have the potential to change patients lives. Thats why we are proud to join with the New York Academy of Sciences to broadly share and champion their workand hopefully propel this promising science forward.

Connecting science with the world to help address some of societys most pressing challenges is central to our mission, said Nicholas Dirks, Ph.D., President and CEO, the New York Academy of Sciences. In this third year of the Innovators in Science Award we are privileged to recognize two scientific leaders working to unlock the power of the genome to bring innovations that address the urgent needs of patients worldwide affected by rare diseases.

About the Innovators in Science Award

The Innovators in Science Award grants two prizes of US $200,000 each year: one to an Early-Career Scientist and the other to a well-established Senior Scientist who have distinguished themselves for the creative thinking and impact of their research. The Innovators in Science Award is a limited submission competition in which research universities, academic institutions, government or non-profit institutions, or equivalent from around the globe with a well-established record of scientific excellence are invited to nominate their most promising Early-Career Scientists and their most outstanding Senior Scientists working in one of four selected therapeutic fields of neuroscience, gastroenterology, oncology, and regenerative medicine. Prize Winners are determined by a panel of judges, independently selected by the New York Academy of Sciences, with expertise in these disciplines. The New York Academy of Sciences administers the Award in partnership with Takeda.

For more information please visit the Innovators in Science Award website.

About Takeda Pharmaceutical Company Limited

Takeda Pharmaceutical Company Limited (TSE:4502/NYSE:TAK) is a global, values-based, R&D-driven biopharmaceutical leader headquartered in Japan, committed to bringing Better Health and a Brighter Future to patients by translating science into highly-innovative medicines. Takeda focuses its R&D efforts on four therapeutic areas: Oncology, Rare Diseases, Neuroscience, and Gastroenterology (GI). We also make targeted R&D investments in Plasma-Derived Therapies and Vaccines. We are focusing on developing highly innovative medicines that contribute to making a difference in people's lives by advancing the frontier of new treatment options and leveraging our enhanced collaborative R&D engine and capabilities to create a robust, modality-diverse pipeline. Our employees are committed to improving quality of life for patients and to working with our partners in health care in approximately 80 countries. For more information, visit https://www.takeda.com.

About the New York Academy of Sciences

The New York Academy of Sciences is an independent, not-for-profit organization that since 1817 has been committed to advancing science, technology, and society worldwide. With more than 20,000 members in 100 countries around the world, the Academy is creating a global community of science for the benefit of humanity. The Academy's core mission is to advance scientific knowledge, positively impact the major global challenges of society with science-based solutions and increase the number of scientifically informed individuals in society at large. Please visit us online at http://www.nyas.org.

Link:
Takeda and the New York Academy of Sciences Announce 2020 Innovators in Science Award Winners - Business Wire

Read More...

Hansa Biopharma announces exclusive agreement with Sarepta Therapeutics to develop and promote imlifidase as pre-treatment ahead of gene therapy in se…

Friday, July 3rd, 2020

Hansa grants Sarepta exclusive license to develop and promote imlifidase as a potential pre-treatment prior to the administration of gene therapy in Duchenne muscular dystrophy and Limb-girdle muscular dystrophy, for patients with neutralizing antibodies (NAbs) to adeno-associated virus (AAV).

Under the terms of the license: Hansa will receive a USD 10 million upfront payment and is eligible for up to USD 397.5 million in development, regulatory and sales milestone payments. Hansa will book all sales of imlifidase and would be eligible for royalties in the high single-digits to mid-teens on any gene therapy sales enabled through pre-treatment with imlifidase in NAb-positive patients.

Lund, Sweden July 2, 2020. Hansa Biopharma (Hansa), the leader in immunomodulatory enzyme technology for rare IgG mediated diseases, announced today that it has entered into an agreement with Sarepta Therapeutics Inc. (Sarepta), the leader in precision genetic medicine for rare diseases, through which Sarepta is granted an exclusive, worldwide license to develop and promote imlifidase as a pre-treatment to enable Sarepta gene therapy treatment in Duchenne muscular dystrophy (DMD) and Limb-girdle muscular dystrophy (LGMD). The pre-treatment is intended for patients with pre-existing neutralizing antibodies (NAb-positive patients) to adeno-associated virus (AAV), the technology that is the basis for Sareptas gene therapy products.

Sarepta will be responsible for conducting pre-clinical and clinical studies with imlifidase and any subsequent regulatory approvals. Sarepta will also be responsible for the promotion of imlifidase as a pre-treatment to Sareptas gene therapies following potential approval.

Under the terms of the agreement, Hansa will receive a USD 10 million upfront payment, and is eligible for a total of up to USD 397.5 million in development, regulatory and sales milestone payments. Hansa will book all sales of imlifidase, and earn high single-digit to mid-teens royalties on Sareptas incremental gene therapy sales when treating NAb-positive patients enabled through pre-treatment with imlifidase.

Sren Tulstrup, President & CEO of Hansa Biopharma comments,We see significant potential for our enzyme technology in the gene therapy space overall, and we are excited to partner with Sarepta, a leading player in the field, to use the unique features of imlifidase to potentially enable gene therapy treatment in patients who today arent eligible for these breakthrough therapies due to pre-existing neutralizing antibodies in two conditionswith a very high unmet medical need.

Doug Ingram, President & CEO, Sarepta Therapeutics said,As we expand our leadership position in genetic medicine and build out our gene therapy engine, one of Sareptas central ambitions is to find scientific solutions that bring our potentially life-saving therapies to the greatest number of the rare disease patients we serve. One of the current limitations of gene therapy is the inability to treat patients who have pre-existing neutralizing antibodies to the AAV vector. While our AAVrh74 vector has been associated with a low screen out rate for neutralizing antibodies, even that low rate is inconsistent with our mission.

In pre-clinical and clinical models, Hansas technology has shown the ability to clear the IgG antibodies that prevent dosing AAV-based gene therapies. If successful, this could offer the potential of extending our gene therapy treatments to DMD and LGMD patients who would otherwise have been denied access due to pre-existing antibodies.

Hansa Biopharma will be hosting a conference call with President & CEO Sren Tulstrup, CSO & COO Christian Kjellman and CFO Donato Spota.

Conference Call Partnership agreement with Sarepta TherapeuticsA conference call will take place July 2nd, 2020 at 10:00am CET. The audio cast will be recorded and subsequently be available on the Hansa website https://hansa.eventcdn.net/202007

Participants dial-in numbersSE: + 46 81 241 09 52UK: + 44 203 769 6819US: + 1 646 787 0157

This is information that HansaBiopharma AB is obliged to makepublic pursuant to the EU MarketAbuse Regulation.

About imlifidaseImlifidase is a unique antibody-cleaving enzyme originating from Streptococcus pyogenes that specifically targets IgG and inhibits IgG-mediated immune response. It has a rapid onset of action, cleaving IgG-antibodies and inhibiting their activity within hours after administration. CHMP/EMA has adopted a positive opinion, recommending conditional approval of imlifidase for the desensitization treatment of highly sensitized adult kidney transplant patients with a positive crossmatch against an available deceased donor. Endorsement of the positive opinion by the European Commission is expected in the third quarter of 2020.Hansa has also reached an agreement with the FDA on a regulatory path forward for imlifidase in kidney transplantation of highly sensitized patients in the U.S. and has three ongoing phase 2 trials in autoimmune diseases and post-transplant indications.

About gene therapy and neutralizing antibodiesGene therapy is a growing and revolutionizing treatment technology in which healthy gene sequences are inserted into cells of a patient. The treatments are potentially curative in monogenic diseases like hemophilia and muscular dystrophy through a single dose. Harmless recombinant viruses are used to carry the healthy genes into the cell. Due to the partial viral origin of the gene therapy constructs, a certain subset of patients carry neutralizing anti-AAV antibodies towards gene therapy products, depending on what AAV serotype being used, forming a barrier for treatment eligibility.Antibodies prevent effective transfer of healthy gene sequence and can be a safety concern. Imlifidase as a pre-treatment may have the potential to eliminate neutralizing antibodies prior to gene therapy. Similarly, imlifidase may have the potential to enable any potentially necessary re-dosing of gene therapy for all patients.

About Duchenne Muscular Dystrophy (DMD)Duchenne muscular dystrophy is a rare genetic disease caused by mutation in the DMD gene, encoding for the protein dystrophin. Duchenne is an irreversible, progressive disease that causes the muscles in the body to become weak and damaged over time. It is eventually fatal and there is no cure. DMD affects one in 3,500 to 5,000 males born worldwide (approximately 400-500 annual cases in the US) and causes muscles in the body to become weak and most patients use wheelchair by the age of 12.

About Limb-Girdle Muscular Dystrophy (LGMD)Limb-girdle muscular dystrophy or (LGMD) is a genetically and clinically heterogeneous group of rare muscular dystrophies. It is characterised by progressive muscle wasting which affects predominantly hip and shoulder muscles. LGMD has an autosomal pattern of inheritance and currently has no known cure or treatment. It can be caused by a single gene defect that affects specific proteins within the muscle cell, including those responsible for keeping the muscle membrane intact. LGMD has a global prevalence of approximately 1.63 per 100,000 individuals worldwide.

For further information, please contact:Klaus Sindahl, Head of Investor RelationsHansa Biopharma Mobile: +46 (0) 709-298 269E-mail: klaus.sindahl@hansabiopharma.com

About Hansa BiopharmaHansa Biopharma is leveraging its proprietary immunomodulatory enzyme technology platform to develop treatments for rare immunoglobulin G (IgG)-mediated autoimmune conditions, transplant rejection and cancer.The Companys lead product candidate, imlifidase, is a unique antibody-cleaving enzyme that potentially may enable kidney transplantation in highly sensitized patients with potential for further development in other solid organ transplantation and acute autoimmune indications. CHMP/EMA has adopted a positive opinion, recommending conditional approval of imlifidase for the desensitization treatment of highly sensitized adult kidney transplant patients with a positive crossmatch against an available deceased donor. Endorsement of the positive opinion by the European Commission is expected in the third quarter of 2020. Hansas research and development program is advancing the next generation of the Companys technology to develop novel IgG-cleaving enzymes with lower immunogenicity, suitable for repeat dosing in relapsing autoimmune diseases and oncology.Hansa Biopharma is based in Lund, Sweden and also has operations in Europe and US.

Go here to see the original:
Hansa Biopharma announces exclusive agreement with Sarepta Therapeutics to develop and promote imlifidase as pre-treatment ahead of gene therapy in se...

Read More...

The Future of Medicine Is Bespoke – Fair Observer

Friday, July 3rd, 2020

There was a time when modern medicine was primitive. There were no antibiotics, so every infection took its own course, leading to decline in health. Hypertension and diabetes were largely untreatable. X-ray was new, and remedies had changed but little from medieval times. No one ever embarked on the goodness of preventative treatment, not to speak of predictive medicine, beyond taking a distasteful cod liver oil capsule.

During the last hundred years, modern medicine has undergone a sea change. Just think of it an ever-expanding repertoire of medicines, high-tech procedures, therapies and reams of clinical data to employ when one gets sick. Yet modern medicine remained (in)complete, notwithstanding the therapeutic advances.

READ MORE

Things are now changing thanks to the integration of all such advances, from how a persons diet interacts with ones unique genetic profile to how environmental pollutants affect our thinking, not to speak of preventative medical approaches in health and wellness. The bigperestroikahas begun, and it is poised to transform health care for a growing number of people in the near future. Welcome to a whole new world of personalized, bespoke medicine.

Personalized medicine is, in essence, tailored or customized medical treatment. It treats while keeping in mind the unique, individual characteristics of each patient, which are as distinct as ones fingerprint or signature. It also includes scientific breakthroughs in our understanding of how a persons unique molecular and genetic profile makes them susceptible to certain illnesses. Personalized medicine expands our ability to envisage medical treatments that would not only be effective but also safe for each patient while excluding treatments that may not provide useful objectives.

Personalized medicine is, in simple terms, the use of new methods of molecular scrutiny. It is keyed to help better manage a patients illness or their genetic tendency toward a particular illness or a group of diseases. In so doing, it aims to achieve optimal therapeutic outcomes by helping both clinicians and patients choose a disease management approach that is likely to work best in the context of the patients unique genetic and environmental summary. In other words, it allows to accurately diagnose diseases and their sub-types while prescribing the best form and dose of medication most suited to the given patient.

Personalized, or precision, medicine is not rocket science it is, in essence, an extension of certain traditional approaches to understanding and treating disease. What jazzed up the therapeutic fulcrum of personalized medicine are tools that are more precise. This is what also offers clinicians better insights for selecting a treatment protocol based on a patients molecular profile. Such a patient-specific methodology, as has been practiced for long in certain complementary and alternative medical (CAM) or integrative approaches, not only curtails harmful side effects but also leads to more successful outcomes, including reduced costs in comparison to the current trial-and-error approach to treatment, which has distressingly come to the fore during these extraordinary and unprecedented times of COVID-19.

It is still early days, but the fact remains that personalized medicine has changed the old ways of how we all thought about, identified and managed health issues. As personalized medicine increasingly bids fair to an exciting journey in terms of clinical research and patient care, its impact will only further expand our understanding of medical technology.

What personalized medicine has done is bring about a paradigm shift in our thinking about people in general and also specifically. We all vary from one another what we eat, what others eat, how we react to stress or experience health issues when exposed to environmental factors. It is agreed that such variations play a role in health and disease. It is also being incrementally accepted that certain natural variations found in our DNA can influence our risk of developing a certain disease and how well we could respond to a particular medicine.

All of us are unique individuals, perhaps with the exemption of identical twins, albeit the genomes are unique in them, too. While we are genetically similar, there are small differences in our DNA that are unique, which also makes us distinctive in terms of health, disease and our response to certain medicinal treatments.

Personalized medicine is poised to tap natural variations found in our genes that may play a role in our risk of getting or not getting certain illnesses, along with numerous external factors, such as our environment, nutrition and exercise. Variations in DNA can, likewise, lead to differences in how medications are absorbed, metabolized and used by the body. The understanding of such genetic variations and their interactions with environmental factors are elements that will help personalized medicine clinicians to produce better diagnostics and drugs, and select much better treatments and dosages based on individual needs not as just fixing a pill or two, as is the present-day conventional medical practice.

It is established that a majority of genes function precisely as intended. This gives rise to proteins that play a significant role in biological processes while allowing or helping an individual to grow, adapt and live in their environment. It is only in certain unusual situations, such as a single mutated or malfunctioning gene, that our apple cart is disturbed. This leads to distinct genetic diseases or syndromes such as sickle cell anemia and cystic fibrosis. In like manner, multiple genes acting together can impact the development of a host of common and complex diseases, including our response to medications used to treat them.

New advances will revolutionize bespoke medical treatment with the inclusion of drug therapy as well as recommendations for lifestyle changes to manage, delay the onset of disease or reduce its impact. Not surprisingly, the emergence of new diagnostic and prognostic tools has already raised our ability to predict likely outcomes of drug therapy. In like manner, the expanded use of biomarkers biological molecules that are associated with a particular disease state has resulted in more focused and targeted drug development.

Molecular testing is being expansively used today to identify breast cancer and colon cancer patients who are likely to benefit from new treatments and to preempt recurrences. A genetic test for an inherited heart condition is helping clinicians to determine which course of treatment would maximize benefit and minimize serious side effects while bringing about curative outcomes.

Such complexities exist for asthma and other disorders too. This is precisely where molecular analysis of biomarkers can help us to identify sub-types within a disease while enabling the clinician to monitor their progression, select appropriate medication, measure treatment outcomes and patients response. Future advances may make biomarkers and other tools affordable and allow clinicians to screen patients for relevant molecular variations prior to prescribing a particular medication.

It is already clear that personalized medicine promises three strategic benefits. In terms of preventative medicine, personalized medicine will improve the ability to identify which individuals are predisposed to develop a particular condition. A better understanding of genetic variations could also help scientists identify new disease subgroups or their associated molecular pathways and design drugs to target them. This could also help select patients for inclusion, or exclusion, in late-stage clinical trials. Finally, it will allow to work out the best dosage schedule or combination of drugs for each individual patient.

Yet not everything is hunky-dory for personalized medicine. Critics of precision medicine believe that the whole idea is too much of overhyped razzmatazz, among other things. Proponents, however, argue that when it comes to managing our own health, most of us are used to the idea of taking a one-size-fits-all approach be it medicines, supplements, diets and diagnoses. This may be wrong.

What works, as they put it, for one may be a gaffe for another. As the award-winning oncologist and medical technology innovator, Dr. David B. Agus, author of the groundbreaking bookThe End of Illness, puts it, each patients individual risk factors are based on ones DNA, the environment and a preventative lifestyle plan in response. He begins with simple, profound pointers: How is your sense of smell? and Is your ring finger longer than your middle finger? He explains with statistics-backed guidelines that moving and walking regularly is mandatory because exercising and then sitting is equivalent to smoking cigarettes, while eating and sleeping at consistent hours is imperative because irregularity causes inflammation.

The inference is obvious: We should all understand our physiology and quiz doctors with the thorough, exploratory frame of mind of a gadget buyer. This holds the key to making medicine truly personal, more humane, effective and safe while keeping in mind the individual in us all as unique and distinctive, the sum of the whole not just the parts.

The views expressed in this article are the authors own and do not necessarily reflect Fair Observers editorial policy.

Read more:
The Future of Medicine Is Bespoke - Fair Observer

Read More...

Sarepta Therapeutics Announces Retirement of Sandy Mahatme, Chief Financial Officer and Chief Business Officer – BioSpace

Friday, July 3rd, 2020

CAMBRIDGE, Mass., June 30, 2020 (GLOBE NEWSWIRE) -- Sarepta Therapeutics, Inc.(NASDAQ:SRPT), the leader in precision genetic medicine for rare diseases, today announced the retirement of Sandy Mahatme, Sareptas executive vice president, chief financial officer and chief business officer, from the company effective July 10, 2020. The company has commenced a search process to identify the future chief financial officer. During the interim period, the finance and accounting functions will report directly to Sareptas Chief Executive Officer, Doug Ingram, and other departments reporting to Mr. Mahatme will be overseen by members of Sareptas executive committee.

The Sarepta from which Sandy retires is a very different one from the organization he joined as our chief financial officer some eight years ago. And the Sarepta of today a financially solid biotechnology organization with perhaps the industrys deepest and most valuable pipeline of genetic medicine candidates with the potential to extend and improve lives would not have been possible without Sandys business acumen and dedication, said Doug Ingram, president and chief executive officer, Sarepta Therapeutics. On behalf of our board of directors and the entire organization, I want to wish Sandy all the best in his next journey and thank him for his invaluable and numerous contributions to our success and for having built a strong team of finance leaders who will continue to perform as he departs.

Said Mr. Mahatme, It has been a privilege to serve as Sareptas CFO and CBO for almost eight years and to have participated in its remarkable transformation and extraordinary growth. Working with this leadership team and our talented colleagues, we have built a strong foundation for Sareptas ongoing success in achieving its goal of changing the lives of patients with rare diseases around the world. Having built a strong team of finance, IT, facilities, manufacturing and business development professionals, I feel confident that this is a good time to transition to other opportunities, knowing that Sarepta is well-positioned to continue to lead the industry.

Sandy will continue to serve on the Board of Directors for Flexion Therapeutics, Inc., Aeglea BioTherapeutics, Inc., and Idorsia Pharmaceuticals Ltd.

AboutSarepta TherapeuticsAt Sarepta, we are leading a revolution in precision genetic medicine and every day is an opportunity to change the lives of people living with rare disease. The Company has built an impressive position in Duchenne muscular dystrophy (DMD) and in gene therapies for limb-girdle muscular dystrophies (LGMDs), mucopolysaccharidosis type IIIA, Charcot-Marie-Tooth (CMT), and other CNS-related disorders, with more than 40 programs in various stages of development. The Companys programs and research focus span several therapeutic modalities, including RNA, gene therapy and gene editing. For more information, please visitwww.sarepta.com or follow us on Twitter, LinkedIn, Instagram and Facebook.

Forward-Looking StatementThis press release contains "forward-looking statements." Any statements contained in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Words such as "believes," "anticipates," "plans," "expects," "will," "intends," "potential," "possible" and similar expressions are intended to identify forward-looking statements. These forward-looking statements include statements regarding the search process to identify the future chief financial officer, the reporting structure during the interim period and the performance of the finance team; Sareptas potential to extend and improve lives; Sareptas goal of changing the lives of patients with rare diseases around the world; and Sarepta being well-positioned to continue to lead the industry.

These forward-looking statements involve risks and uncertainties, many of which are beyond Sareptas control. Known risk factors include, among others: Sarepta may not be able to execute on its business plans and goals, including meeting its expected or planned regulatory milestones and timelines, clinical development plans, and bringing its product candidates to market, due to a variety of reasons, many of which may be outside of Sareptas control, including possible limitations of company financial and other resources, manufacturing limitations that may not be anticipated or resolved for in a timely manner, regulatory, court or agency decisions, such as decisions by the United States Patent and Trademark Office with respect to patents that cover Sareptas product candidates and the COVID-19 pandemic; and those risks identified under the heading Risk Factors in Sareptas most recent Annual Report on Form 10-K for the year ended December 31, 2019, and most recent Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission (SEC) as well as other SEC filings made by Sarepta which you are encouraged to review.

Any of the foregoing risks could materially and adversely affect Sareptas business, results of operations and the trading price of Sareptas common stock. For a detailed description of risks and uncertainties Sarepta faces, you are encouraged to review the SEC filings made by Sarepta. We caution investors not to place considerable reliance on the forward-looking statements contained in this press release. Sarepta does not undertake any obligation to publicly update its forward-looking statements based on events or circumstances after the date hereof.

Internet Posting of Information

We routinely post information that may be important to investors in the 'For Investors' section of our website atwww.sarepta.com. We encourage investors and potential investors to consult our website regularly for important information about us.

Source: Sarepta Therapeutics, Inc.

Sarepta Therapeutics, Inc.

Investors:Ian Estepan, 617-274-4052iestepan@sarepta.com

Media:Tracy Sorrentino, 617-301-8566tsorrentino@sarepta.com

Read this article:
Sarepta Therapeutics Announces Retirement of Sandy Mahatme, Chief Financial Officer and Chief Business Officer - BioSpace

Read More...

Connection Between Psoriasis and Joint Disease Indicates Early Treatment Can Be Key – AJMC.com Managed Markets Network

Friday, July 3rd, 2020

Researchers identified a protein that can not only worsen skin inflammation but also plays a key role in damaging joints and bones of patients with psoriasis.

Patients with psoriasis show higher rates of diverse comorbid conditions, such as psoriatic arthritis (PsA), which occurs in one-third of patients with psoriasis and can cause severe, disabling joint disease. However, the reason why so many people with psoriasis develop PsA hasnt been clear.

Since the damage that occurs as a result of PsA is irreversible, identifying patients with PsA early, before too much damage is done to bones, tendons, and joints, is an important consideration, researchers noted.

A team led by Case Western Reserve University School of Medicine researchers discovered that normalizing KLK6 can eliminate skin inflammation and reduce the arthritis-like damage.

"To discover that turning down KLK6 eliminated the skin inflammation and even improved the arthritis-like changesthat was unbelievable," Nicole Ward, PhD, the study's principal investigator and a professor of nutrition and dermatology at the medical school, said in a statement. "This suggests that clinicians need to aggressively treat patients with psoriasis to prevent the arthritis changes, which generally occur after the skin disease presents itself. Since the joint and bone damage are largely irreversible in patients, prevention becomes critical."

In previous research, Ward found that the skin of patients with psoriasis had 6 times more KLK6 than normal. In addition, the PAR1 receptor protein, which causes cellular/tissue responses like inflammation when activated, is overproduced in these patients skin and immune cells. The theory that came from these findings was that KLK6 drove inflammation through signaling of PAR1.

In this new study, the researchers overproduced KLK6 through genetic engineering to develop psoriasis-like skin disease. When PAR1 was deleted, there was a reduction in skin inflammation, as well as an improvement in bone and joint problems.

"These findings suggest that chronic inflammation originating in the skin has the capacity to cause distant joint and bone destruction seen in arthritis, according to Ward.

Reference

Billi AC, Ludwig JE, Fritz Y, et al. KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease. J Clin Invest. 2020;130(6):3151-3157. doi:10.1172/JCI133159

View post:
Connection Between Psoriasis and Joint Disease Indicates Early Treatment Can Be Key - AJMC.com Managed Markets Network

Read More...

The rise of AI in medicine – Varsity Online

Friday, July 3rd, 2020

During the coronavirus pandemic, it's unlikely that AI doctors would work at all: the depth of moral decisions that need to be made simply can't be accommodated by a program.Vidal Balielo Jr.

By now, its almost old news that artificial intelligence (AI) will have a transformative role in medicine. Algorithms have the potential to work tirelessly, at faster rates and now with potentially greater accuracy than clinicians.

In 2016, it was predicted that machine learning will displace much of the work of radiologists and anatomical pathologists. In the same year, a University of Toronto professor controversially announced that we should stop training radiologists now. But is it really the beginning of the end for some medical specialties?

AI excels in pattern identification in determining pathologies that look certain ways, according to Elliot Fishman, a radiology and oncology professor at Johns Hopkins University and a key proponent of AI integration into medicine. Ultimately, specialties that rely heavily on visual pattern recognition notably radiology, pathology, and dermatology are those believed to be at the greatest risk. With the advent of virtual primary care services, such as Babylon, General Practice may also have to adapt in the future.

Pattern recognition functions

In January of this year, an article in Nature reported that AI systems outperformed doctors in breast cancer detection. This was carried out by an international team, including researchers from Google Health and Imperial College London on mammograms obtained from almost 29,000 women. Screening mammography currently plays a critical role in early breast cancer detection, ensuring early initiation of treatment and yielding improved patient prognoses. False negatives are a significant problem in mammography. The study found AI use was associated with an absolute reduction of 9.4% and 2.7% reduction in false negatives, in the USA and UK, respectively. Similarly, use of the AI system led to a reduction of 5.7% and 1.2% in the USA and UK respectively for false positives. The study suggested that AI outperformed the six radiologists individually, and was equivalent to the current double-reading system of two doctors currently used in the UK. These developments have already had perceptible consequences in practice: algorithms eliminate the need for a second radiologist when interpreting mammograms. However, critically, one radiologist remains responsible for the diagnosis.

AI can also be deployed to predict the cognitive decline that leads to Alzheimers disease... allowing early intervention and treatment

Earlier studies have also yielded similar results: a 2017 study published in Nature examined the use of algorithms in dermatology. The study, from Stanford University, involved an algorithm developed by computer scientists using an initial database of 130,000 skin disease images. When compared to the success rates of 21 dermatologists, the algorithm was almost equally successful. Likewise, in a study conducted by the European Society for Medical Oncology, it was found that AI exceeded the performance of 58 international dermatologists. A system reliant on a form of machine learning known as Deep Learning Convolutional Neural Network (CNN) missed fewer melanomas (the most lethal form of skin cancer), and misdiagnosed benign moles (or nevi) as malignant less often than the group of dermatologists.

Further applications in medicine

However, the prospects of AI technology extend beyond the clear applications in cancer diagnosis and radiology: recent studies have also demonstrated that AI may be able to detect genetic diseases in infants by rapid whole-genome sequencing and interpretation. Considering that time is critical in treating gravely ill children, such automated techniques can be crucial in diagnosing children who are suspected of having genetic diseases.

In addition, AI can also be deployed to predict the cognitive decline that leads to Alzheimers disease. Such computational models can be highly valuable at the individual level, allowing early intervention and treatment planning. FDA approval has also been granted to a number of companies for such technologies; these include Imagens OsteoDetect, an algorithm intended to aid wrist fracture detection. In addition, algorithms may have functions in other specialties such as anaesthesiology in monitoring and responding to physiological signs.

Limitations of AI

Despite the benefits that AI integration into clinical practice can provide, the technology is not without limitations. Machine learning algorithms are highly dependent on the quality and quantity of the data input, typically requiring millions of observations to function at suitable levels. Biases in data collection can heavily impact performance; for instance, racial or gender representation in the original data set can lead to differences in diagnostic abilities of the system for different groups, consequently leading to disparities in patient outcomes. Considering that certain pathologies, including melanoma, present differently between races and with different incidences, this can often lead to both later diagnoses and poorer outcomes for racial minorities, as found in a number of studies. Volunteer bias of the data collected is also a pertinent consideration; for example, although lactate concentration is a good predictor of death, this is not routinely measured in healthy individuals.

Considering the magnitude of what is at stake raises the question of whether it is appropriate to rely solely on machines without any human input.

Other key problems which may arise include how algorithms overfit predictions based on random errors in the data, resulting in unstable estimates which vary between data samples. In addition, clinicians may take a more cautious approach when making a diagnosis. Therefore, it may appear that a human underperforms compared to an algorithm since their actions may yield a lower accuracy in tumour identification, however this approach could lead to a lower number of critical cases missed.

Ultimately, the tendency for humans to favour propositions given by automated systems over non-automated ones, known as automation bias, may exacerbate these problems.

Attempts to replace GPs with AI have been unsuccessful

The success of AI integration into clinical practice crucially depends on the receptiveness of patients. Babylon, a start-up company based in the UK, was developed to give medical advice to patients using chat services. Although Babylon has been referred to as the biggest disruption in medical practice in years and a game-changer in UK media as quoted on Babylons website it is questionable how successful the service has been so far Babylon has been slow in recruiting patients and this month, it came under fire for data breaches. The fact that patients lose access to their regular GP if they sign up to Babylon is perhaps a key contributing factor for Babylons slow take-off. Therefore, it appears that human contact is highly valued by patients, after all, at least for some medical specialties.

Potential effect of COVID-19

The COVID-19 pandemic, with its requirements for social distancing, could potentially accelerate the use of AI. COVID-related restrictions could change the perception of patients about remote medical consultations, paving the way for increased receptiveness to primary healthcare apps including Babylon. The pandemic has also highlighted the inadequacies in fast internet access throughout the country. This may encourage increased government investment into broadband infrastructure, which may, in turn, facilitate broader penetration of AI technology. The increased pressure on the NHS may also encourage greater use of algorithms to delegate menial tasks as seen in specialties such as radiology already.

The future

AI will likely become an indispensable tool in clinical medicine, facilitating the work of professionals by automating mundane, albeit essential tasks. By reducing the medical workload, this could allow healthcare professionals to dedicate greater efforts to other aspects of their work, including patient interaction. As emphasised by the President of the Royal College of Radiologists, radiologists can instead focus more of their time on interventional radiology and in managing more complex cases to a much greater extent. Indeed, innovation may aid clinicians and augment their decision-making capabilities to improve their efficiency and diagnostic accuracy, however it remains doubtful whether technology can fully replace these roles. After all, considering the magnitude of what is at stake human life raises the question of whether it is appropriate to rely solely on machines without any human input. Therefore, it remains likely that human involvement will need to continue across medical specialties, although this may be in a reduced or adapted form.

Varsity is the independent newspaper for the University of Cambridge, established in its current form in 1947. In order to maintain our editorial independence, our newspaper and news website receives no funding from the University of Cambridge or its constituent Colleges.

We are therefore almost entirely reliant on advertising for funding, and during this unprecedented global crisis, we have a tough few weeks and months ahead.

In spite of this situation, we are going to look at inventive ways to look at serving our readership with digital content for the time being.

Therefore we are asking our readers, if they wish, to make a donation from as little as 1, to help with our running cost at least until we hopefully return to print on 2nd October 2020.

Many thanks, all of us here at Varsity would like to wish you, your friends, families and all of your loved ones a safe and healthy few months ahead.

Read more here:
The rise of AI in medicine - Varsity Online

Read More...

Case Western Reserve University-led team develops new approach to treat certain neurological diseases – Mirage News

Friday, July 3rd, 2020

A team led by Case Western Reserve University medical researchers has developed a potential treatment method for Pelizaeus-Merzbacher disease (PMD), a fatal neurological disorder that produces severe movement, motor and cognitive dysfunction in children. It results from genetic mutations that prevent the body from properly making myelin, the protective insulation around nerve cells.

Paul Tesar, professor of genetics and genome sciences, School of Medicine

Using mouse models, the researchers identified and validated a new treatment target-a toxic protein resulting from the genetic mutation. Next, they successfully used a family of drugs known as ASOs (antisense oligonucleotides) to target the ribonucleic acid (RNA) strands that created the abnormal protein to stop its production. This treatment reduced PMDs hallmark symptoms and extended lifespan, establishing the clinical potential of this approach.

By demonstrating effective delivery of the ASOs to myelin-producing cells in the nervous system, researchers raised the prospect for using this method to treat other myelin disorders that result from dysfunction within these cells, including multiple sclerosis (MS).

Their research was published online July 1 in the journal Nature.

The pre-clinical results were profound. PMD mouse models that typically die within a few weeks of birth were able to live a full lifespan after treatment, said Paul Tesar, principal investigator on the research, a professor in the Department of Genetics and Genome Sciences at the School of Medicine and the Dr. Donald and Ruth Weber Goodman Professor of Innovative Therapeutics. Our results open the door for the development of the first treatment for PMD as well as a new therapeutic approach for other myelin disorders.

Study co-authors include an interdisciplinary team of researchers from the medical school, Ionis Pharmaceuticals Inc., a Carlsbad, California-based pioneer developer of RNA-targeted therapies, and Cleveland Clinic. First author Matthew Elitt worked in Tesars lab as a Case Western Reserve medical and graduate student.

PMD is a rare, genetic condition involving the brain and spinal cord that primarily affects boys. Symptoms can appear in early infancy and begin with jerky eye movements and abnormal head movements. Over time, children develop severe muscle weakness and stiffness, cognitive dysfunction, difficulty walking and fail to reach developmental milestones such as speaking. The disease cuts short life-expectancy, and people with the most severe cases die in childhood.

The disease results from errors in a gene called proteolipid protein 1 (PLP1). Normally, this gene produces proteolipid protein (PLP) a major component of myelin, which wraps and insulates nerve fibers to allow proper transmission of electrical signals in the nervous system. But a faulty PLP1 gene produces toxic proteins that kill myelin producing cells and prevent myelin from developing and functioning properly-resulting in the severe neurological dysfunction in PMD patients.

PMD impacts a few thousand people around the world. So far, no therapy has lessened symptoms or extended lifespans.

For nearly a decade, Tesar and his team have worked to better understand and develop new therapies for myelin disorders. They have had a series of successes, and their myelin-regenerating drugs for MS are now in commercial development.

In the current laboratory work, the researchers found that suppressing mutant PLP1 and its toxic protein restored myelin-producing cells, produced functioning myelin, reduced disease symptoms and extended lifespans.

After validating that PLP1 was their therapeutic target, the researchers pursued pre-clinical treatment options. They knew mutations in the PLP1 gene produced faulty RNA strands that, in turn, created the toxic PLP protein.

Additional team members included Lilianne Barbar, Elizabeth Shick, Yuka Maeno-Hikichi, Mayur Madhavan, Kevin Allan, Baraa Nawash, Artur Gevorgyan, Stevephen Hung, Zachary Nevin, Hannah Olsen, Daniela Schlatzer, David LePage, Weihong Jiang and Ronald Conlon from Case Western Reserve University School of Medicine; Berit Powers, Hien Zhao, Adam Swayze and Frank Rigo from Ionis Pharmaceuticals; and Midori Hitomi from Cleveland Clinic.

This research was supported by grants from the National Institutes of Health, New York Stem Cell Foundation and European Leukodystrophy Association. Philanthropic support was provided by the Geller, Goodman, Fakhouri, Long, Matreyak, Peterson and Weidenthal families and the CWRU Research Institute for Childrens Health.

Read more:
Case Western Reserve University-led team develops new approach to treat certain neurological diseases - Mirage News

Read More...

Personalized Cancer Drugs Market Expected to Witness a Sustainable Growth over 2025 – 3rd Watch News

Friday, July 3rd, 2020

Global Personalized Cancer Drugs Market: Snapshot

Genetic sequencing has proven that no two cancer cases are absolutely identical, heavily depending on genetic profiles of the patients, which defines their immunity power. But frequently, several promising pipeline drugs fail to reach the market for not being commonly useful for the masses. In this scenario, a small but increasing number of personalized cancer drugs are allowed by the FDA for the treatment of particular mutations. Nearly one third of cancer drugs are prescribed off-label, as it provides help to the patients immediately. These targeted agents are directed at specific molecular feature of the cancer cells and hence produce greater effectiveness with significantly less toxicity.

Get Sample Copy of the Report @https://www.tmrresearch.com/sample/sample?flag=B&rep_id=118

The global market for personalized cancer drugs market is gaining traction from increased government support for precision-medicine. For example, in June 2016, the U.S. National Cancer Institutes revealed its plans to enroll thousand patients in a trial called NCI-MATCH, which is aimed at matching patients to twenty possible compounds on the basis of their genetic abnormalities. Along the similar lines, The American Society of Clinical Oncology has also announced a registry termed as TAPUR, collecting data on the fate of patients who receive personalized cancer drugs off-label.

Another factor driving the global personalized cancer drugs market is the falling cost of genetic sequencing, which is enabling the quick approval of drugs for off-label clinical trials on patients in need across the world.

Personalized Cancer Drugs Market: Overview

Personalized drugs, or customized drugs, are tailored to suit the needs of individual patients. Earlier, various patients suffering from the same type of disease were given the similar treatment plan. However, it became evident to physicians that a particular treatment worked differently for different patients, mainly owing to a varied genetic makeup. The concept of personalized medicine is based on the analysis of etiology of disease in individual patients and offers treatment that is more efficient, predictable, and precise.

Cancer is a common chronic disease and a major cause of fatality around the globe. The development of personalized cancer drugs has gained pace as they have relatively fewer side effects compared to standard drugs. Personalized cancer drugs target a specific protein or gene responsible for the growth and survival of a cancer type.

Personalized Cancer Drugs Market: Trends and Opportunities

The personalized cancer drugs market is primarily fueled by the rising prevalence of various cancer types such as lung cancer, breast cancer, prostate cancer, melanoma and leukemia, and colorectal cancer. According to the Surveillance, Epidemiology, and End Results Program sponsored by the National Cancer Institute (NCI), an estimated 13,397,159 people in the United States were affected with various cancer types in 2011. Moreover, in 2014, around 1,666,540 new cancer cases were diagnosed in the country, with nearly 585,720 deaths resulting from cancer. The personalized cancer drugs market is also driven by several advantages associated with this new treatment therapy and ongoing developments in the field of genetic science.

On the flip side, high cost associated with the genetic testing of patients and tumor samples may serve as a growth restraint on the market for personalized cancer drugs. In addition to this, the lack of insurance plans to cover these tests in developing nations of Asia Pacific and Rest of the World hampers the market to some extent. This can be attributed to low per capita income and poor reimbursement scenario.

Request TOC of the Report @https://www.tmrresearch.com/sample/sample?flag=T&rep_id=118

Personalized Cancer Drugs Market: Geographical Assessment

From a geographical perspective, the personalized cancer drugs market has been broadly segmented into Europe, Asia Pacific, North America, and Rest of the World (RoW). The market for personalized cancer drugs is led by North America. The chief factors responsible for the regions lead position are aggressive research and development activities, technical advancements, higher affordability for expensive treatments and therapies, and greater healthcare awareness. Europe is also a key market for personalized cancer drugs owing to significant funding from several governments and the growing penetration by U.S.-based companies.

Asia Pacific holds immense promise for players in the personalized cancer drugs market, powered mainly by Japan. The regional market is likely to be fueled by the presence of a large pool of cancer patients and improving healthcare infrastructure. The growth of the APAC personalized cancer market can also be attributed to the rapidly evolving medical tourism industry. In the RoW segment, Mexico, Brazil, Russia, and South Africa represent potential markets.

Personalized Cancer Drugs Market: Competitive Landscape

Some of the key players competing in the personalized cancer drugs market are F. Hoffmann-La Roche Ltd., Pfizer Ltd., Cell Therapeutics, Inc., H3 Biomedicine, Inc., bioTheranostics, GlaxoSmithKline, and Abbott Laboratories. Zelboraf (vemurafenib) by F. Hoffmann-La Roche Ltd. and Xalkori (crizotinib) by Pfizer Ltd. are some notable targeted drugs for the treatment of cancer.

Read Comprehensive Overview of Report @https://www.tmrresearch.com/personalized-cancer-drugs-market

Go here to read the rest:
Personalized Cancer Drugs Market Expected to Witness a Sustainable Growth over 2025 - 3rd Watch News

Read More...

Genome Medical Raises $14 Million to Expand Virtual Clinical Genetics Care and Accelerate Telemedicine Technology Development – BioSpace

Thursday, July 2nd, 2020

SOUTH SAN FRANCISCO, Calif., July 1, 2020 /PRNewswire/ --Genome Medical, a leading telegenomics technology and services company democratizing access to genomic-based medicine, today announced that it has raised $14 million to expand its clinical genetics care and operations. The funds will specifically support the accelerated development of the Genome Care DeliveryTM technology platform to address the rapid growth in virtual care needs and the shortage of genomic health care experts. Genome Medical will initially expand its patient engagement and care navigation platform for cancer, reproductive health and pharmacogenomics to bring the benefits of genomic medicine to a wider U.S. population.

This Series B extension financing was led by Samsung Catalyst Fund, which invests in the tech leaders of tomorrow to build a safer, smarter and more sustainable world. Existing investors, founders and additional growth partners also participated in this financing, bringing the total capital raised since Genome Medical was founded in 2016 to $60 million.

"The global COVID-19 pandemic and its health care impact are creating an unprecedented need for telehealth solutions. As a nationwide telehealth medical practice, Genome Medical is able to meet this need by expanding access to standard-of-care genetics and genomics through virtual health services -- reaching people everywhere in a timely and safe manner," said Lisa Alderson, CEO and Co-founder of Genome Medical. "We are pleased to partner with Samsung Catalyst Fund to forge consumer digital health technology together with genomic data and clinical genetics expertise to transform health care."

Advancements in genetic technology and testing have made preventive and personalized care more effective and affordable than ever, accelerating the adoption of precision medicine into routine clinical care for cancer, chronic diseases, reproductive health and genetic disorders. Importantly, these advancements also create new ways to monitor and treat infectious diseases and global outbreaks.

"Personalized medicine is the future of care, but too many health systems are not able to provide these critical services," said Francis Ho, Senior Vice President and Managing Director, Samsung Catalyst Fund. "When more patients and providers have access to cutting-edge genomic health technologies and expertise, we can save lives and improve health outcomes. The data and knowledge base built by Genome Medical will spur more innovation and help us focus on preventive methods for treating illnesses and new diseases. Samsung is excited to be a part of this journey."

Genome Medical's solutions are utilized by health systems, hospitals, payors, providers and employers to expand access to genetic health services. Genome Medical also services patients directly and accepts self-referrals. Approximately 17 percent of the population carries disease-related genetic mutations for which there are treatment or preventive options. By increasing access to genetics care, Genome Medical can directly improve outcomes for these individuals.

Genome Medical's growing network of genetic specialists provides on-demand, virtual care nationwide in the United States, with deep expertise across six major clinical areas: cancer, cardiovascular disease, reproductive health, pediatric genetics, pharmacogenomics and proactive health management. The Genome Care Delivery platform delivers education, engagement and provider-to-provider e-consults, as well as genetic wellness assessments and screening for population health management. The outcomes from this platform will make genomic medicine more affordable and accessible by providing the most up-to-date research and data-driven expertise. This includes a proprietary database to securely collect data on genomic profiles, electronic medical records, family health history and clinical insights.

Genome Medical's existing investors, founders and additional growth partners also participating in this financing included Chairman and Co-founder Randy Scott, Canaan Partners, Illumina Ventures, Echo Health Ventures, Perceptive Advisors, LRVHealth, Kaiser Permanente Ventures, Avestria Ventures, Casdin Capital, HealthInvest Equity Partners, Revelation Partners, Dreamers Fund, Flywheel Ventures and Manatt Ventures.

About Genome Medical Genome Medical is a national telegenomics technology, services and strategy company bringing genomic medicine to everyday care. Through our nationwide network of genetic specialists and efficient Genome Care DeliveryTM technology platform, we provide expert virtual genetic care for individuals and their families to improve health and well-being. We also help health care providers and their patients navigate the rapidly expanding field of genetics and utilize test results to understand the risk for disease, accelerate disease diagnosis, make informed treatment decisions and lower the cost of care. We are shepherding in a new era of genomic medicine by creating easy, efficient access to top genetic experts. Genome Medical is headquartered in South San Francisco. To learn more, visit genomemedical.comand follow @GenomeMed.

About Samsung Catalyst Fund Samsung Catalyst Fund is Samsung Electronics' evergreen multi-stage venture capital fund that invests in the new data economy and strategic ideas for Samsung's device solutions, mobile, and consumer electronics groups. Investments span across Mobile & Cloud Services, DeepTech Infrastructure, Biology + Tech, and Safety & Security. Through Samsung Catalyst Fund, entrepreneurs are enabled by Samsung's global brand, manufacturing and distribution, domain expertise, recruiting network, and world-class Innovation Fellows for advice and mentorship. For the latest news, please visit samsungcatalyst.com.

View original content to download multimedia:http://www.prnewswire.com/news-releases/genome-medical-raises-14-million-to-expand-virtual-clinical-genetics-care-and-accelerate-telemedicine-technology-development-301086493.html

SOURCE Genome Medical

Go here to see the original:
Genome Medical Raises $14 Million to Expand Virtual Clinical Genetics Care and Accelerate Telemedicine Technology Development - BioSpace

Read More...

Genes from ‘culturally extinct’ Indigenous group discovered in unsuspecting Tennessee man – Livescience.com

Thursday, July 2nd, 2020

The last known members of the Indigenous Beothuk people of Newfoundland were thought to have died out 200 years ago. But genes from these people have been found in a man living in Tennessee today, researchers reported.

Shanawdithit, a Beothuk woman who died of tuberculosis in 1829, was the last known Beothuk. The group had thrived in Newfoundland with as many as 2,000 people there, until the Europeans arrived in the early 1500s, bringing disease and pushing the Beothuk inland, away from their traditional fishing and hunting grounds, which led to their starvation.

However, even though the Beothuk culture is extinct, their genes are not. The new genetic study found "identical" Beothuk genes from Shanawdithit's uncle in a Tennessee man. They also found fairly-well matched genetic sequences in members of the modern-day Ojibwe (also known as the Chippewa) people, said study researcher Steven Carr, a professor of biology at Memorial University in Newfoundland, with a cross-appointment in population genetics with the university's Faculty of Medicine.

Related: 10 things we learned about the first Americans in 2018

The idea that the Beothuk live on isn't surprising to other Indigenous groups from the Newfoundland region. For instance, the oral traditions of Mi'kmaq First Nation (also spelled Miawpukek First Nation), a group whose history and geography overlap with that of the Beothuk, hold that Beothuk descendants have survived through the ages.

Carr conducted the study, in part, because "everybody wonders what happened to the Beothuk," he said. "There are people that claim descent from the Beothuk Indians," even though they don't have evidence to support such family ties. For instance, in 2017, a woman in North Carolina claimed to be of Beothuk descent after a commercial ancestry company, using incomplete data, mistakenly suggested this ancestry, according to the Canadian Broadcasting Corporation.

In an earlier study, published in 2017 in the journal Current Biology, researchers reported no close genetic relationship among three First Nation groups in Newfoundland: the Maritime Archaic, who lived in Newfoundland from about 8,000 to 3,400 years ago before mysteriously disappearing; the Palaeoeskimo, who visited and then lived on Newfoundland from about 3,800 to 1,000 years ago, meaning that they overlapped with the Maritime Archaic and the Beothuk; and the Beothuk, who lived on Newfoundland from about 2,000 to 200 years ago.

In the new study, published April 13 in the journal Genome, Carr reanalyzed already published genetic data from the Beothuk. In a nutshell, he looked at mitochondrial DNA (genetic data passed down from mothers to children) taken from the archaeological remains of 18 Beothuk individuals and the skulls of Shanawdithit's aunt and uncle, Demasduit and Nonosabasut, respectively. (These skulls had been stolen in 1828 and sent to the University of Edinburgh, but were repatriated to Newfoundland in March after a long campaign by the Mi'kmaq and other Indigenous groups, according to The Guardian.)

Carr searched for matches to the Beothuk mitochondrial DNA in GenBank, a database run by the U.S. National Institutes of Health that is chock-full of DNA sequences from research projects done around the world, as well as from people who use commercial DNA testing.

The search showed that a Tennessee man had mitochondrial DNA matching Nonosabasut, Carr said. The man told Carr he had traced his mother's side of the family five generations back, and he was surprised about his link to the Beothuk, as he wasn't aware of any First Nation relations in his genealogy tree.

"He's now extremely intrigued and will continue looking for that [First Nations link]," Carr said.

Just like in the Current Biology study, Carr found that the Maritime Archaic were not closely related to the Beothuk. However, the two groups do share a very distant ancestor; the oldest known Maritime Archaic individual who died at about the age of 12 in southern Labrador about 8,000 years ago, according to an analysis of the burial has DNA that is similar to the historic Beothuk, said William Fitzhugh, director of the Arctic Studies Center at the Smithsonian Institution, who was not involved with either study.

That's likely because the common ancestor of Indigenous Northeastern North America (except for the Innu and Innuit) date to at least 15,000 years ago, and the different groups that spread across this region likely descended from this ancestor, Carr said. However, the relationship between the Maritime Archaic and the Beothuk is distant, unlike the extremely close relation Carr found between the Beothuk and the Tennessee man.

Related: In images: An ancient long-headed woman reconstructed

The GenBank search also showed that the Beothuk and the ancient Maritime Archaic peoples from Newfoundland "both share ancestry with modern Canadian Ojibwe, meaning their genes can be traced back to ancestral Indian peoples in more geographically central regions [of Canada]," Fitzhugh told Live Science in an email.

However, the new study is limited by its sample size, Fitzhugh noted.

"One of my reactions is how complicated these DNA studies are and how dependent they are on available samples; that the technology of genomic analysis is relatively new and evolving rapidly, perhaps leading to different results," Fitzhugh said.

In an earlier study, Carr and colleagues looked for genetic links between the Beothuk and Mi'kmaq. But this 2017 study, published in the journal Mitochondrial DNA Part A, was small and the results were largely inconclusive, Carr said.

Despite these results, the study put them on the radar of Chief Mi'sel Joe of the Mi'kmaq First Nation. "The chief was interested in just having it demonstrated what they believed to be true," Carr said that the Mi'kmaq and the Beothuk had pursued "family relations" with one another before the Beothuk went culturally extinct, Joe told Live Science.

There is only one Mi'kmaq in GenBank, so next Carr plans to work with Mi'kmaq First Nation to determine whether the Beothuk and Mi'kmaq are closely related, he said. This new study will include at least 200 or more registered Mi'kmaq (also spelled Mig'maw) people, so it will be larger than the 2017 study, he noted. (Carr added that he is serving as the study's principal investigator and advisor to the Mi'kmaq in a private capacity, through his company Terra Nova Genomics. This project is being funded through a National Geographic Explorer grant to Mi'kmaq First Nation.)

The results from this study may help detail the historic relationship between the Beothuk and Mi'kmaq people.

"We shared the same island [of Newfoundland] and the island really is not that big," Joe said. "Of course, from time to time, our people would encounter them and sometimes live with them," Joe said. "It wasn't always friendly," because of rivalries, but other times it was, he said.

Originally published on Live Science.

Read more here:
Genes from 'culturally extinct' Indigenous group discovered in unsuspecting Tennessee man - Livescience.com

Read More...

Children’s National Medical Center and AWS partner for genome project targeting COVID-19 – SiliconANGLE

Thursday, July 2nd, 2020

Finding vaccines or drugs against COVID-19 is certainly one of the main current objectives of medical research centers worldwide. At Childrens National Medical Center, researchers are deploying technology tools from Amazon Web Services Inc. to combine hundreds of data sets to identify genes that might be targeted to treat many diseases, including COVID-19.

We know that there are a lot of drugs that target different genes,and we are particularly interested in, for example, can we repurpose some of these drugs to treatdifferent types of viruses, including COVID-19? said Wei Li (pictured), principal investigator at the Center for Genetic Medicine Research & Center for Cancer and Immunology Research at Childrens National Medical Center.

Li spoke with Stu Miniman, host of theCUBE, SiliconANGLE Medias livestreaming studio, during the AWS Public Sector Summit event. They discussed how the genome project can help combat COVID-19, as well as the role of AWS technology tools in scientific research. (* Disclosure below.)

The Childrens National Medical Center has been using computational biology and gene editing approaches to understand humangenome and disease, and it is particularly interested in a gene-editingtechnology called CRISPR screening, according to Li, who has a research background in computer science.

This is a fascinating technology because it tells you whether one of the 20,000human genes are connected with some certain disease phenotype in one single experiment, he said. We are tryingto, for example, perform machine-learning and data-mining approaches to find new clues of human diseasefrom the original mix and screening big data.

CRISPR screening and other similar screening methods have been widely used in recent years by several research laboratories to study virus infections, such as those related to HIV, Ebola, influenza and now coronavirus, according to Li. Then, the team at the Childrens National Medical Center had an idea: to connect all the sets of screening data related to these viruses to try to extract new information that cannot be identified in a single study.

Can we identify new patterns or new human genes that are commonly responsible for many different virus types? Or can we find some genes that work only from some certain type of viruses? he asked.

Researchers use AWS technology to process and analyze huge amount of data sets, in addition to creating an integrated database in the cloud, so that research results can be freely accessed around the world. It is estimated that AWS technology can reduce the time to process screening data from months to days, according to Li.

Two major benefits are expected from the outcome of this research project.

The first thing is that we hope to find some genes thatcan be potentially drug targets. So, if there are existing drugs that target the genes, then that would be perfect, because we dont need to do anything about this, he explained. And,in the end, we hope that these drugs can have the broad antiviral activity; that means that these drugs can be potentially used to treat COVID-19 and in the future if theres a new virus coming out.

Watch the complete video interview below, and be sure to check out more of SiliconANGLEs and theCUBEs coverage of the AWS Public Sector Summit event. (* Disclosure: TheCUBE is a paid media partner for the AWS Public Sector Summit Online event. Neither Amazon Web Services Inc., the sponsor for theCUBEs event coverage, nor other sponsors have editorial control over content on theCUBE or SiliconANGLE.)

Show your support for our mission with our one-click subscription to our YouTube channel (below). The more subscribers we have, the more YouTube will suggest relevant enterprise and emerging technology content to you. Thanks!

Support our mission: >>>>>> SUBSCRIBE NOW >>>>>> to our YouTube channel.

Wed also like to tell you about our mission and how you can help us fulfill it. SiliconANGLE Media Inc.s business model is based on the intrinsic value of the content, not advertising. Unlike many online publications, we dont have a paywall or run banner advertising, because we want to keep our journalism open, without influence or the need to chase traffic.The journalism, reporting and commentary onSiliconANGLE along with live, unscripted video from our Silicon Valley studio and globe-trotting video teams attheCUBE take a lot of hard work, time and money. Keeping the quality high requires the support of sponsors who are aligned with our vision of ad-free journalism content.

If you like the reporting, video interviews and other ad-free content here,please take a moment to check out a sample of the video content supported by our sponsors,tweet your support, and keep coming back toSiliconANGLE.

Original post:
Children's National Medical Center and AWS partner for genome project targeting COVID-19 - SiliconANGLE

Read More...

Age-of-onset information helps identify 76 genetic variants associated with allergic disease. – Physician’s Weekly

Thursday, July 2nd, 2020

Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<310-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.510-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.

PubMed

Link:
Age-of-onset information helps identify 76 genetic variants associated with allergic disease. - Physician's Weekly

Read More...

Page 16«..10..15161718..3040..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick