header logo image


Page 7«..6789..2030..»

Archive for the ‘Genetic Engineering’ Category

Missouri S&T News and Events First-year scholars undeterred by unusual beginning – Missouri S&T News and Research

Wednesday, November 25th, 2020

First-year students Garrett Blum and Hannah Tillery, Missouri S&Ts inaugural Evans Deans Scholars, have chosen different academic paths, but their life histories and achievements are noticeably parallel.

Blum, a history major with an emphasis in secondary education, and Tillery, a biological sciences major, began their first semester this fall as sophomores after earning dual credit hours in Missouri high schools. Both were valedictorians of their graduating classes Blum from Thayer High School, and Tillery from Licking High School. Both are firstborn children living at home with family members. In fact, Tillery still helps take care of her youngest brother one day a week.

Blum and Tillery also share an unwavering mindset toward their goals. Their focus could easily have been shaken given the uncertainty of starting college during a global pandemic. But both say the circumstances havent diminished their drive.

Blum wants to be a high school history teacher. He says he sees how lessons learned from studying the past can help avoid repeating those lessons. Due to COVID-19, five of his six first-year courses are online.

Going from high school to college would be a big jump, but in these times, its even more so, says Blum. But I have my goals and am working toward them. Im enjoying everything at Missouri S&T so far and dont foresee changing my direction.

Tillery has set her sights on medical school. Driven by a passion for helping people, she changed her academic plans from law to medicine when her grandfather was diagnosed with cancer, and she hoped for a cure.

Helping people has been my goal since I was very young, and Ive always found science interesting, says Tillery. Because I get so attached to people, I think medical research is a better path for me than becoming a hospital doctor.

Tillerys interests include virology, epidemiology and genetic engineering. She says she developed an interest in the treatment of Ebola virus as a way to help people long before the COVID-19 pandemic began. Already shes joined SCRUBS, the S&T student organization for pre-professional health care majors.

Tillery likes the flexibility of her online classes, and even engages online with fellow members of womens fraternity Chi Omega due to the pandemic.

Endowed by 1967 S&T mechanical engineering graduate Mike Evans, former president and chief operating officer of Con Edison, and his wife, Linda Evans, a retired educator, the Evans Deans Scholars program, is designed to provide life-changing scholarships for its recipients.

Their scholarship award gives first preference to Missouri residents who are qualified first-year undergraduate students enrolled in the College of Arts, Sciences, and Business (CASB) and second preference to those with dual majors in CASB and the College of Engineering and Computing.

In addition to the programs tuition contribution, the Evans Deans Scholars program also provides recipients with leadership development opportunities and a career mentor who has demonstrated success in industry, government or academia.

Blum and Tillery both say their mentors are more than a source of professional knowledge. They also offer advice and personal encouragement.

Dr. Paul Stricker, a board-certified youth sports medicine specialist and author who practices at theScripps Clinic in San Diego, is Tillerys mentor. A 1982 life sciences graduate of S&T, Stricker was a physician for the U.S. delegation at the Sydney Olympics in 2000 and head physician for the 1999 World University Games. He is a past president of the American Medical Society for Sports Medicine.

It made me happy that Dr. Stricker was impressed with what Ive done, says Tillery. We met on Zoom and talked about my WiSci (Women in Science) experience in Namibia where 100 high school girls from surrounding Africa and the U.S. met to work with tech industry leaders from Google, NASA and Intel.

She says they explored topics such as artificial intelligence design, coding of apps for disabled persons, and geographic profiling, a criminal investigation technique. Blum is working with his mentor, James Trusler, who teaches world history at Rolla Junior High School. Trusler earned a bachelor of arts degree in history at S&T in 2016, was selected as one of Missouris Outstanding Beginning Teachers in 2019, and in 2020 was named the Missouri Council for the Social Studies Middle School Teacher of the Year.

Ive already learned a lot of important lessons from Mr. Trusler about being an educator, says Blum.

As Evans Deans Scholars, Blum and Tillery are setting a high standard for award recipients in years to come.

More:
Missouri S&T News and Events First-year scholars undeterred by unusual beginning - Missouri S&T News and Research

Read More...

Future Visioning the Role of CRISPR Gene Editing: Navigating Law and Ethics to Regenerate Health and Cure Disease – IPWatchdog.com

Wednesday, November 25th, 2020

Despite the projected growth in market applications and abundant investment capital, there is a danger that legal and ethical concerns related to genetic research could put the brakes on gene editing technologies and product programs emanating therefrom.

As society adjusts to a new world of social distance and remote everything, rapid advancements in the digital, physical, and biological spheres are accelerating fundamental changes to the way we live, work, and relate to one another. What Klaus Schwab prophesized in his 2015 book, The Fourth Industrial Revolution, is playing out before our very eyes. Quantum computing power, a network architecture that is moving function closer to the edge of our interconnected devices, bandwidth speeds of 5G and beyond, natural language processing, artificial intelligence, and machine learning are all working together to accelerate innovation in fundamental ways. Given the global pandemic, in the biological sphere, government industrial policy drives the public sector to work hand-in-glove with private industry and academia to develop new therapies and vaccines to treat and prevent COVID-19 and other lethal diseases. This post will envision the future of gene editing technologies and the legal and ethical challenges that could imperil their mission of saving lives.

There are thousands of diseases occurring in humans, animals, and plants caused by aberrant DNA sequences. Traditional small molecule and biologic therapies have only had minimal success in treating many of these diseases because they mitigate symptoms while failing to address the underlying genetic causes. While human understanding of genetic diseases has increased tremendously since the mapping of the human genome in the late 1990s, our ability to treat them effectively has been limited by our historical inability to alter genetic sequences.

The science of gene editing was born in the 1990s, as scientists developed tools such as zinc-finger nucleases (ZFNs) and TALE nucleases (TALENs) to study the genome and attempt to alter sequences that caused disease. While these systems were an essential first step to demonstrate the potential of gene editing, their development was challenging in practice due to the complexity of engineering protein-DNA interactions.

Then, in 2011, Dr. Emmanuelle Charpentier, a French professor of microbiology, genetics, and biochemistry, and Jennifer Doudna, an American professor of biochemistry, pioneered a revolutionary new gene-editing technology called CRISPR/Cas9. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and Cas9 stands for CRISPR-associated protein 9. In 2020, the revolutionary work of Drs. Charpentier and Doudna developing CRISPR/Cas9 were recognized with the Nobel Prize for Chemistry. The technology was also the source of a long-running and high-profile patent battle between two groups of scientsists.

CRISPR/Cas9 for gene editing came about from a naturally occurring viral defense mechanism in bacteria. The system is cheaper and easier to use than previous technologies. It delivers the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, cutting the cells genome at the desired location, allowing existing genes to be removed and new ones added to a living organisms genome. The technique is essential in biotechnology and medicine as it provides for the genomes to be edited in vivo with extremely high precision, efficiently, and with comparative ease. It can create new drugs, agricultural products, and genetically modified organisms or control pathogens and pests. More possibilities include the treatment of inherited genetic diseases and diseases arising from somatic mutations such as cancer. However, its use in human germline genetic modification is highly controversial.

The following diagram from CRISPR Therapeutics AG, a Swiss company, illustrates how it functions:

In the 1990s, nanotechnology and gene editing were necessary plot points for science fiction films. In 2020, developments like nano-sensors and CRISPR gene editing technology have moved these technologies directly into the mainstream, opening a new frontier of novel market applications. According to The Business Research Company, the global CRISPR technology market reached a value of nearly $700 million in 2019, is expected to more than double in 2020, and reach $6.7 billion by 2030. Market applications target all forms of life, from animals to plants to humans.

Gene editings primary market applications are for the treatment of genetically-defined diseases. CRISPR/Cas9 gene editing promises to enable the engineering of genomes of cell-based therapies and make them safer and available to a broader group of patients. Cell therapies have already begun to make a meaningful impact on specific diseases, and gene editing helps to accelerate that progress across diverse disease areas, including oncology and diabetes.

In the area of human therapy, millions of people worldwide suffer from genetic conditions. Gene-editing technologies like CRISPR-Cas9 have introduced a way to address the cause of debilitating illnesses like cystic fibrosis and create better interventions and therapies. They also have promising market applications for agriculture, food safety, supply, and distribution. For example, grocery retailers are even looking at how gene editing could impact the products they sell. Scientists have created gene-edited crops like non-browning mushrooms and mildew-resistant grapes experiments that are part of an effort to prevent spoilage, which could ultimately change the way food is sold.

Despite the inability to travel and conduct face-to-face meetings, attend industry conferences or conduct business other than remotely or with social distance, the investment markets for venture, growth, and private equity capital, as well as corporate R&D budgets, have remained buoyant through 2020 to date. Indeed, the third quarter of 2020 was the second strongest quarter ever for VC-backed companies, with 88 companies raising rounds worth $100 million or more according to the latest PwC/Moneytree report. Healthcare startups raised over $8 billion in the quarter in the United States alone. Gene-editing company Mammouth Biosciences raised a $45 million round of Series B capital in the second quarter of 2020. CRISPR Therapeutics AG raised more in the public markets in primary and secondary capital.

Bayer, Humboldt Fund and Leaps are co-leading a $65 million Series A round for Metagenomi, a biotech startup launched by UC Berkeley scientists. Metagenomi, which will be run by Berkeleys Brian Thomas, is developing a toolbox of CRISPR- and non-CRISPR-based gene-editing systems beyond the Cas9 protein. The goal is to apply machine learning to search through the genomes of these microorganisms, finding new nucleases that can be used in gene therapies. Other investors in the Series A include Sozo Ventures, Agent Capital, InCube Ventures and HOF Capital. Given the focus on new therapies and vaccines to treat the novel coronavirus, we expect continued wind in the sails for gene-editing companies, particularly those with strong product portfolios that leverage the technology.

Despite the projected growth in market applications and abundant investment capital, there is a danger that legal and ethical concerns related to genetic research could put the brakes on gene-editing technologies and product programs emanating therefrom. The possibility of off-target effects, lack of informed consent for germline therapy, and other ethical concerns could cause government regulators to put a stop on important research and development required to cure disease and regenerate human health.

Gene-editing companies can only make money by developing products that involve editing the human genome. The clinical and commercial success of these product candidates depends on public acceptance of gene-editing therapies for the treatment of human diseases. Public attitudes could be influenced by claims that gene editing is unsafe, unethical, or immoral. Consequently, products created through gene editing may not gain the acceptance of the government, the public, or the medical community. Adverse public reaction to gene therapy, in general, could result in greater government regulation and stricter labeling requirements of gene-editing products. Stakeholders in government, third-party payors, the medical community, and private industry must work to create standards that are both safe and comply with prevailing ethical norms.

The most significant danger to growth in gene-editing technologies lies in ethical concerns about their application to human embryos or the human germline. In 2016, a group of scientists edited the genome of human embryos to modify the gene for hemoglobin beta, the gene in which a mutation occurs in patients with the inherited blood disorder beta thalassemia. Although conducted in non-viable embryos, it shocked the public that scientists could be experimenting with human eggs, sperm, and embryos to alter human life at creation. Then, in 2018, a biophysics researcher in China created the first human genetically edited babies, twin girls, causing public outcry (and triggering government sanctioning of the researcher). In response, the World Health Organization established a committee to advise on the creation of standards for gene editing oversight and governance standards on a global basis.

Some influential non-governmental agencies have called for a moratorium on gene editing, particularly as applied to altering the creation or editing of human life. Other have set forth guidelines on how to use gene-editing technologies in therapeutic applications. In the United States, the National Institute of Health has stated that it will not fund gene-editing studies in human embryos. A U.S. statute called The Dickey-Wicker Amendment prohibits the use of federal funds for research projects that would create or destroy human life. Laws in the United Kingdom prohibit genetically modified embryos from being implanted into women. Still, embryos can be altered in research labs under license from the Human Fertilisation and Embryology Authority.

Regulations must keep pace with the change that CRISPR-Cas9 has brought to research labs worldwide. Developing international guidelines could be a step towards establishing cohesive national frameworks. The U.S. National Academy of Sciences recommended seven principles for the governance of human genome editing, including promoting well-being, transparency, due care, responsible science, respect for persons, fairness, and transnational co-operation. In the United Kingdom, a non-governmental organization formed in 1991 called The Nuffield Council has proposed two principles for the ethical acceptability of genome editing in the context of reproduction. First, the intervention intends to secure the welfare of the individual born due to such technology. Second, social justice and solidarity principles are upheld, and the intervention should not result in an intensifying of social divides or marginalizing of disadvantaged groups in society. In 2016, in application of the same, the Crick Institute in London was approved to use CRISPR-Cas9 in human embryos to study early development. In response to a cacophony of conflicting national frameworks, the International Summit on Human Gene Editing was formed in 2015 by NGOs in the United States, the United Kingdom and China, and is working to harmonize regulations global from both the ethical and safety perspectives. As CRISPR co-inventor Jennifer Doudna has written in a now infamous editorial in SCIENCE, stakeholders must engage in thoughtfully crafting regulations of the technology without stifling it.

The COVID-19 pandemic has forced us to rely more on new technologies to keep us healthy, adapt to working from home, and more. The pandemic makes us more reliant on innovative digital, biological, and physical solutions. It has created a united sense of urgency among the public and private industry (together with government and academia) to be more creative about using technology to regenerate health. With continued advances in computing power, network architecture, communications bandwidths, artificial intelligence, machine learning, and gene editing, society will undoubtedly find more cures for debilitating disease and succeed in regenerating human health. As science advances, it inevitably intersects with legal and ethical norms, both for individuals and civil society, and there are new externalities to consider. Legal and ethical norms will adapt, rebalancing the interests of each. The fourth industrial revolution is accelerating, and hopefully towards curing disease.

See the original post:
Future Visioning the Role of CRISPR Gene Editing: Navigating Law and Ethics to Regenerate Health and Cure Disease - IPWatchdog.com

Read More...

Recording the Symphony of Cellular Signals That Drive Biology – Howard Hughes Medical Institute

Wednesday, November 25th, 2020

Like a computer, cells must process information from the outside world before they respond. Scientists have now developed a powerful new way to observe the internal discussions responsible for cellular decisions.

A new imaging technology lets scientists spy on the flurry of messages passed within cells as they do . . . potentially everything.

Until now, most scientists could visualize only one or two of these intracellular signals at a time, says Howard Hughes Medical Institute Investigator Ed Boyden of the Massachusetts Institute of Technology. His teams new approach could make it possible to see as many signals as you want in real time, at once, Boyden says giving researchers a more detailed view of cells internal discussions than ever before.

In tests with neurons, the researchers examined five signals involved in processes such as learning and memory, Boyden and his colleagues report November 23, 2020, in the journal Cell. You could apply this technology to all sorts of biological mysteries, he says. Every cell works due to all the signals inside it. Because signaling contributes to all biological processes, a better means to study it could illuminate a host of diseases, from Alzheimers to diabetes and cancer.

The teams new approach is a breakthrough, says Clifford Woolf, a neurobiologist at Harvard Medical School who was not involved with the work. He plans to use it to examine how pain-sensing neurons become more sensitive in injury or illness. With the new imaging technology, he says we can take apart whats happening in cells in a way that just has not been possible before.

Give a computer or a human brain information, and it will crackle with electrical impulses as it prepares a response. Within cells, these impulses result in spurts of multiple molecular signals. Boyden describes this process as a group conversation. Signals within a cell are like a set of people trying to decide what to do for the evening: they take into account many possibilities, and then decide what to collectively do, he says.

These cellular discussions are what prompt, for example, a neuron to encode a memory or a cell to turn cancerous. Despite their importance, scientists still dont have a strong grasp of how these signals work together to guide a cells behavior.

To see cell signaling in action, scientists typically introduce genes encoding sensors connected to fluorescent proteins. These molecular reporters sense a signal and then glow a specific color under the microscope. Researchers can use a different color reporter for each signal to tell the signals apart. But finding sets of reporters with colors that a microscope can differentiate is challenging. And a typical cellular conversation can involve dozens of signals or more.

Changyang Linghu and Shannon Johnson, scientists in Boydens lab, got around this limitation by affixing reporters to small, self-assembling proteins that act like LEGO bricks. These small proteins clicked together, forming clusters that were randomly scattered across the cell like little islands. Each cluster, which appears under the microscope as a luminescent dot, reports only one type of cellular signal. Its like having some islands with thermometers to report temperature and other islands with barometers measuring pressure, Johnson says.

In experiments with neurons, the team created clusters that each glowed upon detection of one of five different signals, including calcium ions and other important signaling molecules. After imaging the live cells, the researchers attached molecular labels to the glowing dots to identify the reporters located there. Using computer analyses, the team turned the dots magenta, yellow, and other colors, depending on whether they represented calcium or another signal. This let them see which signals were switching on and off across a cells interior.

By monitoring so many signals at once, the team was able to figure out how each signal related to one another. Teasing apart such relationships could help scientists understand complex processes like learning, Linghu says.

He likens a cell to an orchestra and its signals to a symphony. Its difficult to fully appreciate a symphony by listening to just a single instrument, he says. Because the new technique lets scientists observe multiple signals at the same time, we can understand the symphony of cellular activities.

Boydens team estimates it may be possible to detect as many as 16 signals with their technology, but improvements in genetic engineering techniques could raise that number significantly. Potentially, you could look at dozens, hundreds, or even more signals, he says. The next challenge, Boyden says, is getting sensors for all of those signals into a cell.

###

Citation

Changyang Linghu, Shannon L. Johnson et al. Spatial multiplexing of fluorescent reporters for dynamic imaging of signal transduction networks. Cell. Published online November 23, 2020. doi: 10.1016/j.cell.2020.10.035

Continued here:
Recording the Symphony of Cellular Signals That Drive Biology - Howard Hughes Medical Institute

Read More...

Analysis of Genetic Engineering Drug Market after Effect of Covid-19 on all the Industries around the world – The Market Feed

Wednesday, November 25th, 2020

Global Genetic Engineering Drug Market: Trends Estimates High Demand by 2027

The Genetic Engineering Drug Market 2020 report includes the market strategy, market orientation, expert opinion and knowledgeable information. The Genetic Engineering Drug Industry Report is an in-depth study analyzing the current state of the Genetic Engineering Drug Market. It provides a brief overview of the market focusing on definitions, classifications, product specifications, manufacturing processes, cost structures, market segmentation, end-use applications and industry chain analysis. The study on Genetic Engineering Drug Market provides analysis of market covering the industry trends, recent developments in the market and competitive landscape.

It takes into account the CAGR, value, volume, revenue, production, consumption, sales, manufacturing cost, prices, and other key factors related to the global Genetic Engineering Drug market. All findings and data on the global Genetic Engineering Drug market provided in the report are calculated, gathered, and verified using advanced and reliable primary and secondary research sources. The regional analysis offered in the report will help you to identify key opportunities of the global Genetic Engineering Drug market available in different regions and countries.

The final report will add the analysis of the Impact of Covid-19 in this report Genetic Engineering Drug industry.

Some of The Companies Competing in The Genetic Engineering Drug Market are: GeneScience Pharmaceuticals Co., Ltd, Beijing SL Pharmaceutical Co., Ltd, Biotech Pharmaceutical Co., Ltd, Shenzhen Neptunus Interlong Bio-Technique Co., Ltd, Jiangsu Sihuan Bioengineering Co., Ltd, Tonghua Dongbao Pharmaceutical Co., Ltd, Anhui Anke Biotechnology (Group) Co., Ltd, 3SBio Inc., Shanghai Lansheng Guojian Pharmaceutical Co., and Ltd

Get a Sample Copy of the [emailprotected] https://www.reportsandmarkets.com/sample-request/global-genetic-engineering-drug-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread?utm_source=themarketfeed&utm_medium=24

The report scrutinizes different business approaches and frameworks that pave the way for success in businesses. The report used Porters five techniques for analyzing the Genetic Engineering Drug Market; it also offers the examination of the global market. To make the report more potent and easy to understand, it consists of info graphics and diagrams. Furthermore, it has different policies and improvement plans which are presented in summary. It analyzes the technical barriers, other issues, and cost-effectiveness affecting the market.

Global Genetic Engineering Drug Market Research Report 2020 carries in-depth case studies on the various countries which are involved in the Genetic Engineering Drug market. The report is segmented according to usage wherever applicable and the report offers all this information for all major countries and associations. It offers an analysis of the technical barriers, other issues, and cost-effectiveness affecting the market. Important contents analyzed and discussed in the report include market size, operation situation, and current & future development trends of the market, market segments, business development, and consumption tendencies. Moreover, the report includes the list of major companies/competitors and their competition data that helps the user to determine their current position in the market and take corrective measures to maintain or increase their share holds.

What questions does the Genetic Engineering Drug market report answer pertaining to the regional reach of the industry?

The report claims to split the regional scope of the Genetic Engineering Drug market into North America, Europe, Asia-Pacific, South America & Middle East and Africa. Which among these regions has been touted to amass the largest market share over the anticipated duration

How do the sales figures look at present how does the sales scenario look for the future?

Considering the present scenario, how much revenue will each region attain by the end of the forecast period?

How much is the market share that each of these regions has accumulated presently

How much is the growth rate that each topography will depict over the predicted timeline

A short overview of the Genetic Engineering Drug market scope:

Global market remuneration

Overall projected growth rate

Industry trends

Competitive scope

Product range

Application landscape

Supplier analysis

Marketing channel trends Now and later

Sales channel evaluation

Market Competition Trend

Market Concentration Rate

Reasons to Read this Report

This report provides pin-point analysis for changing competitive dynamics

It provides a forward looking perspective on different factors driving or restraining market growth

It provides a six-year forecast assessed on the basis of how the market is predicted to grow

It helps in understanding the key product segments and their future

It provides pin point analysis of changing competition dynamics and keeps you ahead of competitors

It helps in making informed business decisions by having complete insights of market and by making in-depth analysis of market segments

TABLE OF CONTENT:

Chapter 1:Genetic Engineering Drug Market Overview

Chapter 2: Global Economic Impact on Industry

Chapter 3:Genetic Engineering Drug Market Competition by Manufacturers

Chapter 4: Global Production, Revenue (Value) by Region

Chapter 5: Global Supply (Production), Consumption, Export, Import by Regions

Chapter 6: Global Production, Revenue (Value), Price Trend by Type

Chapter 7: Global Market Analysis by Application

Chapter 8: Manufacturing Cost Analysis

Chapter 9: Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 10: Marketing Strategy Analysis, Distributors/Traders

Chapter 11: Genetic Engineering Drug Market Effect Factors Analysis

Chapter 12: GlobalGenetic Engineering Drug Market Forecast to 2027

Get Complete Report @ https://www.reportsandmarkets.com/sample-request/global-genetic-engineering-drug-market-report-2020-by-key-players-types-applications-countries-market-size-forecast-to-2026-based-on-2020-covid-19-worldwide-spread?utm_source=themarketfeed&utm_medium=24

About Us:

Reports And Markets is part of the Algoro Research Consultants Pvt. Ltd. and offers premium progressive statistical surveying, market research reports, analysis & forecast data for industries and governments around the globe. Are you mastering your market? Do you know what the market potential is for your product, who the market players are and what the growth forecast is? We offer standard global, regional or country specific market research studies for almost every market you can imagine.

Contact Us:

Sanjay Jain

Manager Partner Relations & International Marketing

http://www.reportsandmarkets.com

Ph: +1-352-353-0818 (US)

More:
Analysis of Genetic Engineering Drug Market after Effect of Covid-19 on all the Industries around the world - The Market Feed

Read More...

Tanya Siddiqi, MD, Discusses the Promise of Reduced Toxicity With Liso-Cel – AJMC.com Managed Markets Network

Wednesday, November 25th, 2020

In addition, liso-cels distinct manufacturing process creates a defined composition of CD8+ and CD4+ T-cells, which may reduce product variability; however, the manufacturer states, the clinical significance of defined composition is unknown.

For insights on what the arrival of liso-cel could mean in the treatment landscape, The American Journal of Managed Care (AJMC) turned to Tanya Siddiqi, MD, director of the Chronic Lymphocytic Leukemia Program at Toni Stephenson Lymphoma Center and associate clinical professor, Department of Hematology & Hematopoietic Cell Transplantation at City of Hope, Duarte, California.

Siddiqi was an investigator for ZUMA-1, which led to the approval of axicabtagene ciloleucel(axi-cel), sold as Yescarta, and the TRANSCEND NHL trial for liso-cel.She has addressed major scientific meetings on the challenge of managing the toxicities associated with CAR T-cell therapyand discussed how liso-cel represents a step forward over its predecessors.

This interview, conducted before the BMS announcement, has been edited for clarity and length.

AJMC: We're anticipating an FDA decision on liso-cel before the end of the year. Can you discuss the need of the patients who would take this new CAR T-cell therapy?

Siddiqi: So, for CAR T-cell therapy targeting CD19-positive B-cell lymphomasspecifically aggressive B-cell lymphomaswe already have a couple of FDA-approved options. The question is: what is liso-cel? How is it different? Why would people pick this over other things? In the trials that we've conducted, we found that liso-cel seems to have lesser toxicity in terms of the specific CAR T-cell side effects of cytokine release syndrome or hyper-inflammation, as well as neurotoxicity. We've just seen fewer severe adverse events so much so that at some [cancer] centers across the country, weve been able to give liso-cel CAR T-cells to patients in the clinic or outpatient setting rather than having to admit them to the hospital , depending on the patient's situation.

Those are the strengths of liso-celless toxicity and thus, a better chance of giving it in the outpatient setting with hospital admission available to anyone who develops a fever or other side effects. This means fewer days of inpatient hospitalization for these patients, so it may be less costly overall. I dont think the efficacy is necessarily differentmeaning that it seems to work as well as the other FDA-approved products already commercially available. But for the reasons that I've listed, I think it might be a very good option for older patients, maybe patients who are bit more frail, or younger patients who just don't want to be admitted to the hospitalthey just want to try to do it in the outpatient setting.

AJMC:You touched on this already, but can you discuss how Iiso-cel differs from earlier CAR T-cell therapiesboth in the way it's manufactured and how it works, and what that reduced variability means for patients?

Siddiqi: Liso-celis manufactured in a way that it gives very precise, equal numbers of CAR cells that are labeled CD4 and CD8, in a 1:1 ratio. All of us have T cells to fight infections with, and these T cells are what we take from patients. Then, we modify them in the lab by genetic engineering in order to produce CAR T-cells so that now instead of looking for infections, these CAR T cells are going to look for B-cell lymphoma cells and fight lymphoma.

The other products are given back to patients as a bag of CAR T cells mixed with potentially varying ratios of different types of T cellsCD4+, CD8+, etc. With liso-cel the manufacturing process actually separates out the CD4+ and CD8+ types of T cells first, and then manufactures CAR-T cells out of them separately. So, when we give the cells back to patients, we give it in a 1:1 ratio of CD4+ and CD8+ cells. We know exactly how many CD4+ and how many CD8+ T-cells these patients receive. And the thought is, the researchers and the drug manufacturer feel that this helps to have an expectation of what expansion you will have of these cells in the body.

Therefore, we potentially have an idea of what type of side effects or how severe the side effects might be. It may limit some of those side effects, or at least make them a little bit more predictable or controlled.

AJMC:Thats a great way to shift to your own work on length of stay due to CRS. What do we know about the key variables in determining whether a patient will experience a side effect that requires an extended stay in the hospital, and can more be done to avoid lengthy hospital stays?

Siddiqi: That's a very important question. Because lengthy hospital stays, especially in the [intensive care unit], really adds to the bill and the financial burden of these treatments. We know that people who have a big burden of disease going into CAR T-cell therapy, meaning they have a lot of lymphoma in their bodies, they tend to be at higher risk for more side effects like cytokine release syndrome and neurotoxicity. Probably because there's so much inflammation thats generated while these CAR T-cells are trying to fight the lymphoma. What we know is that people who come to us for CAR T-cells with lesser disease might have fewer side effects potentially and a better overall outcome.

So, we always try to advise our referring physicians, and educate patients, at conferences, to try to send these patients to us before they are at the end of the linebefore theyve tried and failed everything, and now theres just rampant disease. [At that point,] you're dealing with a situation where the patient is going to have more side effects and will not be able to tolerate the CAR T cells as well. Instead, if they fail two lines of therapy and the disease is still small in volume, but it's starting to progress, we can treat them more effectively with CAR T cells and with fewer side effects potentially.

AJMC:That brings up the next topicthere have been discussions that CAR T-cell therapy should be given earlier during treatment. As you said, if its not given as the last resort, patients might respond better. Where do you see those patterns heading in the future? And would that be truer for some patients than others?

Siddiqi: With aggressive diffuse large B-cell lymphoma, there's about a 60% to 70% chance of curing that in the frontline setting. With the line of chemo-immunotherapy, you can cure 60% to 70% of patients so that it never comes back. But the rest of themwhen it just relentlessly keeps coming back and it's hard to cureonce those patients relapse they tend to keep relapsing. So, our mainstay in the relapse setting is to give them salvage chemo-immunotherapy, collect stem cells, and take them to autologous stem cell transplantation if they've achieved a remission with the salvage chemotherapy. If they haven't achieved remission with that salvage chemotherapy, then they should go on to CAR T cells directly instead of waiting and trying more and more chemotherapies. After failing second line therapy, the FDA approval allows us to try CAR T cells. There are studies that are now ongoing that are comparing CAR T cells to autologous stem cell transplantation after failing first line therapy. So, once patients relapse the first time, these studies are comparing giving them salvage chemotherapy and transplant, versus taking them straight to CAR T cells. Once we have that data, we'll know better whether we can do CAR T cells even earlier in the lines of therapy.

AJMC:Weve been hearing for some time more about allogeneic or off-the-shelf therapies. What progress has been made on in that technology?

Siddiqi: I'm not too involved with these trials myself, but I know we have trials at City of Hope that are ongoing with off-the-shelf therapy. What I can tell you is that it's very attractive in that you don't have to collect T cells from patients, keeping their lymphoma under control while these T cells then go to the lab and CAR T cells are manufactured in 2-4 weeks depending on which product it is, and then they come back and get infused. With off-the-shelf products, you can just grab it and go as soon as you know the patient needs it.

The initial concerns were because the cells are not from the patient themselvesthe cells are from donors. Across the board there might be concerns of rejection and what's called graft-versus-host disease and things like that. So far, I don't think in the trial they've come up with such side effects to any significant extent. What I don't know is whether they've come up with a good result yet. Is it looking like the benefits of taking off-the-shelf CAR T cells are as good as autologous CAR T cells, meaning patients own CAR T cells? I think that remains to be seen. If they are, then it's much easier to use off-the-shelf CAR T cells. Maybe at the American Society of Hematology annual meeting in December we will see more data.

AJMC: How is COVID-19 affecting the clinical trial process for CAR T cell therapy?

Siddiqi: When the pandemic kind of started surging early in the year, and when we went into lockdown mode from March onward, we and other centers across the country took a lot of steps to slow down our clinical trial enrollment. Our staff started staggering who would come into work which day of the week and who could work from home. For those in the clinical trials office, there was a lot of need for safety and logistical reasons for us to slow down enrollment onto clinical trials. And there were other questions, such as, who would take care of patients at home once we discharged them after they received CAR T cells? What if their caregivers were exposed and got sick? Logistically, it was difficult to safely do many trials, especially CAR T cell trials and transplants earlier in the year.

Since the end of summer, we ramped up again, and we're now doing as many transplants and CAR T cells as we were probably doing last year. So, we're pretty much all the way up again, but I don't know how this winter will go because COVID is surging again.

As far as just CAR T cells themselves, we had to also think about travel for the cells because Juno Therapeutics is in Seattle, and Kite Pharma is here in Los Angeles, but Novartis is elsewhere. Just the movement of these cells was a concern because of travel restrictions during COVID-19. But as far as I know, the companies did not lose that commitmentthey told us, well get the cells to you, we will find a way to do it. I don't think any patients went without cells who should have received cells.

AJMC: What advice do you have for community oncologists interested in CAR T cell therapy for their patients?

Siddiqi: Theres good news for community physicians. We may soon have a therapeutic option of liso-cel CAR T cell therapy which seems to have lesser side effects. So, this might make things cheaper due to less need for hospitalization potentially without compromising the chance of cure. We want these patients to try CAR T cell therapy sooner rather than later in their relapses. You can always try multiple cycles of chemotherapy at some other time if you relapse again, but if you can be cured with CAR T cells such that you never need treatment again, why not try that first? For the patients who respond well to CAR T cells, the treatment works extremely well. And that's the Holy Grail to find the cure for all patients.

Maybe only half the patients will currently have a very good and durable responsebut those patients may never relapse again. So why not try it sooner rather than later? And of course, we're always looking for trial patients, because now we need to improve these results even further. So, community oncologists should also refer for trials, because I think that its very important to have trials with different combinationsCAR T cells plus another immunotherapy agentto see if we can improve upon the response rates even more.

Excerpt from:
Tanya Siddiqi, MD, Discusses the Promise of Reduced Toxicity With Liso-Cel - AJMC.com Managed Markets Network

Read More...

November: purespring-spinout | News and features – University of Bristol

Wednesday, November 25th, 2020

The University of Bristol has secured a 45million deal to advance its groundbreaking gene therapy technology for chronic kidney diseases. The commitment, made by healthcare company Syncona Ltd to Bristol spin-out Purespring Therapeutics, aims to address a global unmet need for renal conditions in one of the largest single investments made to a new UK university biotech company.

Over two million people worldwide currently receive treatment with dialysis or a kidney transplant to stay alive, yet this number may only represent ten per cent of people who need treatment to live. Until now, advances in the treatment of kidney diseases have lagged significantly behind other diseases such as cancer and heart disease.

This investment marks a significant step forward in the innovation of long overdue new therapies for kidney diseases, which have historically been disproportionately expensive to treat.

Gene therapy a technique which replaces or alters a faulty gene or adds a new gene to treat or prevent disease instead of using drugs or surgery, offers a potential new type of treatment for renal conditions.

Synconas 45 million investment to Purespring will be used to progress to the clinic gene therapy research pioneered by Professor Moin Saleem, Professor of Paediatric Renal Medicine at Bristol Medical School and Dr Gavin Welsh, Associate Professor of Renal Medicine. Professor Saleems work is the only study to date (as yet to be published) to have successfully demonstrated disease rescue in animal models using this technique for a kidney disorder called nephrotic syndrome.

Purespring will develop gene therapies directly targeting the glomerulus in the kidney, which could see treatment progress from lab to patients in three or four years. The company will also have access to an in-vivo functional screening platform, FunSel, to screen for cell-specific protective factors delivered via gene therapy, that could have applications across several kidney diseases. FunSel has been developed by Professor Mauro Giacca at Kings College London.

Professor John Iredale, Pro Vice-Chancellor for Health and Life Sciences at the University of Bristol, said: "Synconas expertise in gene therapy and landmark investment in Bristol spin-out Purespring marks an exciting new venture to progress Bristols breakthrough discoveries in the treatment of kidney diseases. Puresprings gene therapy platform has enormous potential to improve outcomes in patients with kidney diseases and is a major leap forward for renal therapeutics globally.

Professor Moin Saleem said: This is an incredible opportunity to develop transformational treatments for kidney disease. Gene therapy has come of age in certain areas, but a major challenge in complex solid organs is to precisely target the genetic material to the correct cell type. Using accumulated expertise in the Bristol Renal research group we have solved this crucial hurdle, putting us in a position to deliver curative gene therapy to patients with chronic and intractable kidney diseases. Syncona have had the foresight to see this potential, and partnering with their world-leading gene therapy experience is the best possible springboard to successfully bring this technology to patients.

Chris Hollowood, CIO, Syncona Investment Management Limited, said: Purespring is the sixth gene therapy company to be founded by Syncona and clearly demonstrates our proprietary company creation approach. In Moin and his team, we are collaborating with clinical and scientific leaders and working in target tissue amenable to gene therapy, whilst the collaboration with Mauro provides a path for gene therapy to fulfil its promise in highly prevalent chronic degenerative conditions. We look forward to building a world class company around this innovative science, in order to develop therapies with the potential to deliver dramatic impact for patients. Purespring is an exciting addition to our gene therapy platform, where we are strategically positioned with significant expertise in building fully integrated platform companies.

AboutSyncona

Syncona (LON: SYNC) is a healthcare company focused on founding, building and funding a portfolio of global leaders in life science. Our purpose is to invest to extend and enhance human life. We do this by founding and building companies to deliver transformational treatments to patients in areas of high unmet need.

Our strategy is to found, build and fund companies around exceptional science to create a dynamic portfolio of 15-20 globally leading healthcare businesses for the benefit of all our stakeholders. We focus on developing treatments for patients by working in close partnership with world-class academic founders and management teams. Our strategic balance sheet underpins our strategy enabling us to take a long-term view as we look to improve the lives of patients with no or few treatment options, build sustainable life science companies and deliver strong risk-adjusted returns to shareholders.

About ICGEB and FunSel

Established in 1983 as a special project of UNIDO, the International Centre for Genetic Engineering and Biotechnology - ICGEB is an independent intergovernmental organisation since 1994 with HQ in Trieste (Italy) and with additional laboratories in New Delhi (India) and Cape Town (South Africa). As of today, it counts 65 Member States and 20 signatory countries. The ICGEB is a not for profit IGO any revenues generated are re-invested in research and in the funding programmes for capacity building in its Member States. The Vision of the ICGEB is to be the worlds leading intergovernmental Organisation for research, training and technology transfer in the field of Life Sciences and Biotechnology. Its Mission is to combine scientific research with capacity enhancement, thereby promoting sustainable global development (www.icgeb.org).

FunSel is an in-vivo functional screening platform. It was developed at ICGEB by Professor Giacca and his team while he served as the Director-General of the organisation until 2019. He continues to head the Molecular Medicine laboratory at ICGEB Trieste, Italy.

See more here:
November: purespring-spinout | News and features - University of Bristol

Read More...

Crispr And Crispr-Associated (Cas) Genes Market trends, Forecast Analysis, Key segmentation by type and application to 2026 – Cheshire Media

Wednesday, November 25th, 2020

Global Crispr And Crispr-Associated (Cas) Genes Market report offers the latest industry trends, technological innovations and forecast market data. In-depth view or analysis of Crispr And Crispr-Associated (Cas) Genes industry based on market size, Crispr And Crispr-Associated (Cas) Genes growth, development plans, and opportunities is offered by this report. The comprehensive market forecast data, SWOT analysis, Crispr And Crispr-Associated (Cas) Genes barriers, and feasibility study are the vital aspects analyzed in this report.

The up-to-date, comprehensive analysis, industry development curve, end clients will drive the income and benefit. Crispr And Crispr-Associated (Cas) Genes report review the present condition with the business to probe/explore the future development openings and risk factors. Crispr And Crispr-Associated (Cas) Genes report goes for giving a 360-degree advertise situation. Initially, the report offers Crispr And Crispr-Associated (Cas) Genes introduction, fundamental overview, objectives, market definition, market size estimation, market scope, concentration and maturity analysis is conducted to understand development opportunities

Download Free Sample Pdf Report @ https://www.globalmarketers.biz/report/life-sciences/global-crispr-and-crispr-associated-(cas)-genes-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/131472#request_sample

List Of Key Players

Caribou BiosciencesAddgeneCRISPR THERAPEUTICSMerck KGaAMirus Bio LLCEditas MedicineTakara Bio USAThermo Fisher ScientificHorizon Discovery GroupIntellia TherapeuticsGE Healthcare Dharmacon

Crispr And Crispr-Associated (Cas) Genes Market Segmentation: By Types

Genome EditingGenetic engineeringgRNA Database/Gene LibrarCRISPR PlasmidHuman Stem CellsGenetically Modified Organisms/CropsCell Line Engineering

Crispr And Crispr-Associated (Cas) Genes Market Segmentation: By Applications

Biotechnology CompaniesPharmaceutical CompaniesAcademic InstitutesResearch and Development Institutes

Ask for Discount @:

https://www.globalmarketers.biz/discount_inquiry/discount/131472

Crispr And Crispr-Associated (Cas) Genes study helps the readers in comprehension the growth factors, industry plans, policies and development strategies implemented by leading Crispr And Crispr-Associated (Cas) Genes players. Every one of the wordings of this market are covered in the report. The report examinations statistical data points to derive the worldwide Crispr And Crispr-Associated (Cas) Genes income. A detailed explanation of Crispr And Crispr-Associated (Cas) Genes market values, potential consumers and the future scope are presented in this report.

Reasons To Buy What was the size of the Global Crispr And Crispr-Associated (Cas) Genes market by value in 2015-2019 and What will be in 2026? What factors are affecting the strength of competition in the Global Crispr And Crispr-Associated (Cas) Genes market? How has the market performed over the last Six years? What are the main segments that make up the global Crispr And Crispr-Associated (Cas) Genes market?

InquiryHere For More Details https://www.globalmarketers.biz/report/life-sciences/global-crispr-and-crispr-associated-(cas)-genes-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/131472#inquiry_before_buying

Some of the Points cover in Global Crispr And Crispr-Associated (Cas) Genes Market Research Report is:Chapter 1: Describe Crispr And Crispr-Associated (Cas) Genes Industry

Chapter 2: To analyze the top manufacturers of Crispr And Crispr-Associated (Cas) Genes Industry in 2017 and 2018

Chapter 3: Competitive analysis among the top manufacturers in 2017 and 2018

Chapter 4: Global Crispr And Crispr-Associated (Cas) Genes Market by regions from 2015 to 2019

Chapter 5, 6, 7 and 8: Global Crispr And Crispr-Associated (Cas) Genes Market by key countries in these regions

Chapter 9 and 10: Global Crispr And Crispr-Associated (Cas) Genes Market by type and application from 2015 to 2019

Chapter 11:Crispr And Crispr-Associated (Cas) Genes Industry Market forecast from 2019 to 2026

Chapter 12 and 13:Crispr And Crispr-Associated (Cas) Genes Industry

Browse Detailed Table Of [emailprotected] https://www.globalmarketers.biz/report/life-sciences/global-crispr-and-crispr-associated-(cas)-genes-market-2019-by-manufacturers,-regions,-type-and-application,-forecast-to-2024/131472#table_of_contents

Contact Us:

Company Name: Globalmarketers.biz

Contact Person: Alex White

Email: [emailprotected]

Phone: +1(617)2752538

Read more from the original source:
Crispr And Crispr-Associated (Cas) Genes Market trends, Forecast Analysis, Key segmentation by type and application to 2026 - Cheshire Media

Read More...

Aridis Pharmaceuticals to Host Fireside Chat with Analysts to Discuss 2021 Outlook for its Lead Programs and Novel mAb Discovery Platform on December…

Wednesday, November 25th, 2020

SAN JOSE, Calif., Nov. 24, 2020 /PRNewswire/ -- Aridis Pharmaceuticals, Inc. (Nasdaq: ARDS), a biopharmaceutical company focused on the discovery and development of novel anti-infective therapies to treat life-threatening infections, is pleased to announce a 75 minute "Fireside Chat Forum," with its five covering analysts will be held on December 4th, 2020 at 11:00AM EST. This virtual event is intended to provide a 2021 preview and plans for the Company's lead clinical programs, COVID-19 mAb programs, and PEX, its novel antibody discovery platform technology.

This uniquely formatted event will feature all of the Company's covering analysts, Louise Chen (Cantor Fitzgerald), Vernon Bernardino (H.C. Wainwright), Jason McCarthy (Maxim Group), Jonathan Aschoff (Roth Capital), and Carl Byrnes (Northland Securities) who will lead topic specific discussions with management to preview the year ahead (2021) for the following assets:

"It is a pleasure to host this forum as it will offer efficient, yet comprehensive perspectives from leading Wall Street analysts on our programs and cutting-edge technology platform, especially in light of the current pandemic and on-going challenges facing the medical and science communities around emerging life-threatening infections," commented Vu Truong, Ph.D., Chief Executive Officer of Aridis Pharmaceuticals.

Additional details and registration can be accessed with this link or by visiting Aridis' website, https://investors.aridispharma.com/events.

About Aridis Pharmaceuticals, Inc. Aridis Pharmaceuticals, Inc. discovers and develops anti-infectives to be used as add-on treatments to standard-of-care antibiotics. The Company is utilizing its proprietary PEX and MabIgX technology platforms to rapidly identify rare, potent antibody-producing B-cells from patients who have successfully overcome an infection, and to rapidly manufacture monoclonal antibody (mAbs) for therapeutic treatment of critical infections. These mAbs are already of human origin and functionally optimized for high potency by the donor's immune system; hence, they technically do not require genetic engineering or further optimization to achieve full functionality.

The Company has generated multiple clinical stage mAbs targeting bacteria that cause life-threatening infections such as ventilator associated pneumonia (VAP) and hospital acquired pneumonia (HAP), in addition to preclinical stage antiviral mAbs. The use of mAbs as anti-infective treatments represents an innovative therapeutic approach that harnesses the human immune system to fight infections and is designed to overcome the deficiencies associated with the current standard of care which is broad spectrum antibiotics. Such deficiencies include, but are not limited to, increasing drug resistance, short duration of efficacy, disruption of the normal flora of the human microbiome and lack of differentiation among current treatments. The mAb portfolio is complemented by a non-antibiotic novel mechanism small molecule anti-infective candidate being developed to treat lung infections in cystic fibrosis patients. The Company's pipeline is highlighted below:

Aridis' Pipeline AR-301 (VAP). AR-301 is a fully human IgG1 mAb currently in Phase 3 clinical development targeting gram-positive Staphylococcus aureus (S. aureus) alpha-toxin in VAP patients.

AR-101 (HAP). AR-101 is a fully human immunoglobulin M, or IgM, mAb in Phase 2 clinical development targeting Pseudomonas aeruginosa (P. aeruginosa) liposaccharides serotype O11, which accounts for approximately 22% of all P. aeruginosa hospital acquired pneumonia cases worldwide.

AR-501 (cystic fibrosis). AR-501 is an inhaled formulation of gallium citrate with broad-spectrum anti-infective activity being developed to treat chronic lung infections in cystic fibrosis patients. This program is currently in a Phase 1/2a clinical study in healthy volunteers and CF patients.

AR-401 (blood stream infections). AR-401 is a fully human mAb preclinical program aimed at treating infections caused by gram-negative Acinetobacter baumannii.

AR-701 (COVID-19). AR-701 is a cocktail of fully human mAbs discovered from convalescent COVID-19 patients that are directed at multiple envelope proteins of the SARS-CoV-2 virus.

AR-711 (COVID-19). AR-711 is an in-licensed mAb that is directed against the receptor binding domain of the SARS-CoV-2 virus. The agent has the potential to be delivered both intravenously and by inhalation using a nebulizer.

AR-201 (RSV infection). AR-201 is a fully human IgG1 mAb out-licensed preclinical program aimed at neutralizing diverse clinical isolates of respiratory syncytial virus (RSV).

For additional information on Aridis Pharmaceuticals, please visit https://aridispharma.com/.

Forward-Looking Statements Certain statements in this press release are forward-looking statements that involve a number of risks and uncertainties. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern Aridis' expectations, strategy, plans or intentions. These forward-looking statements are based on Aridis' current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. These factors include, but are not limited to, the need for additional financing, the timing of regulatory submissions, Aridis' ability to obtain and maintain regulatory approval of its existing product candidates and any other product candidates it may develop, approvals for clinical trials may be delayed or withheld by regulatory agencies, risks relating to the timing and costs of clinical trials, risks associated with obtaining funding from third parties, management and employee operations and execution risks, loss of key personnel, competition, risks related to market acceptance of products, intellectual property risks, risks related to business interruptions, including the outbreak of COVID-19 coronavirus, which could seriously harm our financial condition and increase our costs and expenses, risks associated with the uncertainty of future financial results, Aridis' ability to attract collaborators and partners and risks associated with Aridis' reliance on third party organizations. While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Actual results could differ materially from those described or implied by such forward-looking statements as a result of various important factors, including, without limitation, market conditions and the factors described under the caption "Risk Factors" in Aridis' 10-K for the year ended December 31, 2019 and Aridis' other filings made with the Securities and Exchange Commission. Forward-looking statements included herein are made as of the date hereof, and Aridis does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.

Contact:

Investor RelationsJason WongBlueprint Life Science Groupjwong@bplifescience.com(415) 375-3340 Ext. 4

View original content to download multimedia:http://www.prnewswire.com/news-releases/aridis-pharmaceuticals-to-host-fireside-chat-with-analysts-to-discuss-2021-outlook-for-its-lead-programs-and-novel-mab-discovery-platform-on-december-4th-2020-301179175.html

SOURCE Aridis Pharmaceuticals, Inc.

Company Codes: NASDAQ-NMS:ARDS

Read more:
Aridis Pharmaceuticals to Host Fireside Chat with Analysts to Discuss 2021 Outlook for its Lead Programs and Novel mAb Discovery Platform on December...

Read More...

Lesaffre and Recombia Biosciences to advance innovative gene editing technology through a strategic partnership – PRNewswire

Saturday, October 31st, 2020

A strong commitment to innovationWith its partnership with Recombia, Lesaffre is investing in major pioneering technology. The ability to generate thousands of yeast strains in parallel, combined with laboratory automation, is expected to exponentially accelerate development of projects in the areas of health, the environment, and energy. The partnership also signifies Lesaffre's entry into the world of Synthetic Biology, considered to be the major biotechnological opportunity of this decade.

"This kind of partnership exemplifies an innovative way that industry can support and foster progress in Biotechnology. Through collaboration with scientists and entrepreneurs, we will be able to find new solutions, which will be beneficial for the future, especially in health or in environment protection," says Antoine Baule, Chief Executive Officer of Lesaffre.

An exclusive technologyRecombia Biosciences was founded by three Stanford University researchers in 2019 as a spin-off from the prestigious Stanford Genome Technology Center (SGTC).Recombia'stechnologies are based upon techniques that increase the efficiency of genome editing and enable engineering of yeast at very high throughput. The strategic collaboration with Lesaffre aims to advance Recombia's proprietary gene editing technologies to identify new yeast strains, discover novel yeast physiology of industrial relevance and optimize the production of biosourced ingredients and biofuels.

"We are excited to be working with Lesaffre on moving our gene editing programs forward," says Dr. Justin Smith, CEO of Recombia. "We see tremendous potential to leverage our expertise in genome editing and synthetic biology to develop new and innovative fermentation solutions and products."

Recombia is exclusively licensing four genome engineering technologies from Stanford University for their work.

"While precision genome editing has certainly advanced recently, there are still challenges, especially in making many genetic changes in parallel," said Dr.Bob St.Onge, COO and co-founder of Recombia Biosciences. "Recombia's technologies enable industrial yeast strain engineering by dramatically increasing the efficiency of high-throughput genome editing."

St.Onge and Smith co-founded the company with Professor Lars Steinmetz. The team has had a long working relationship at the SGTC.

"I am very excited to see the technologies we developed in academia applied in the industrial sector," said Steinmetz. "The Genome Technology Center has a long history of genomics technology development. I'm confident Recombia will continue in the tradition of the other successful companies that have spun out of the SGTC."

"The technology has broad utility and can be readily applied also to the development of non-genetically modified organisms,"says Carmen Arruda, Lesaffre R&I Manager. "With Recombia, Lesaffre can now explore a larger space of metabolic engineering hypotheses, develop prototype organisms at a faster pace, accelerate the design of appropriate selections and screenings of strains generated by classical breeding methods. We are excited to see what the future holds."

Working together to better nourish and protect the planetAs a global key player in the field of fermentation,Lesaffre is committed to continuing its investments in research and development to contribute to a safer, healthier and more natural world by developing the potential of micro-organisms, such as yeasts or beneficial bacteria.

More information about Recombia Biosciences at http://www.recombia.com

More information about Lesaffre at http://www.lesaffre.com

SOURCE Recombia Biosciences

Home

Read more:
Lesaffre and Recombia Biosciences to advance innovative gene editing technology through a strategic partnership - PRNewswire

Read More...

Integrity and Trust | Harvard Medical School – Harvard Medical School

Saturday, October 31st, 2020

Leaders from across academia, government and industry gathered to discuss regulatory science at the 2020 Global Conference on Regulatory Science. Top row, left to right: Peter Sorger, Amy Abernathy, George Daley, Norman Sharpless. Bottom row, left to right: Adam Palmer, Helga Gadarsdottir, Peter Mol, Steve Goodman.

Speakers and panelists from across academia, government and industry convened to discuss the future of the evaluation and regulation of new medicines at the first annual Global Conference on Regulatory Science, held virtually on Oct. 20 and 21.

While machine learning and data science were the conference themes, fundamental issues of integrity, transparency and patient trust were a refrain.

Get more HMS news here

The importance of these underlying issues has been starkly illuminated by the challenges posed by the COVID-19 pandemic, said Margaret Hamburg, former commissioner of the FDA and one of the events keynote speakers.

Even with all the best science, we can't generate the change we hope for if people don't trust it. Even a safe and effective vaccine won't help control the COVID-19 pandemic if people won't take it, said Hamburg.

For me, and I suspect or most of you, this is just enormously worrisome,"she added. "It's a powerful reminder that integrity and the trust it generates is such an essential foundation of everything else.

Scientific discoveries and technologies with the potential to transform human health emerge almost daily, and regulatory agencies like the FDA and its peers around the world have faced mounting challenges as they strive to keep up with the accelerating pace of innovationchallenges that have been amplified by the urgent need for therapeutics and vaccines for COVID-19.

Building trust among patients, balancing careful testing with timely approvals for potentially life-saving medicines, and other key topics were addressed over the course of the two-day conference, which was hosted by the Harvard-MIT Center for Regulatory Science (CRS), a partnership between Harvard University, MIT and the FDA that aims to further develop and improve the science of how drugs and other products are evaluated and brought to market.

Regulatory science is an increasingly compelling opportunity for fundamental innovation and real-world impact in creating safe and effective medicines, diagnostics and devices, said Peter Sorger, the Otto Krayer Professor of Systems Pharmacology at HMS.

Our goal is to try and improve these processes, make them more efficient, and critically, bring needed innovation to unmet medical needs, said Sorger, who co-directs the CRS with Florence Bourgeois, HMS associate professor of pediatrics at Boston Childrens Hospital, and Laura Maliszewski, executive director of the Harvard Program in Therapeutic Science and the Laboratory of Systems Pharmacology.

More than 650 attendees from around the world joined in the virtual discussions, which centered on the theme of how machine learning, data science and new technologiesincluding telemedicine and wearable devicesare changing drug development, clinical trials, medical care and more.

Speakers and panelists included Norman Sharpless, director of the National Cancer Institute; George Q. Daley, dean of HMS; Amy Abernathy, principle deputy commissioner of the FDA; and a broad range of leaders from academia, hospitals, government and industry.

The process of regulating new medicines and biotechnologies begins with scientists themselves, noted Daley.

Scientists bear the responsibility to participate in a shared governance model that invites transparent and independent oversight, he said, highlighting the Asilomar conference in 1975, when an international group of scientists came together to create voluntary guidelines for the manipulation of DNA, then a novel technology.

This established a precedent for self-regulation by scientists, which then informed subsequent regulation by government agencies.

The need for the scientific community to engage in self-governance has only increased in urgency, with the remarkably rapid emergence of CRISPR gene-editing approaches that can make permanent, heritable changes to an individuals DNA. At a meeting in 2015, Daley joined a cohort of scientists, including Jennifer Doudna, now a Nobel laureate, to strongly discourage germline genome editing.

We knew that this would have to be a prohibition that would be practiced by scientists and clinicians themselves, because the knowledge was emerging so rapidly it wasn't clear that the regulators were going to be ready to catch up, said Daley.

But in 2018, a rogue scientist illicitly edited the genomes of two embryos that were carried to term in China, sparking international controversy. If there is ever to be a possible safe and ethical path forward for emerging technologies such as germline editing, it must be paved by the open cooperation and collaboration of scientists, regulators, and importantly, the public, Daley said.

The payoff for this kind of cooperation can be enormous, and perhaps the best examples can be found in recent successes in the development and approval of new cancer medicines, said Sharpless.

I predict that 2020 will be the best year thus far for cancer drug approvals, said Sharpless. That progress has occurred during a time when the FDA has been besieged by a global pandemic.

A historic surge of new cancer medicines has entered the U.S. market in recent years, Sharpless added, a windfall that stems from decades of productive research on cancer biology and therapeutics.

An improved scientific understanding of cancer has led to the development of new medicines that have prompted new approaches to regulation by the FDA. Some cancer drugs demonstrate such efficacy in small-scale clinical trials, he noted, that it can become essentially unethical to withhold them while waiting for large phase III trials to finish.

This has been a change for the regulatory thinking of the FDA, and I would argue has been a change for the good of the patients, Sharpless said. It has made agents available to patients at a sooner date and led the pharmaceutical industry to develop cancer drugs knowing that they can get approval at an earlier stage.

The recent successes of cancer drugs are to be celebrated, but the question of how to replicate these successes in other diseases, such as neurodegeneration and other intractable diseases, remains a pressing concern, he said.

This question was discussed by conference speakers and panelists in many different contexts, particularly the potential of emerging technologies to reshape how clinical trials are conducted in the future.

A wealth of new technologies, from telemedicine to wearable devices, are allowing physicians and scientists to engage with patients in unprecedented ways. This could have a transformative impact in medicine in many ways, including by augmenting clinical trials, speakers said.

Such technologies could enable more frequent physician-patient interaction and the continuous monitoring of real-world data and evidenceproviding far more information than the intermittent site visits that most current trials use to collect data.

In addition, new technologies could help reduce disparities in access to clinical trials, panelists said, and allow for vastly improved patient recruitment, which would help ensure that new medicines are being evaluated on patients who have the best chance of benefiting.

If this potential is to be realized, patients must have confidence that their privacy and data are protected, said conference speakers and panelists.

In many ways, trust in data security and privacy are as important as any innovations in technology itself, panelists noted. This is a key issue for new digital medicine technologies and approaches, they added, and thoughtful and transparent regulation are critical.

Conference speakers also addressed a wide and diverse range of other issues, including how new technologies, such as artificial intelligence and digital pathology, are transforming clinical care and how large data sources like electronic medical records are linked and mined for insights into improving health.

The rapid growth of these and many other new technologies in health care present myriad complex issues for those tasked with evaluation and regulation, speakers and panelists said. And in many cases, as with genetic engineering, decision-making will require societal discourse.

As such, neutral forums to consider and debate new innovations, policies and regulationsone of the key functions of the CRS and its annual conferenceplay an increasingly important role in moving the complex discipline of regulatory science forward.

Central to this process is the ability to effectively collaborate around stakeholders, across academia, industry and regulatory agencies, said Bourgeois.

This is where the center comes in, serving as a platform to foster interdisciplinary and multi-stakeholder conversation, she said.

The remarkable discoveries and the acceleration and advances we are seeing in our understanding of diseases and how to treat themthese will most benefit patients if we have an efficient, rigorous and adaptable approach to the evaluation of the many rapidly emerging biotechnologies, Bourgeois said.

Continue reading here:
Integrity and Trust | Harvard Medical School - Harvard Medical School

Read More...

Gene-edited crops and animals: Best-kept secrets in the fight against climate change – Genetic Literacy Project

Saturday, October 31st, 2020

Advances in gene editing over the past decade have given scientists new tools to tailor the biochemistry of nearly any living thing with great precision. Because the biosphereincluding trees, crops, livestock, and every other organismsis a major source and sink for greenhouse gases (GHGs), these tools have profound implications for climate change. Gene editing is unlocking new ways to enhance natural and agricultural carbon sinks, limit emissions from agriculture and other major GHG-emitting sectors, and improve biofuels. Congress should act now to open this new frontier for climate innovation.

Gene editing uses enzymesCRISPR Cas9 is the most well-knownto identify, remove, and replace segments of an organisms DNA, much like using a word processor to edit a document. These tools originated as defense mechanisms so that bacteria could remove foreign DNA inserted by predatory viruses. Researchers have adapted this cellular machinery to introduce beneficial traits into plants and animals. The techniques are new, but they build on nearly a half century of experience with conventional genetic engineering and hundreds of millions of years of evolution.

Zooming out from the microscopic level, gene editing offers novel solutions to a diverse set of emissions-related problems.

The Trillion Trees initiative recognizes plants unique ability: using photosynthesis to capture carbon. Yet the process is surprisingly inefficient.Scientistshave moved swiftly to use their new toolkit to try to improve it, and several breakthroughs have already been reported. Further progress might enableproductivity gainsof 50 percent in major crops, slashing emissions radically, raising output per acre, and bolstering farmers incomes.

The decomposition and transport of wasted food accounts for the single largest portion of agricultural GHG emissions. Companies are already selling gene-editedsoybean oilwith a longer shelf life andpotatoesthat resist bruising, both of which reduce waste.

Next-generation biofuels from switchgrass, which grows easily on otherwise non-arable land, could power sustainable, low-carbon transport. The hitch has been that this plants key ingredient, cellulose, is hard to break down. Gene editing may open up this abundant resource by optimizing microbes that can efficiently process cellulose, yielding low-cost biofuels and spurring rural development.

The worlds 1.4 billion cattle account for about6 percentof global agriculture GHG emissions, in large part because of methane in their burps. Some cattle emit far less methane than others because of specific microbial populations in their digestive tracts. Gene editing could allow this trait to spread across herds,reducing emissions.

Gene editings enormous promise for solving societal problems, including climate change, has been slowed by concerns that it is neither natural nor safe. These concerns are misplaced. Humans have used breeding to shape the genomes of crops and livestock since the dawn of agriculture. Our new gene editing toolkit has been used by nature for hundreds of millions of years. Most important, in eleven major studies over the past four decades, the U.S. National Academy of Sciences hasfoundno new hazards in gene edited or genetically engineered products. Other authoritative bodies around the world have drawn the same conclusion, which has been confirmed by vast experience.

The urgency of the climate challenge is becoming clearer with each passing season as severe storms, droughts, fires, and other disasters become more frequent at home and around the world. Congress should take action today to accelerate gene-edited climate solutions. First, legislators should eliminate regulatory burdens that disincentivize innovation in gene-edited technologies and contribute little to human or environmental safety. Current regulations on gene-edited products have addedtens of millions of dollarsand multiple years to their development without delivering commensurate benefits for health, safety, or the environment.

Second, Congress should create a new agency to support agricultural research into high-reward biological technologies including gene editing. The ARPA-Terra Act of 2019 (S.2732) introduced by Sen. Michael Bennet would do so, emulating the highly successful models of the Defense Advanced Research Projects Agency (DARPA) and the Advanced Research Projects Agency-Energy (ARPA-E).

Finally, Congress should encourage innovative farmers to adopt new gene-edited crops and livestock to demonstrate their value and speed wider deployment. Existing tax credits for carbon capture could be expanded as these nascent products come to market.

Although gene editing is less than a decade old, it is already abundantly clear that it will be a powerful tool to address climate change. The science is ready and waiting for Congressional action.

See more here:
Gene-edited crops and animals: Best-kept secrets in the fight against climate change - Genetic Literacy Project

Read More...

ETFs in Focus on Bayer’s Bet on Gene Therapy – Yahoo Finance

Saturday, October 31st, 2020

Merger and acquisition activities have heated up in recent months and the niche spaces are in the limelight. After the telemedicine industry, gene therapy stocks jumped on the bandwagon. Gene therapy is a technique that uses genes to treat or prevent disease.

German drugmaker Bayer has made a big bet on gene therapy by announcing the acquisition of U.S. biotech firm Asklepios BioPharmaceutical for as much as $4 billion. The proposed acquisition will provide Bayer access to the adeno-associated virus (AAV) gene therapy platform and a pipeline led by clinical-phase treatments for Parkinsons, Pompe disease and congestive heart failure. Notably, AAV therapies offer improved efficacy, immune response, and tissue and organ specificity.

Additionally, the transaction will complements Bayers 2019 acquisition of BlueRock Therapeutics and advances its efforts to create platforms with the potential to have an impact on multiple therapeutic areas (read: Genomics ETFs Surge on Nobel Prize for Gene-Editing Pioneers).

Under the terms of the deal, Bayer will pay an upfront consideration of $2 billion and potential success-based milestone payments of up to $ billion. About 75 % of the potential milestone-based contingent payments are expected to be due during the course of the next five years and the remaining amount thereafter.

The deal, pending regulatory approvals, is expected to close during the fourth quarter of 2020. Once the deal closes, Bayer will allow Asklepios, known as AskBio, to operate autonomously as part of a new cell and gene therapy unit in a bid to preserve its entrepreneurial culture. The cell and gene therapy unit will bundle Bayer's activities in this area moving forward in order to establish an innovation ecosystem for the participating partners, the German company said (see: all the Healthcare ETFs here).

The proposed deal will provide a boost to the gene therapy industry. Below, we have highlighted four ETFs that are expected to benefit from Bayers entrance into the gene therapy space:

ARK Genomic Revolution Multi-Sector ETF ARKG

This actively managed ETF is focused on companies that are likely to benefit from extending and enhancing the quality of human and other life by incorporating technological and scientific developments, and advancements in genomics into their business. With AUM of $2.9 billion, the fund holds 47 stocks in its basket and has 0.75% in expense ratio. It trades in an average daily volume of 978,000 shares (read: 4 Sector ETFs That Have Doubled This Year).

Invesco Dynamic Biotechnology & Genome ETF PBE

This fund follows the Dynamic Biotech & Genome Intellidex Index and provides exposure to companies engaged in the research, development, manufacture and marketing and distribution of various biotechnological products, services and processes and companies that benefit significantly from scientific and technological advances in biotechnology and genetic engineering and research. It holds 31 stocks in its basket and charges 57 bps in annual fees. The ETF has managed $229.9 million in its asset base while trades in a light volume of 6,000 shares per day. Expense ratio comes in at 0.57%. The product has a Zacks ETF Rank #3 (Hold) with a High risk outlook.

Global X Genomics & Biotechnology ETF GNOM

This product seeks to invest in companies that potentially stand to benefit from further advances in the field of genomic science, such as companies involved in gene editing, genomic sequencing, genetic medicine/therapy, computational genomics and biotechnology. It follows the Solactive Genomics Index, holding 40 stocks in its basket. This ETF has accumulated $68 million in its asset base and charges 50 bps in annual fees. It trades in average daily volume of 31,000 shares (read: Why You Should Invest in Genomics ETFs).

iShares Genomics Immunology and Healthcare ETF IDNA

This ETF provides access to companies at the forefront of genomics and immunology innovation by tracking the NYSE FactSet Global Genomics and Immuno Biopharma Index. Holding 46 stocks in its basket, the fund has gathered $166.2 million in AUM and trades in moderate average daily volume of 58,000 shares. It charges 47 bps in annual fees.

Story continues

Zacks free Fund Newsletter will brief you on top news and analysis, as well as top-performing ETFs, each week. Get it free >>

Want the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free reportInvesco Dynamic Biotechnology Genome ETF (PBE): ETF Research ReportsARK Genomic Revolution ETF (ARKG): ETF Research ReportsGlobal X Genomics Biotechnology ETF (GNOM): ETF Research ReportsiShares Genomics Immunology and Healthcare ETF (IDNA): ETF Research ReportsTo read this article on Zacks.com click here.Zacks Investment ResearchWant the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free report

Read the original here:
ETFs in Focus on Bayer's Bet on Gene Therapy - Yahoo Finance

Read More...

Lesaffre and Recombia Biosciences apply gene editing technology in fermented ingredients production – FoodIngredientsFirst

Saturday, October 31st, 2020

30 Oct 2020 --- French yeast manufacturer Lesaffre and Recombia Biosciences have partnered to advance a gene editing technology for the sustainable production of fermented ingredients.

Using Recombias proprietary gene editing technologies, the partnership aims to generate thousands of new yeast strains while optimizing the production of biosourced ingredients.

We see tremendous potential to leverage our expertise in genome editing and synthetic biology to develop new and innovative fermentation solutions and products, says Dr. Justin Smith, CEO of Recombia Biosciences.

Click to EnlargeThe partnership signals Lesaffres entry into the world of Synthetic Biology, which the company notes is considered to be a major biotechnological opportunity of this decade.Recombia Biosciences was founded by three Stanford University researchers in 2019 as a spin-off from the Stanford Genome Technology Center (SGTC), in the US.

Its technologies are based upon techniques that increase the efficiency of genome editing and enable engineering of yeast at very high throughput.

The technology has broad utility and can be readily applied also to the development of non-genetically modified organisms, adds Carmen Arruda, R&I manager at Lesaffre.

With Recombia, Lesaffre can now explore a larger space of metabolic engineering hypotheses, develop prototype organisms at a faster pace, accelerate the design of appropriate selections and screenings of strains generated by classical breeding methods. Were excited to see what the future holds.

Entry into synthetic biologyThe partnership signals Lesaffres entry into the world of Synthetic Biology, which the company notes is considered to be a major biotechnological opportunity of this decade.

This kind of partnership exemplifies an innovative way that industry can support and foster progress in Biotechnology, says Antoine Baule, CEO of Lesaffre.

Through collaborations with scientists and entrepreneurs, we will be able to find new solutions, which will be beneficial for the future, especially in health or in environment protection.

Recombia is exclusively licensing four genome engineering technologies from Stanford University for their work.

Bridging industry with academiaWhile precision genome editing has certainly advanced recently, there are still challenges, especially in making many genetic changes in parallel, notes Dr. Bob St.Onge, COO and co-founder of Recombia Biosciences.

Recombias technologies enable industrial yeast strain engineering by dramatically increasing the efficiency of high-throughput genome editing, he remarks.

Click to EnlargeWhile precision genome editing has certainly advanced recently, there are still challenges ahead.

St.Onge and Smith co-founded the company with Professor Lars Steinmetz. The team has had a significant working relationship at the Stanford Genome Technology Center (SGTC).

Im very excited to see the technologies we developed in academia applied in the industrial sector, comments Steinmetz.

The Genome Technology Center has a long history of genomics technology development. Im confident Recombia will continue in the tradition of the other successful companies that have spun out of the SGTC.

Unlocking the genome for new ingredientsGenomic research is widely applicable across food-tech applications. For instance, this type of analysis is employed to map the chemical fingerprint of chocolate, using the genes of the tree that cacao pods are harvested from.

Also in this space, seed breeding specialist Equinom is leveraging its advanced breeding techniques to promote agricultural biodiversity. The company upholds its pivotal position in inducing better crop resilience and increased yield.

Meanwhile, a genomic study comparing historic and modern wheat varieties recently revealed an increase in dietary fiber and a decrease in acrylamide, indicating that white bread is not as unhealthy as it has often been portrayed.

Edited by Benjamin Ferrer

To contact our editorial team please email us at editorial@cnsmedia.com

If you found this article valuable, you may wish to receive our newsletters. Subscribe now to receive the latest news directly into your inbox.

Go here to see the original:
Lesaffre and Recombia Biosciences apply gene editing technology in fermented ingredients production - FoodIngredientsFirst

Read More...

Sugar beet industry flips narrative on GMO crops – Idaho State Journal

Saturday, October 31st, 2020

It's only been a few years since U.S. sugar beet farmers faced a potential financial crisis due to negative public perceptions about food products derived from biotechnology.

Nowadays, however, the sugar beet industry is flipping the narrative, capitalizing on what was once its Achilles heel its universal adoption of GMO seed.

Since, 2009, the nation's sugar beet crop has been almost entirely planted in seed genetically modified to resist glyphosate herbicide, which is produced at Bayer's Soda Springs plant. Lately, to strike a chord with an increasingly environmentally conscious consumer base, the sugar beet industry has been touting how biotechnology has made its crop production system far more sustainable.

Story continues below video

Idaho is the No. 2 state in production of sugar beets by ton.

"We have lots of data," said Scott Herndon, vice president and general counsel with the American Sugarbeet Growers Association. "We submitted something to the National Academy of Sciences where we identified 25 environmental gains achieved through biotech seeds related to water, soil and air."

Herndon explained the gene added to confer glyphosate resistance to GMO beets is entirely removed in the processing of sugar. He referenced laboratory testing conducted by his industry proving finished sugar raised by American sugar beet farmers is identical to organic sugar and cane sugar in general.

Yet efforts to pass GMO labeling laws prior to 2016 in states including Vermont, Washington State, Oregon and California resulted in conventional cane sugar enjoying a whopping price advantage of roughly 7 cents over beet sugar, said Luther Markwart, executive vice president of American Sugarbeet Growers Association.

"That's huge," Markwart said.

Furthermore, the large Pennsylvania-based candy manufacturer Hershey Co. removed GMO beet sugar from many of its products in 2015 in favor of conventional cane sugar. In explaining the decision, Hershey affirmed GMO ingredients are safe but emphasized its commitment to openness and transparency.

"People care about the food they eat," Hershey posted on its website. "They want to know what's inside and they want to have choices so that snack options meet their expectations."

Rather than providing the public with transparency, Markwart believes mandatory labeling of beet sugar would be misleading, causing people to falsely believe beet sugar and cane sugar are somehow different.

Under the Obama Congress passed a preemptive law in 2016 exempting beet-derived sugar from state GMO labeling requirements. It took effect in December of 2018, though food companies are still allowed to voluntarily state that a product is derived from a bioengineered crop.

"Once you got the federal preemption, all of a sudden the beet and cane price came back together," Herndon said.

Labeling proponents, however, note that surveys consistently find consumers support GMO labeling by wide margins, believing people who are skeptical of a technology that is found in more than three-quarters of the processed foods in supermarkets should have the ability to avoid it.

"While many in the scientific community assert that GMO foods are not toxic and are safe, a significant number of scientists are sounding the alarm," Mark Fergusson, CEO of Down to Earth Organic & Natural, said in an essay posted on his organization's website. "They say genetic engineering poses risks that scientists simply do not know enough to identify."

Fergusson encouraged the public to choose foods with the organic seal, certifying that GMOs were not used in production.

GMO advocates argue that reputable scientific data evidencing health risks of GMO technology has yet to be produced.

The industry's comments to the National Academy of Sciences on Sept. 9, 2015, for example, cited several studies on the safety of GMO crops, including a 2011 summary report by the European Commission covering a decade of publicly funded research, 130 research projects and 500 research groups concluding "there is no scientific evidence of higher risks of GE crops for food and feed safety, or to the environment."

The environmental benefits of GMO crops, however, are well documented, Markwart said.

When beets were raised conventionally, Markwart said herbicides applied about four times per year to control weeds stymied crop development, essentially taking a month of growth off of the final yield. Glyphosate applications in GMO beets don't set development back whatsoever, enabling farmers to produce more with fewer farming inputs.

Furthermore, GMO beets don't require hand weeding and mechanical cultivation between rows, saving farmers on labor costs and avoiding soil disturbance, which dries out soil and releases greenhouse gases.

The sugar beet industry points to a 2002 study by the National Center for Food and Agriculture Policy evaluating eight of the most commonly used herbicides, finding glyphosate posed the least potential risk. Furthermore, glyphosate binds tightly to the soil and is less likely to contaminate groundwater, according to the industry's literature.

According to USDA data, sugar beet yields increased by 19% with glyphosate-resistant seed from 2008 through 2015 compared with the conventional average. The percentage of sugar in each beet also increased dramatically.

Brad Griff, executive director of the Idaho Sugarbeet Growers Association, said the Gem State's farmers have increased their yields by roughly 10 tons per acre on average since the implementation of GMO sugar beets.

"Before the GE sugar beet we never had reached 18% sugar. Now for three of the last six years we've been at or above 18% sugar," Griff added. "That's all been accomplished while reducing pesticide use by 85% and reducing fuel use by 60%."

In its Agriculture Innovation Agenda, USDA asked farmers of various commodities to plan strategies to increase their output by 40% while cutting their environmental impacts in half. The sugar beet industry submitted comments toward that effort focusing largely on achieving the goals through improved genetics.

Looking ahead, Markwart anticipates sugar beet seed engineered with multiple-trait tolerance to three herbicides glyphosate, dicamba and glufosinate should be released by 2026. He explained the new seed should help farmers avoid the onset of glyphosate-resistant weeds by enabling them to use multiple modes of action.

The industry also sees great promise in gene editing, which allows crop breeders to silence or amplify existing traits in a plant's genetics rather than introducing desirable foreign traits.

Herndon believes sustainability should be viewed as a "three-legged stool" factoring in social, economic and environmental costs. He said farmers are the lifeblood of rural economies and have a social contract to help keep their rural communities afloat. While it's important that they continually push the envelope to reduce their impacts on the environment, Herndon said farmers must also eke out a profit.

Markwart added, "We used to have hand labor. No one is going to go back and do that again. We have made major advances in efficiencies with this technology."

Excerpt from:
Sugar beet industry flips narrative on GMO crops - Idaho State Journal

Read More...

Polymerase Chain Reaction (PCR) Market expanding at a considerable CAGR from 2018 to 2026 – The Think Curiouser

Saturday, October 31st, 2020

Transparency Market Research (TMR)has published a new report titled,Polymerase Chain Reaction (PCR) Market: Global Industry Analysis, Size, Share, Growth, Trends, and Forecast, 20182026.According to the report, theglobal PCR marketis projected to reach over US$ 7.0 Bn by 2026 expanding at a considerable CAGR from 2018 to 2026. North America is expected to dominate the global PCR market during the forecast period, due to high adoption of technologically advanced molecular diagnostic products, growing incidence of infectious diseases, rising prevalence of various types of cancer, growing trend of self-diagnosis of diseases, and affordability of high-cost testing processes for people in the region.

Request Brochure for Report https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=830

Reagents Segment to Dominate the Global PCR Market

The report offers detailed segmentation of the global PCR market based on product and end-user. In terms of product, the market has been segmented into instruments, reagents, and consumables. The reagents segment held the leading market share in the year 2017 and is expected to expand at the highest CAGR during the forecast period. This is attributable to high consumption of reagents for the PCR technique. Introduction of advanced reagents specific to the type of test is expected to boost the global demand for PCR reagents in the near future. PCR reagents include template DNA, PCR primers and probes, dNTPs, PCR buffers, enzymes, and master mixes. PCR consumables mostly include PCR tubes, plates, and other accessories required to conduct PCR reactions. The instruments segment has been sub-categorized into standard PCR systems, RT PCR systems, and digital PCR systems. Among these, the digital PCR systems sub-segment is expected to witness growth at a significantly rapid pace during the forecast period. This is attributable to advantages of digital PCR systems such as precision, sensitivity, accuracy, reproducibility, direct quantification and multiplexing, and speed of the analysis.

Request for Analysis of COVID19 Impact on Polymerase Chain Reaction (PCR) Market

https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=830

Pharmaceutical & Biotechnology Industry Segment Held a Major Share of the Global PCR Market in 2017

The PCR technique has been found to be useful in pharmaceutical and biotechnology research activities as well as microbial quality testing. The technique is also applied in genetic engineering. Genetic engineering is the key driver for the global PCR market. It is used to identify genes related to certain phenotypes includinggenetic disorders. Regular testing of the microbial load of raw materials and finished products is an important process in the pharmaceutical & biotechnology industry. Sophisticated analytical methods such as polymerase chain reaction (PCR) have been widely applied for quality control analysis in the pharmaceutical sector.

Market in Asia Pacific to Expand at a High CAGR

Molecular diagnosis has revolutionized the modern diagnosis technology. PCR has become a method of choice in early and accurate detection of diseases. Expansion by leading manufacturers of PCR products in the Asia Pacific region by strengthening of the distribution network and new product launches in developing countries of Asia Pacific are key factors likely to drive the PCR market in the region during the forecast period. Moreover, rise in the incidence of cancer and infectious diseases has resulted in increase in the demand for use of the PCR technique in clinical diagnosis of these diseases in Asia Pacific. For instance, according to the Korea Central Cancer Registry published in 2016, there were 217,057 cancer cases in South Korea in 2014. Moreover, in 2016, the WHO estimated that the Asia Pacific region has the second-highest number (i.e. 5.1 million) of people living with HIV across the world. Thus, Asia Pacific is expected to be the most lucrative market for PCR by 2026.

Buy Polymerase Chain Reaction (PCR) Market Report https://www.transparencymarketresearch.com/checkout.php?rep_id=830&ltype=S

Competition Landscape

Major players operating in the global PCR market are Bio-Rad Laboratories, Inc., QIAGEN N.V., F. Hoffmann-La Roche AG, Thermo Fisher Scientific, Inc. Becton, Dickinson and Company, Abbott, Siemens Healthcare GmbH (Siemens AG), bioMrieux SA, Danaher Corporation, and Agilent Technologies. Key players are expanding their product portfolio through mergers and acquisitions and partnerships and collaborations with leading pharmaceutical and biotechnology companies and by offering technologically advanced products.

About Us

Transparency Market Research is a global market intelligence company providing global business information reports and services. Our exclusive blend of quantitative forecasting and trends analysis provides forward-looking insight for several decision makers. Our experienced team of analysts, researchers, and consultants use proprietary data sources and various tools and techniques to gather and analyze information.

Our data repository is continuously updated and revised by a team of research experts so that it always reflects latest trends and information. With a broad research and analysis capability, Transparency Market Research employs rigorous primary and secondary research techniques in developing distinctive data sets and research material for business reports.

Contact

Transparency Market Research,

90 State Street, Suite 700,

Albany, NY 12207

Tel: +1-518-618-1030

USA Canada Toll Free: 866-552-3453

Website: https://www.transparencymarketresearch.com/

Read more:
Polymerase Chain Reaction (PCR) Market expanding at a considerable CAGR from 2018 to 2026 - The Think Curiouser

Read More...

Aridis Pharmaceuticals to Present at the ROTH Capital Partners 2020 MedTech Innovation Forum on a COVID-19 Panel – BioSpace

Saturday, October 31st, 2020

SAN JOSE, Calif., Oct. 27, 2020 /PRNewswire/ -- Aridis Pharmaceuticals, Inc. (Nasdaq: ARDS), a biopharmaceutical company focused on the discovery and development of novel anti-infective therapies to treat life-threatening infections, today announced the Company will present at the ROTH Capital Partners 2020 MedTech Innovation Forum on Wednesday, October 28, 2020. Dr. Hasan Jafri, Chief Medical Officer of Aridis Pharmaceuticals, will be a speaker on a panel entitled "Direct Antivirals and Other Agents Against SARS-CoV2 Virus."

Panel: Direct Antivirals and Other Agents Against SARS-CoV2 VirusDate: Wednesday, October 28, 2020Time: 10:30AM-11:50AM ET

Dr. Jafri will present a summary of the Company's recently published preclinical data of its COVID-19 inhaled mAb (AR-711). He will address the preclinical performance of AR-711, the advantages of direct lung delivery using nebulized aerosols, and the COVID-19 clinical program.

About AR-711

AR-711 is a fully human immunoglobulin 1, or IgG1, monoclonal antibody discovered from screening the antibody secreting B-cells of convalescent COVID-19 patients. AR-711 exhibits high affinity for SARS-CoV-2 spike protein, approximately 10-fold or higher than mAb candidates currently in late stage clinical testing. AR-711 was previously shown to be effective in prophylactic as well as therapeutic treatment modes in a SARS-CoV-2 viral challenge study. AR-711 is currently being developed as an inhaled, self-administered treatment for non-hospitalized patients suffering from mild to moderate COVID-19. AR-711 is also one the two mAbs in the company's AR-701 mAb cocktail, which is a separate program being developed as an intravenous treatment of moderate to severe, hospitalized COVID-19 patients.

About Aridis Pharmaceuticals, Inc.

Aridis Pharmaceuticals, Inc. discovers and develops anti-infectives to be used as add-on treatments to standard-of-care antibiotics. The Company is utilizing its proprietary PEXTM and MabIgX technology platforms to rapidly identify rare, potent antibody-producing B-cells from patients who have successfully overcome an infection, and to rapidly manufacture monoclonal antibody (mAbs) for therapeutic treatment of critical infections. These mAbs are already of human origin and functionally optimized for high potency by the donor's immune system; hence, they technically do not require genetic engineering or further optimization to achieve full functionality.

The Company has generated multiple clinical stage mAbs targeting bacteria that cause life-threatening infections such as ventilator associated pneumonia (VAP) and hospital acquired pneumonia (HAP), in addition to preclinical stage antiviral mAbs. The use of mAbs as anti-infective treatments represents an innovative therapeutic approach that harnesses the human immune system to fight infections and is designed to overcome the deficiencies associated with the current standard of care which is broad spectrum antibiotics. Such deficiencies include, but are not limited to, increasing drug resistance, short duration of efficacy, disruption of the normal flora of the human microbiome and lack of differentiation among current treatments. The mAb portfolio is complemented by a non-antibiotic novel mechanism small molecule anti-infective candidate being developed to treat lung infections in cystic fibrosis patients. The Company's pipeline is highlighted below:

Aridis' Pipeline

AR-301 (VAP). AR-301 is a fully human IgG1 mAb currently in Phase 3 clinical development targeting gram-positive Staphylococcus aureus (S. aureus) alpha-toxin in VAP patients.

AR-101 (HAP). AR-101 is a fully human immunoglobulin M, or IgM, mAb in Phase 2 clinical development targeting Pseudomonas aeruginosa (P. aeruginosa) liposaccharides serotype O11, which accounts for approximately 22% of all P. aeruginosa hospital acquired pneumonia cases worldwide.

AR-501 (cystic fibrosis). AR-501 is an inhaled formulation of gallium citrate with broad-spectrum anti-infective activity being developed to treat chronic lung infections in cystic fibrosis patients. This program is currently in a Phase 1/2a clinical study in healthy volunteers and CF patients.

AR-401 (blood stream infections). AR-401 is a fully human mAb preclinical program aimed at treating infections caused by gram-negative Acinetobacter baumannii.

AR-701 (COVID-19). AR-701 is a cocktail of fully human mAbs discovered from convalescent COVID-19 patients that are directed at multiple envelope proteins of the SARS-CoV-2 virus.

AR-711 (COVID-19). AR-711 is an in-licensed mAb that is directed against the receptor binding domain of the SARS-Cov 2 virus. The agent has the potential to be delivered both intravenously and by inhalation using a nebulizer.

AR-201 (RSV infection). AR-201 is a fully human IgG1 mAb out-licensed preclinical program aimed at neutralizing diverse clinical isolates of respiratory syncytial virus (RSV).

For additional information on Aridis Pharmaceuticals, please visit https://aridispharma.com/.

Forward-Looking Statements

Certain statements in this press release are forward-looking statements that involve a number of risks and uncertainties. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern Aridis' expectations, strategy, plans or intentions. These forward-looking statements are based on Aridis' current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. These factors include, but are not limited to, the need for additional financing, the timing of regulatory submissions, Aridis' ability to obtain and maintain regulatory approval of its existing product candidates and any other product candidates it may develop, approvals for clinical trials may be delayed or withheld by regulatory agencies, risks relating to the timing and costs of clinical trials, risks associated with obtaining funding from third parties, management and employee operations and execution risks, loss of key personnel, competition, risks related to market acceptance of products, intellectual property risks, risks related to business interruptions, including the outbreak of COVID-19 coronavirus, which could seriously harm our financial condition and increase our costs and expenses, risks associated with the uncertainty of future financial results, Aridis' ability to attract collaborators and partners and risks associated with Aridis' reliance on third party organizations. While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Actual results could differ materially from those described or implied by such forward-looking statements as a result of various important factors, including, without limitation, market conditions and the factors described under the caption "Risk Factors" in Aridis' 10-K for the year ended December 31, 2019 and Aridis' other filings made with the Securities and Exchange Commission. Forward-looking statements included herein are made as of the date hereof, and Aridis does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.

Contact:

Investor RelationsJason WongBlueprint Life Science Groupjwong@bplifescience.com(415) 375-3340 Ext. 4

SOURCE Aridis Pharmaceuticals, Inc.

View original content to download multimedia:http://www.prnewswire.com/news-releases/aridis-pharmaceuticals-to-present-at-the-roth-capital-partners-2020-medtech-innovation-forum-on-a-covid-19-panel-301160211.html

SOURCE Aridis Pharmaceuticals, Inc.

Company Codes: NASDAQ-NMS:ARDS

Read the original post:
Aridis Pharmaceuticals to Present at the ROTH Capital Partners 2020 MedTech Innovation Forum on a COVID-19 Panel - BioSpace

Read More...

Aviceda Therapeutics Announces Formation of Scientific Advisory Board – BioSpace

Saturday, October 31st, 2020

Oct. 27, 2020 12:00 UTC

CAMBRIDGE, Mass.--(BUSINESS WIRE)-- Aviceda Therapeutics, a late-stage, pre-clinical biotech company focused on developing the next generation of immuno-modulators by harnessing the power of glycobiology to manipulate the innate immune system and chronic, non-resolving inflammation, is announcing the members of its Scientific Advisory Board who will help shape ongoing development efforts.

The Aviceda Scientific Advisory Board includes Pamela Stanley, PhD; Ajit Varki, MD; Christopher Scott, PhD; Geert-Jan Boons, PhD; Salem Chouaib, PhD; and Peng Wu, PhD.

Aviceda has assembled an extraordinary multi-disciplinary team of world-class scientists and renowned researchers to join our efforts in developing the next generation of glyco-immune therapeutics for the treatment of immune-dysfunction conditions, said Mohamed A. Genead, MD, Founder, CEO & President of Aviceda Therapeutics. Each individual offers a fresh perspective and unique strategic acumen that complements and strengthens the insights of our in-house leadership development team.

Prof. Scott, Aviceda Scientific Co-Founder, is Director of the Patrick G Johnston Centre for Cancer Research and Cell Biology at Queens University Belfast. He is internationally renowned for his work in development of novel approaches in the field of antibody and nanomedicine-based therapies for the treatment of cancer and other conditions. Prof. Scott has a background in both the pharmaceutical industry and academia and was a founding scientist of Fusion Antibodies Plc. Research in his laboratory is funded by agencies such as Medical Research Council, UK charities and various industrial sources. He also held a Royal Society Industrial Fellowship with GSK from 2012 to 2015 and won the Vice Chancellors Prize for Innovation in 2015 with his groups work on developing a novel Siglec targeting nanomedicine for the treatment of sepsis and other inflammatory conditions.

The novelty of Avicedas platform technology is its potential to affect immune responses associated with a wide range of disease states, many of which are currently unmet or underserved needs. I look forward to the continued development of Avicedas core technology and moving forward to clinical trials that will pave the way for truly disruptive therapeutic strategies to enter the clinic that will significantly impact and improve patients lives in the not-too-distant future, said Prof. Scott.

Avicedas Scientific advisory chairwoman, Prof. Stanley, is the Horace W. Goldsmith Foundation Chair; Professor, Department of Cell Biology; and Associate Director for Laboratory Research of the Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York. She obtained a doctorate degree from the University of Melbourne, Australia, for studies of influenza virus, and was subsequently a postdoctoral fellow of the Medical Research Council of Canada in the laboratory of Louis Siminovitch, University of Toronto, where she studied somatic cell genetics. Prof. Stanleys laboratory is focused on identifying roles for mammalian glycans in development, cancer and Notch signaling. Among her many varied contributions, Prof. Stanleys laboratory has isolated a large panel of Chinese hamster ovary (CHO) glycosylation mutants; characterized them at the biochemical, structural and genetic levels; and used them to identify new aspects of glycan synthesis and functions. She serves on the editorial boards of Scientific Reports, Glycobiology and FASEB Bio Advances; she is an editor of the textbook Essentials of Glycobiology; and her laboratory is the recipient of grants from the National Institutes of Health. Prof. Stanley has received numerous awards, including a MERIT award from the National Institutes of Health, an American Cancer Society Faculty Research Award, the Karl Meyer Award from the Society for Glycobiology (2003) and the International Glycoconjugate Organization (IGO) Award (2003).

Working with Aviceda represents a unique opportunity to contribute to science at the cutting edge. Its pipeline contains a broad range of candidates that represents numerous first-in-class opportunities, said Prof. Stanley.

Prof. Varki is currently a distinguished professor of medicine and cellular and molecular medicine, Co-director of the Glycobiology Research and Training Center and Executive Co-director for the UCSD/Salk Center for Academic Research and Training in Anthropogeny at the University of California, San Diego; and an Adjunct Professor at the Salk Institute for Biological Studies. Dr. Varki is also the executive editor of the textbook Essentials of Glycobiology. He received basic training in physiology, medicine, biology and biochemistry at the Christian Medical College, Vellore, The University of Nebraska, and Washington University in St. Louis, as well as formal training and certification in internal medicine, hematology and oncology. Dr. Varki is the recipient of numerous awards and recognitions, including election to the American Academy of Arts and Sciences and the US National Academy of Medicine, a MERIT award from the National Institutes of Health, an American Cancer Society Faculty Research Award, the Karl Meyer Award from the Society for Glycobiology and the International Glycoconjugate Organization (IGO) Award (2007).

The Aviceda team is already building on the foundational work in the emerging field of glycobiology to develop potential therapeutics and interventional strategies. Their work could be critically important for growing the understanding of how glycobiology and glycochemistry are applicable to immunology, and more broadly, to the field of drug and therapeutic development, said Prof. Varki.

Prof. Boons is a Distinguished Professor in Biochemical Sciences at the Department of Chemistry and the Complex Carbohydrate Research Center (CCRC) of the University of Georgia (USA) and Professor and Chair of the Department of Medicinal and Biological Chemistry of Utrecht University (The Netherlands). Prof. Boons directs a research program focused on the synthesis and biological functions of carbohydrates and glycoconjugates. The diversity of topics to which his group has significantly contributed includes the development of new and better methods for synthesizing exceptionally complex carbohydrates and glycoconjugates. Highlights of his research include contributions to the understanding of immunological properties of complex oligosaccharides and glycoconjugates at the molecular level, which is being used in the development of three-component vaccine candidates for many types of epithelial cancer; development of convergent strategies for complex oligosaccharide assembly, which make it possible to synthesize large collections of compounds with a minimal effort for structure activity relationship studies; and creation of a next generation glycan microarray that can probe the importance of glycan complexity for biological recognition, which in turn led to identification of glycan ligands for various glycan binding proteins that are being further developed as glycomimetics for drug development for various diseases. Among others, Prof. Boons has received the Creativity in Carbohydrate Science Award by the European Carbohydrate Association (2003), the Horace Isbell Award by the American Chemical Society (ACS) (2004), the Roy L. Whistler International Award in Carbohydrate

Chemistry by the International Carbohydrate Organization (2014), the Hudson Award (2015) and the Cope Mid-Career Scholar Award from ACS (2016).

Aviceda is leading the field of glycoimmunology in exciting new directions. I look forward to working with the company as it pursues multiple lines of development efforts that will someday transform the way immune-inflammatory conditions are treated in the clinic, said Prof. Boons.

Prof. Chouaib is the Director of Research, Institute Gustave Roussy, Paris, where he is active in research in tumor biology. Previously, Prof. Chouaib worked at the French National Institute of Health and Biomedical Research (INSERM) where he led a research unit focused on the investigation of the functional cross talk between cytotoxic cells and tumor targets in the context of tumor microenvironment complexity and plasticity. His research was directed at the transfer of fundamental concepts in clinical application in the field of cancer vaccines and cancer immunotherapy. Prof. Chouaib is a member of the American Association of Immunologists, New York Academy of Sciences, French Society of Immunologists, International Cytokine Society, American Association for Cancer Research, International Society for Biological Therapy of Cancer and American Association of Biological Chemistry. He was awarded the cancer research prize of the French ligue against cancer in 1992 and in 2004 the presidential prize in biotechnology. He was awarded for translational research and scientific excellency by INSERM. His research has resulted in more than 310 scientific articles and several reviews in the field of human immunology, tumor biology and cancer immunotherapy; he has also been an editor for several textbooks.

Dr. Wu is an Associate Professor in the Department of Molecular Medicine at Scripps Research. The current research in the Wu laboratory integrates synthetic chemistry with glycobiology to explore the relevance of protein glycosylation in human disease and cancer immunotherapy. In 2018, Dr. Wu developed a platform to construct antibody-cell conjugates for cancer immunotherapy, which does not require genetic engineering. Previously, while working as a postdoctoral fellow in the group of Professor Carolyn R. Bertozzi at the University of California, Berkeley, Dr. Wu developed an aldehyde-tag (SMARTag) based technology for site-specific labeling of monoclonal antibodies, which served as the foundation for Redwood Biosciences Inc., a biotech company co-founded by Bertozzi. In 2014, Redwood Bioscience Inc. and the SMARTag Antibody-Drug Conjugate technology platform was acquired by Catalent Pharma Solutions.

About Aviceda Therapeutics

Founded in 2018 and based in Cambridge, Massachusetts, Aviceda Therapeutics is a late-stage, pre-clinical biotechnology company with a mission to develop the next generation of glyco-immune therapeutics (GITs) utilizing a proprietary technology platform to modulate the innate immune system and chronic, non-resolving inflammation. Aviceda has assembled a world-class, cross-disciplinary team of recognized scientists, clinicians and drug developers to tackle devastating ocular and systemic degenerative, fibrotic, oncologic and immuno-inflammatory diseases. At Aviceda, we exploit a unique family of receptors found expressed on all innate immune cells and their associated glycobiological interactions to develop transformative medicines. Combining the power of our biology with our innovative cell-based high-throughput screening platform and proprietary nanoparticle technology, we can modulate the innate immune response specifically and profoundly. Aviceda is developing a pipeline of GITs that are delivered via biodegradable nanoparticles and which safely and effectively target numerous immune-inflammatory conditions. Avicedas lead ophthalmic optimized nanoparticle, as an intravitreal formulation, AVD-104, is being developed to target various immune system responses that contribute to pathology associated with age-related macular degeneration (AMD).

View source version on businesswire.com: https://www.businesswire.com/news/home/20201027005101/en/

Read this article:
Aviceda Therapeutics Announces Formation of Scientific Advisory Board - BioSpace

Read More...

Genetic modification is ready to serve humanity The Miscellany News – Miscellany News

Sunday, October 18th, 2020

On Oct. 7, 2020, Dr. Emmanuelle Charpentier and Dr. Jennifer A. Doudna were awarded the Nobel Prize in Chemistry for their work in the field of gene editing. On top of breaking barriers as the first two women jointly awarded the chemistry prize, Charpentier and Doudnas recognition is a huge step forward for the controversial field of genetic engineering.

Humans have been practicing a form of genetic engineering ever since we started cultivating plants and livestock. Grafting two plants together dates back centuries in both the East and the West, and selective breeding was a staple technique used by even the earliest farmers. These techniques arent using advanced technology to target and change certain genes, but nevertheless the point of these exercises was to eliminate or diminish unwanted characteristics and promote the characteristics that the farmer found most useful. Wild cabbage was bred to create broccoli, brussel sprouts and domesticated cabbage. Cattle were bred to increase their edible volume. This was all uncontroversial, but it was all gene editing.

Today the techniques have changed, but the underlying mission has stayed the same: improve quality of life. Public opinion has shifted, however. Currently, more than half of adults in the U.S. believe that using genetically modified organisms (GMOs) as a food source is worse for your health than using non-modified foods. Of those, 88 percent believe that GMO foods will lead to health problems for the general populace. There is no such thing as non-modified food, but there is a stigma against food modified in a lab.

Part of this bias may be due to the way direct modification was introduced in the 1950s. In order to increase variation in plants so that selective breeding could be done more efficiently, scientists bombarded plants with radiation. This process, known as mutation breeding, was part of an effort to discover a peaceful use for the nuclear knowledge that was proliferating in the aftermath of World War II. Radiation was poorly understood by the general public in the mid-20th century. The possibilities of mutation due to radiation caused imagination to run rampant over reality: 1954s Them! stars giant insects caused by nuclear testing in the area.

The 1957 film Beginning of the End has grasshoppers eat mutated plants and then grow to enormous sizes. Even some of the most famous pop culture characters that exist today were formulated along these lines. In 1961 the Fantastic Four were given their powers by cosmic radiation. Spider-Man has had eight movies over the last 20 years, and he was famously bitten by a radioactive spider. These examples dont insinuate that people really believed that radiation could produce superheroes and skyscraper-sized insects, but they do reflect a general fear of the unknown that the gene modification of radiation could produce.

Radiation is no longer the bugaboo of the modern day, but fear of radiation has been displaced by fear of targeted gene editing, like the Crispr-Cas9 technique pioneered by Charpentier and Doudna. Some of this fear may be well founded: Theres no definite way to know that a gene edited plant or animal wont act similar to an invasive species. Presumably freed from some ailment or deficit that was limiting its growth, it is possible that a plant may grow at a pace that is higher than wanted by its creators. Nature is a delicate balance, and intervening must be done in a reasonable way that weighs the potential costs and benefits.

Mosquito reduction or elimination may not seem to be a worthwhile risk for something with unknown side effects, but that initial intuition would be wrong. Malaria, a disease transmitted mainly through mosquito bites, kills around 400,000 people per year. Zika and West Nile virus, while less deadly, are also transmitted into the human populace via mosquito. No other creature kills humans at the rate of mosquitoes. Despite the environmental damage that may be wreaked by the adjustment of the other flora and fauna to a lack of mosquitoes, gene editing to reduce mosquito population is a clear path to saving hundreds of thousands of lives every year.

With this sort of benefit in mind, the United States Environmental Protection Agency and Florida state government recently came to an agreement that will release over 750 million genetically modified mosquitoes into Florida. This is no small action and could potentially disrupt the entire food web of Florida, and possibly beyond.

The plan in Florida is to introduce a strain of Aedes Aegypti mosquitoes, a spreader of the Zika virus, that are genetically engineered so that their female offspring die off. Mosquitoes bite to extract human blood, and in this exchange mosquitoes can transfer any diseases they are carrying. Mosquitoes only bite so that they can extract iron and proteins in human blood and transfer it to the fertilized eggs that will be the next generation of that mosquitos bloodline. As such, the only mosquitoes that bite, and thus have the chance to transfer diseases, are adult females. The firm Oxitec produced a modified mosquito whose female offspring cant grow out of the larval stage. No adult females means no blood sucking, which means no disease transmission and no new mosquito larvae being produced.

A similar plan was executed in Brazil, where the Aedes Aegypti mosquito population was cut by 89 to 96 percent. With such a large reduction in mosquito population, the benefits move beyond that of just public health. Thousands of tracts of land would become more usable and see an increase in value if mosquitoes died out. Even day-to-day activities like gardening or talking walks could become much more pleasant in the absence of mosquitoes.

2020 has already shown the effects of disease and failures of public health. COVID-19 has killed over a million people; over the last 10 years, malaria has killed over four million. We have to live with COVID-19 for the foreseeable future, but gene editing has given us a tool to end malaria. Genetically modified mosquitoes should not end in Florida or with Aedes Aegypti: they should be of all species, placed all over the globe. For months the world has lived under a new biological terror. Its time we release a new biological salvation.

View original post here:
Genetic modification is ready to serve humanity The Miscellany News - Miscellany News

Read More...

Dyslexia shows the inborn nature of visual imagining and cognition – Genetic Literacy Project

Sunday, October 18th, 2020

Reading is a learned skill; no one is born reading. But learning to read relies on inborn human capacities for language and speech. And dyslexia is ageneticcondition that compromises thesebrain networks.

Yet laypeople are convinced that dyslexia results from troubleswith vision. And these errors matter. A parent who holds these views might fail to recognize her childs difficulties with rhymes and pig Latin (both require phonemic awareness) as warning signs. So why are we so wrong about dyslexia? Why do we mistake dyslexia for word blindness?

At first blush, these misconceptions seem rather innocent; laypeople, by definition, arent reading experts, so perhaps they just dont know better. But aspiringteachers, with ample educational training, make similar mistakes. Moreover, the pattern of mistakes suggests a deeper problem.

While these biases are unconscious, they demonstrably veer off reasoning in numerous areas, from our irrational fascination with the brain to ourfear of artificial intelligence; our troubles with dyslexia, then, are but one of its many victims. To counter these errors, information alone wont sufficea real change requires that we take a hard look within.

Reading, then, rests on decoding in more ways than one. For children to successfully decode printed words, we must all improve our decoding of the human mind.

Read the original post

Originally posted here:
Dyslexia shows the inborn nature of visual imagining and cognition - Genetic Literacy Project

Read More...

AGC Biologics Shifts Leadership Structure at United States and Copenhagen Sites to Support the Continued Development and Growth of the Regions -…

Sunday, October 18th, 2020

SEATTLE, Oct. 15, 2020 /PRNewswire/ -- AGC Biologics, a leading global biopharmaceutical contract development and manufacturing organization (CDMO), has announced a leadership update at the United States and Copenhagen facilities. The changes are being made to strengthen the strategic development and executive oversight of the rapid growing facilities in the US and Copenhagen, and are effective at the date of release, October 15, 2020.

Jeffrey D. Mowery will join the Global Executive Team in the role of Senior Vice President of US Operations, based at company headquarters in Seattle, Washington. Andrea C. Porchia will become the General Manager and Site Head for the Copenhagen Operation.

In his new position, Mr. Mowery will oversee the new Boulder, Colorado facility rollout and ensure that progress is maintained at the expanding Seattle site. Mr. Mowery draws on more than two decades of industry expertise in small molecule, biologic and cell and gene therapy production and technology transfer expertise to deliver quality in his work at AGC Biologics.

"In his most recent role as General Manager of the Copenhagen, Denmark facility, J.D. Mowery achieved a period of strong growth, even with today's challenges from the COVID pandemic. We believe the US sites, and ultimately our customers, will benefit from his leadership skills, results oriented approach and broad operational expertise in the same way that Copenhagen has," said Kasper Moller, CTO of AGC Biologics. He continued, "as part of this transition, Andrea C. Porchia has been promoted to General Manager of the Copenhagen site where her broad and deep biologics experience, and ability to effectively navigate all aspects of biomanufacturing and development will be an indispensable asset for the Copenhagen Site and to our valued customers."

Through more than seven years at AGC Biologics, Ms. Porchia has taken on increasing responsibilities, both at the Copenhagen site and globally as Project Director, Business Development Representative, Global Head of Project Management and now General Manager. She leverages more than two decades of research and process expertise to enhance business operations with a critical focus on project management and customer service.

To learn more about the AGC Biologics global network of facilities, please visit: http://www.agcbio.com/.

About AGC Biologics

AGC Biologics is a leading global biopharmaceutical contract development and manufacturing organization (CDMO) committed to delivering a high standard of service to solve complex customer challenges. The company is driven by innovation and continuously invests in technologies to complement decades of proven expertise in drug development and manufacturing, including working through FDA, PDMA and EMA approvals. A range of customizable bioprocessing services includes development and manufacturing of mammalian and microbial-based therapeutic proteins, protein expression, plasmid DNA (pDNA) support, antibody drug development and conjugation, viral vector production, genetic engineering of cells, cell line development with a proprietary CHEF1 Expression System, cell banking and storage.

AGC Biologics employs more than 1,400 professionals worldwide who are dedicated to supporting customers at all phases of development through to commercialization, with critical expertise in process development, formulation, and analytical testing. The global service network boasts locations in the United States at Seattle, Washington and Boulder, Colorado; across Europe in Copenhagen, Denmark; Heidelberg, Germany; Milan and Bresso, Italy; and in Asia at Chiba, Japan.

Learn more at http://www.agcbiologics.com, or find us on LinkedIn at https://www.linkedin.com/company/agcbiologics/ and Twitter @agcbiologics.

See the original post here:
AGC Biologics Shifts Leadership Structure at United States and Copenhagen Sites to Support the Continued Development and Growth of the Regions -...

Read More...

Page 7«..6789..2030..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick