header logo image


Page 6«..5678..2030..»

Archive for the ‘Genetic Engineering’ Category

What the emerging new strain of the Coronavirus means for the vaccine – WATN – Local 24

Tuesday, January 12th, 2021

A local doctor explains what's in the COVID-19 vaccine and how it works.

MEMPHIS, Tenn Concerns about the COVID-19 vaccine remain.

It's the first vaccine without a living virus, but some are concerned over what's in the COVID-19 vaccine.

"This vaccine is the result of, really, some genetic engineering. They are able to sequence the virus, decode it and find the genetic code for just a part of the virus, specifically the spike that is located on the outside of the virus," said Dr. Bruce Randolph of the Shelby County Health Department.

He says that's the part of the virus that attaches to the human cell.

Worried the vaccine arrived too soon?

COVID-19 may have entered American consciousness about 9 months ago, but scientists have studied different forms of the Coronavirus for years.

The variations go back some 10-thousand years.

Researchers are also keeping an eye on a new variant called B-1-17 found in a few states, but not yet in Tennessee.

"This particular virus is five times more easier to transmit than the Coronavirus we are dealing with at the current time," said Randolph.

For example, Randolph explains if COVID-19 takes 100 droplets for infection, this new strain might only take 10.

With 72-thousand COVID cases just reported in Shelby County a new strain would cause great concern.

"If this variant strain hit Shelby County those number could be as much as 5 times higher," said Randolph.

Researchers believe the current vaccine will provide immunity for that new strain.

the Memphis-Shelby County task force are urging everybody to get educated, talk to your doctor, get vaccinated and keep up with your card.

"You would be able to go wherever and present your card and say I need my second dose and the provider would know exactly when you last received, if it's indeed time for you to receive your second dose and what vaccine you received because you shouldn't mix them."

See the original post here:
What the emerging new strain of the Coronavirus means for the vaccine - WATN - Local 24

Read More...

Myeloid Therapeutics Launches with Over $50 Million in Financing and Two Clinical Trials – BioSpace

Tuesday, January 12th, 2021

CAMBRIDGE, Mass., Jan. 6, 2021 /PRNewswire/ -- Myeloid Therapeutics, Inc., a company harnessing and reprogramming myeloid cells for treating cancers, launched today with over $50 million in financing to initiate multiple clinical trials in 2021. The Company combines advanced gene and cell engineering capabilities with substantial biologics knowledge to elucidate and redirect the power of myeloid cells to treat cancers, particularly solid tumors and those that are poorly served by existing therapies. Myeloid has advanced its lead development candidates through preclinical studies, implemented its manufacturing platform and plans to dose patients in the first half of this year.

The Company's scientific founders include Ronald Vale, Ph.D., a world-renowned biochemist and cell biologist, and executive director of the Howard Hughes Medical Institute (HHMI) Janelia Research campus; and hematologist, oncologist and Pulitzer-Prize winning author Siddhartha Mukherjee, M.D., D.Phil. Newpath Partners led the financing round with participation from 8VC, Hatteras Venture Partners and Alexandria Venture Investments.

With this funding, Myeloid will initiate clinical trials for the Company's programs, which target T cell lymphoma, glioblastoma and other solid tumors. The team will also continue to design and advance a broad pipeline of targeted myeloid cell therapies, including primed myeloid cells, myeloid multi-specific engagers and other development candidates created with Myeloid's novel mRNA delivery technologies. The Company expects to enter the clinic with its two lead programs in glioblastoma and T cell lymphoma in 2021.

"I believe Myeloid is best positioned to leverage the unique power of myeloid cells to help patients fighting cancers that until now, have been very difficult to treat," said Dr. Mukherjee. "Despite the promise of current cell therapies, many challenges remain when it comes to targeting specific types of cancers, including solid tumors, and in efficiently manufacturing treatments. I'm thrilled to help develop Myeloid's transformative treatment modality, which has the potential to overcome many of these challenges."

"Myeloid cells play a critical role in orchestrating the body's immune responses, including by directly killing cells, bacteria and viruses through a number of disease-fighting mechanisms," said Michael Dee Gunn, M.D., Professor of Medicine and Immunology at Duke University, and a pioneer in the research of molecular mechanisms of innate immunity and inflammation and a member of Myeloid's Scientific Advisory Board. "This novel class of cell therapies has strong potential to benefit patients with the highest unmet medical needs."

ATAKTM Cell Platform

The Company's ATAK platform was inspired by Drs. Vale and Mukherjee, who envisioned the disease-fighting power of myeloid cells versatile cells with effector functions capable of targeting and eliminating cancerous cells, along with other harmful cells in the body. Within the oncolytic setting, the ATAK platform is being applied to harness the innate abilities of myeloid cells, to specifically recognize and engulf cancer cells, to produce anti-tumor agents, promote anti-tumor adaptive immunity, alter the tumor microenvironment and ultimately to kill cancer. In addition to reprogramming monocytes to target difficult-to-treat cancers, the platform offers Myeloid and its partners many additional advantages, including novel mRNA-based protein and gene delivery, a library of intermixed cell receptors, and chimeric antigen receptors (CARs) that may be applied to enhance treatment effects or to engineer novel tri- and bi-specific cell engagers.

Myeloid is currently focused on advancing two categories of novel ATAK therapies: ATAK CAR monocytes and ATAK primed monocytes. ATAK CAR monocytes are myeloid cells with innate immune receptor-inspired CARs to recognize and kill cancer. ATAK primed monocytes function like cell vaccines, programmed to trigger T cells to kill cancer cells.

Manufacturing candidates from the ATAK platform benefit from speed and scalability in manufacturing process development. The Myeloid team can scale manufacturing rapidly, from product concept to clinical use. In addition, current products derived from the ATAK platform have a single-day cell manufacturing process. Given the observed strengths of the manufacturing process, Myeloid reasonably envisions same-day ATAK platform treatment, especially relevant upon clinical presentation of aggressive tumors. The Company is also in the process of developing "off the shelf" approaches in order to advance the full range of clinical delivery options.

Myeloid Leadership and Scientific Advisory Board

As co-founder and Chief Executive Officer of Myeloid, Daniel Getts, Ph.D., MBA, oversees the Company's portfolio and growth strategies. Dr. Getts is a repeat biotech entrepreneur, having led research at TCR2 through its IPO and the development of the first cell therapy to show clinical responses in ovarian cancer. Before that, he co-founded Cour Pharmaceuticals Development Company.

The Company's Scientific Advisory Board includes world-renowned scientists whose expertise span oncology, immunology, cell therapy, synthetic biology and genetic engineering:

"Our mission is to apply our energy and significant research capabilities to design and develop truly transformative treatments," said Dr. Getts. "We built Myeloid's ATAKTM platform to overcome many limitations of existing cell therapies, in part by embracing the natural tendencies of monocytes to penetrate solid tumors and catalyze immune reactions. By harnessing the power of monocytes, which are the cells that comprise the largest population of immune cells in the tumor microenvironment, we are working to bring new therapies to patients. We have also designed and successfully implemented an efficient, flexible manufacturing process that sets a new threshold for cell therapies. We are very pleased to have the support of this strong group of investors, who enable us to further develop the ATAK platform, to advance multiple solid tumor programs into the clinic, and to bring forward new transformative programs as we broaden Myeloid's pipeline."

"Myeloid cells are the body's front-line-disease-fighting tools, and they are critical in the orchestration of adaptive immune responses. These myeloid cells are overrepresented in solid cancers and I have been fascinated with their therapeutic potential since researching them during my medical training," said Thomas Cahill, M.D., Ph.D., Myeloid co-founder and Managing Partner of Newpath Partners. "Most other cell therapies focus on reprogramming the adaptive immune system and they have truly improved patient outcomes, especially with respect to liquid tumors. To expand on this promise, the next logical step was to empower the cells at the front lines of solid tumors. By engineering myeloid cells, the Company is developing an extremely versatile and potent class of new therapeutic agents. I look forward to continuing to support this team through their first wave of clinical trials and beyond."

About Myeloid Therapeutics

Myeloid Therapeutics is an immunology company focused on combining biology insights with cutting-edge technologies to harness myeloid cells and eradicate cancer and other diseases. With broad clinical applications possible, the Company is presently advancing its cell therapy product candidates, derived from its ATAKTM platform technology, with initial applications in T cell lymphoma and a primed monocyte approach to treating glioblastoma. The ATAK platform is scalable to multiple treatment modalities and to other disease areas in collaboration. Myeloid expects to enter the clinic with its two lead programs in the first half of 2021. For more information, visit https://www.myeloidtx.com/.

Media Contact:Sarah SuttonGlover Park Groupssutton@gpg.com202-337-0808

View original content to download multimedia:http://www.prnewswire.com/news-releases/myeloid-therapeutics-launches-with-over-50-million-in-financing-and-two-clinical-trials-301201589.html

SOURCE Myeloid Therapeutics, Inc.

See original here:
Myeloid Therapeutics Launches with Over $50 Million in Financing and Two Clinical Trials - BioSpace

Read More...

22nd Century Group Expands VLN Tobacco Growing Program to Support Anticipated Demand of the Company’s Reduced Nicotine Content Cigarettes -…

Tuesday, January 12th, 2021

WILLIAMSVILLE, N.Y., Jan. 11, 2021 (GLOBE NEWSWIRE) -- 22nd Century Group, Inc. (NYSE American: XXII), a leading plant-based, biotechnology company that is focused on tobacco harm reduction, very low nicotine content tobacco, and hemp/cannabis research, announced today that the Company will significantly expand its growing program for VLN reduced nicotine content tobacco based on the Companys latest sales projections. This new planting for VLN tobacco is in addition to the Companys sizeable inventory of VLN tobacco, which is earmarked for the launch and initial sales of 22nd Centurys VLN reduced nicotine content cigarettes. 22nd Centurys Modified Risk Tobacco Product (MRTP) application for VLN cigarettes is currently in the final stage of review with the U.S. Food and Drug Administration (FDA). Once authorization is granted, 22nd Century will begin marketing its VLN cigarettes, which contain 95% less nicotine than conventional cigarette brands. Having the only combustible cigarette with a modified exposure claim authorized by the FDA could serve as a catalyst for 22nd Centurys commercial sales as capturing even a small fraction of U.S. tobacco sales could result in exponential growth in the Companys revenues and market capitalization.

We are prepared to launch our VLN cigarettes within 90 days after receiving marketing authorization from the FDA, said James A. Mish, chief executive officer of 22nd Century Group. There are more than 34 million smokers in the United States and research shows that a majority of these smokers are looking for alternatives. When shown samples of VLN, 60 percent of adult smokers in our studies indicated an interest in using VLN cigarettes. Additionally, in a 2019 U.S. Center for Disease Control and Prevention (CDC) survey, 80 percent of U.S. smokers favored reducing nicotine levels in cigarettes. We believe adult smokers will be very interested in VLN, and this new crop of VLN tobacco will help us to fulfill the expected demand based on our latest sales projections.

Mish continues, In addition to introducing VLN to smokers in the U.S., we are absolutely committed to licensing our technology to every cigarette manufacturer, so that they can comply with the FDAs plan to make all cigarettes non-addictive. We look forward to the tobacco industry joining our efforts to truly reduce the harm caused by smoking and protect future generations from ever becoming addicted to cigarettes.

In partnership with select tobacco farmers, 22nd Century will plant this new VLN tobacco throughout the U.S. tobacco belt, thereby creating a new income stream for Americas struggling family farmers. The Companys proprietary, reduced nicotine content tobacco contains, on average, just 0.5 milligrams of nicotine per gram of tobacco - a remarkable reduction in nicotine versus conventional cigarette tobaccos which often contain 20 mg to 30 mg nicotine per gram of tobacco.

With 95 percent less nicotine than typical cigarettes, VLN cigarettes will serve as a vanguard for the FDAs ground-breaking Comprehensive Plan for Tobacco and Nicotine Regulation. Published in 2017, the plan aims to set a product standard for cigarettes that achieves minimally or non-addictive levels of nicotine. The FDA projects that within the first year of implementing a mandate, it will help more than five million adult smokers to quit smoking and will save more than eight million American lives by the end of the century.

Within 90 days of the FDAs authorization of its MRTP application, the Company plans to rollout VLN King and VLN Menthol King cigarettes to retail tobacco outlets in the U.S. The launch of VLN will be paired with a compelling marketing campaign to introduce adult tobacco smokers to the worlds lowest nicotine content cigarette.

About 22nd Century Group,Inc.22nd Century Group, Inc. (NYSE American: XXII) is a leading plant biotechnology company focused on technologies that alter the level of nicotine in tobacco plants and the level of cannabinoids in hemp/cannabis plants through genetic engineering, gene-editing, and modern plant breeding. 22nd Centurys primary mission in tobacco is to reduce the harm caused by smoking through the Companys proprietary reduced nicotine content tobacco cigarettes containing 95% less nicotine than conventional cigarettes. The Companys primary mission in hemp/cannabis is to develop and commercialize proprietary hemp/cannabis plants with valuable cannabinoid profiles and desirable agronomic traits.

Learn more atxxiicentury.com, on Twitter@_xxiicenturyand onLinkedIn.

Cautionary Note Regarding Forward-Looking StatementsExcept for historical information, all of the statements, expectations, and assumptions contained in this press release are forward-looking statements. Forward-looking statements typically contain terms such as anticipate, believe, consider, continue, could, estimate, expect, explore, foresee, goal, guidance, intend, likely, may, plan, potential, predict, preliminary, probable, project, promising, seek, should, will, would, and similar expressions. Actual results might differ materially from those explicit or implicit in forward-looking statements. Important factors that could cause actual results to differ materially are set forth in Risk Factors in the Companys Annual Report on Form 10-K filed on March 11, 2020 and in its subsequently filed Quarterly Report on Form 10-Q. All information provided in this release is as of the date hereof, and the Company assumes no obligation to and does not intend to update these forward-looking statements, except as required by law.

Investor Relations & Media Contact:Mei KuoDirector, Communications & Investor Relations22nd Century Group, Inc.(716) 300-1221mkuo@xxiicentury.com

See original here:
22nd Century Group Expands VLN Tobacco Growing Program to Support Anticipated Demand of the Company's Reduced Nicotine Content Cigarettes -...

Read More...

Star Wars Set Up Palpatine’s Return, But Rise of Skywalker Ignored It – Screen Rant

Tuesday, January 12th, 2021

Star Wars: The Rise of Skywalker brought Palpatine back from the dead - but it had actually all been set up in forgotten tie-ins years ago.

Star Wars set up Palpatine's resurrection and return years ago, back in 2015 - and the sequel trilogy, in particular Star Wars: The Rise of Skywalker, totally ignored it. Emperor Palpatine coming back to power drove the plot ofThe Rise of Skywalker, and Lucasfilm initially claimed it was the plan all along.It didn't take long for that claim to be exposed, however, when Colin Trevorrow admittedthat Palpatine's returnwas J.J. Abrams' idea. "Its honestly something I never considered," he observed. "I commend him for it. This was a tough story to unlock, and he found the key."

Oddly,The Rise of Skywalkeravoided revealing how Palpatine survived. It's taken tie-ins to confirm the Emperor had a clone body prepared on the hidden Sith planet of Exegol. When he died inReturn of the Jedi, his spirit fled to this last Sith stronghold. Unfortunately, the plan was hasty, and the clone bodycouldn't contain Palpatine's dark side spirit. By the time ofStar Wars: The Rise of Skywalker, his body was decaying and he was looking for a new one.

Related:Every Upcoming Star Wars Movie & Release Date

Oddly enough,Star Wars canon had already set up Palpatine's return - and forgotten all about it.Chuck Wendig's "Aftermath" trilogy explored the end of the Galactic Civil War, telling the story of the Empire's collapse afterReturn of the Jedi. Significantly, it featured two Palpatine loyalists - one of whom was convinced the Emperor would return. In one key scene, the two performed some sort of dark side ritual, involving a Sith mask and a Holocron. The ceremony was never explained, but YupeTashu clearly believed it somehow bound him to the resurrected Emperor.

"Tashu gambols down in front of the artifacts, his fingertips dancing along their cases. He mutters to himself, and Rax sees that he's chewed his own lips bloody. "Are you ready?" he asks Palpatine's old adviser.

"I am," Tashu says, turning. His cheeks are wet with tears. His teeth slick with red. "Palpatine lives on. We will find him again out there in the dark. Everything has arranged itself as our Master foretold. All things move toward the grand design. The sacrifices have all been made."

Not all of them, Rax thinks.

"You must be clothed in the raiment of darkness," Rax says. "The mantle of the dark side is yours to wear, at least for a time. At least until we can find Palpatine and revivify him, bringing his soul back to flesh anew."

The "Aftermath" trilogy treated Yupe Tashu as a fanatic, and as a result readers assumed this was nothing but a joke - one aimed at the Emperor's resurrection in the old Expanded Universe. They could be forgiven for this assumption, because Wendig included a lot of sly digs at other EU plots. With the benefit of hindsight, of course, it's now positively prescient.

At roughly the same time, writer Kieron Gillen was penning aDarth Vader series set shortly after the firstStar Wars movie. This revealed the Emperor hadsponsored a scientist named Cylo, an expert in cloning and genetic engineering. He had pioneered a technique of creating a personality map that could be stored and downloaded into clone bodies - essentially a technological way of transferring a soul from one body to another."Add memory banks and plug-in calculations, and I am an immortal system," Cylo explained.This, too, effectively foreshadowsStar Wars: The Rise of Skywalker; it establishes the Emperor was definitely interested in cloning as a way of conquering death.

It's just ironic Lucasfilm essentially forgot all these possible clues,and readers who had followed this setup through the books and comics didn't see any of it paid off in the sequels, as Palpatine's return doesn't come until Star Wars: The Rise of Skywalker(without any clear ties to the pre-established canon), making it all seem rather abrupt.

More: All Star Wars Movies, Ranked Worst To Best

Mission: Impossible 7 Star Agrees With Message Behind Tom Cruise Rant

Tom Bacon is one of Screen Rant's staff writers, and he's frankly amused that his childhood is back - and this time it's cool. Tom's focus tends to be on the various superhero franchises, as well as Star Wars, Doctor Who, and Star Trek; he's also an avid comic book reader. Over the years, Tom has built a strong relationship with aspects of the various fan communities, and is a Moderator on some of Facebook's largest MCU and X-Men groups. Previously, he's written entertainment news and articles for Movie Pilot.A graduate of Edge Hill University in the United Kingdom, Tom is still strongly connected with his alma mater; in fact, in his spare time he's a voluntary chaplain there. He's heavily involved with his local church, and anyone who checks him out on Twitter will quickly learn that he's interested in British politics as well.

Go here to read the rest:
Star Wars Set Up Palpatine's Return, But Rise of Skywalker Ignored It - Screen Rant

Read More...

Why I Got the Russian Vaccine – The New York Times

Tuesday, January 12th, 2021

MOSCOW A nurse, needle in hand, asked me brusquely if I was ready. I said yes. A quick injection followed, then instructions to wait a half-hour in the hospital corridor for the possibility of anaphylactic shock, which thankfully never came.

Last Monday, I put aside my misgivings and got the first dose of Russias coronavirus vaccine, called Sputnik V, made at a factory outside of Moscow from genetically modified human cold viruses.

Like so much else in Russia, the rollout of Sputnik V was entangled in politics and propaganda, with President Vladimir V. Putin announcing its approval for use even before late-stage trials began. For months, it was pilloried by Western scientists. Like many Russian citizens distrustful of the new vaccine, saying they would wait to see how things turned out before getting it themselves, I had my doubts.

Consider how the rollout went: With the approval back in August, Russian health officials were quick to assert they had won the vaccine race, just as the country had won the space race decades ago with the Sputnik satellite. In fact, at the time, several other vaccine candidates were further along in testing.

A series of misleading announcements followed. The vaccines backers claimed a national inoculation campaign would begin in September, then in November; it ramped up only last month, no earlier than the kickoff of vaccinations in Britain and the United States.

Then came suspicions aired in foreign reporting that the Russian government, already eyed warily in medical matters over accusations of poisoning dissidents and doping Olympic athletes, was now cooking the books on vaccine trial results, perhaps for reasons of national pride or marketing.

As if to outperform the perceived competition, when Pfizer and the German pharmaceutical company BioNTech reported trial results showing more than 91 percent efficacy for their candidate vaccine, the Kremlin-connected financial company backing Sputnik V asserted its trials showed 92 percent efficacy.

When Moderna then reported 94.1 percent efficacy, the Russian company again claimed superiority, saying it achieved 95 percent. Officials later conceded, when the late-stage trials were complete, that Sputnik Vs results showed an efficacy rate of 91.4 percent.

But from the perspective of a recipient, did that matter? The final reported result still offers a nine out of 10 chance of avoiding Covid-19, once the vaccine has taken effect. Skepticism from Western experts focused mostly on the questionable early approval, not the vaccines design, which is similar to the one produced by Oxford University and AstraZeneca.

While public apprehension hasnt completely subsided, and the developers have yet to release detailed data on adverse events observed during the trials, the Russian government has now vaccinated about one million of its own citizens and exported Sputnik V to Belarus, Argentina and other countries, suggesting that any harmful side effects overlooked during trials would by now have come to light.

In the end, the politicized rollout only served to obscure the essentially good trial results what appears to be a bona fide accomplishment for Russian scientists continuing a long and storied practice of vaccine development.

In the Soviet period, tamping down infectious diseases was a public health priority at home and exporting vaccines to the developing world an element of Cold War diplomacy.

While the exact order of vaccine recipients may vary by state, most will likely put medical workers and residents of long-term care facilities first. If you want to understand how this decision is getting made, this article will help.

Life will return to normal only when society as a wholegains enough protection against the coronavirus. Once countries authorize a vaccine, theyll only be able to vaccinate a few percent of their citizens at most in the first couple months. The unvaccinated majority will still remain vulnerable to getting infected. A growing number of coronavirus vaccines are showing robust protection against becoming sick. But its also possible for people to spread the virus without even knowing theyre infected because they experience only mild symptoms or none at all. Scientists dont yet know if the vaccines also block the transmission of the coronavirus. So for the time being, even vaccinated people will need to wear masks, avoid indoor crowds, and so on. Once enough people get vaccinated, it will become very difficult for the coronavirus to find vulnerable people to infect. Depending on how quickly we as a society achieve that goal, life might start approaching something like normal by the fall 2021.

Yes, but not forever. The two vaccines that will potentially get authorized this month clearly protect people from getting sick with Covid-19. But the clinical trials that delivered these results were not designed to determine whether vaccinated people could still spread the coronavirus without developing symptoms. That remains a possibility. We know that people who are naturally infected by the coronavirus can spread it while theyre not experiencing any cough or other symptoms. Researcherswill be intensely studying this question as the vaccines roll out. In the meantime, even vaccinated people will need to think of themselves as possible spreaders.

The Pfizer and BioNTech vaccine is delivered as a shot in the arm, like other typical vaccines. The injection wont be any different from ones youve gotten before. Tens of thousands of people have already received the vaccines, and none of them have reported any serious health problems. But some of them have felt short-lived discomfort, including aches and flu-like symptoms that typically last a day. Its possible that people may need to plan to take a day off work or school after the second shot. While these experiences arent pleasant, they are a good sign: they are the result of your own immune system encountering the vaccine and mounting a potent response that will provide long-lasting immunity.

No. The vaccines from Moderna and Pfizer use a genetic molecule to prime the immune system. That molecule, known as mRNA, is eventually destroyed by the body. The mRNA is packaged in an oily bubble that can fuse to a cell, allowing the molecule to slip in. The cell uses the mRNA to make proteins from the coronavirus, which can stimulate the immune system. At any moment, each of our cells may contain hundreds of thousands of mRNA molecules, which they produce in order to make proteins of their own. Once those proteins are made, our cells then shred the mRNA with special enzymes. The mRNA molecules our cells make can only survive a matter of minutes. The mRNA in vaccines is engineered to withstand the cell's enzymes a bit longer, so that the cells can make extra virus proteins and prompt a stronger immune response. But the mRNA can only last for a few days at most before they are destroyed.

The Soviet Union and United States cooperated in eliminating smallpox through vaccination. Virology was central to the Soviet Unions biological weapons program, which continued in secrecy long after a 1975 treaty banned the weapons.

In 1959, a husband-and-wife team of Soviet scientists successfully tested the first live polio virus vaccine using their own children as the first trial subjects. That followed a Russian tradition of medical researchers testing potentially harmful products on themselves first.

Last spring, the chief developer of Sputnik V, Aleksandr L. Gintsburg, followed in this custom by injecting himself even before the announcement that animal trials had wrapped up.

Russian promoters have compared the vaccine to the Kalashnikov rifle, simple and effective in its operation. I was even lucky in avoiding some of the common side effects of Sputnik V, such as a raging headache or a fever.

With many of my fears alleviated, another reason I chose to get inoculated with a product of Russian genetic engineering was more basic: It was available. Russian clinics have not been dogged by the lines or logistical snafus reported at vaccination sites in the United States and other countries.

In Moscow, the best days of winter come in early January as the country slumbers through a weeklong holiday, the traffic thins and the citys bustling chaos gives way to a quiet, snowy beauty. Vaccination sites were also lightly attended.

Russias vaccination campaign began with medical workers and teachers and then expanded. It is now open to people older than 60 or with underlying conditions that render them vulnerable to more severe disease, and to people working in a widening list of professions deemed to be at high risk: bank tellers, city government workers, professional athletes, bus drivers, police officers and, conveniently for me, journalists. Its unclear whether Russias production capacity is sufficient to meet demand long term.

For now, with so many Russians deeply skeptical of their medical system and the vaccine, there is no great clamor for the shot. The first site I visited, while reporting back in December, closed early because so few people had turned up.

In the capital, the vaccine has, paradoxically, appealed to educated people, a group that is traditionally a hotbed of political opposition to Mr. Putin, the chief promoter of the vaccine. When it came to a decision about health, many rolled up their sleeves.

I got the second component of Sputnik in my shoulder, Andrei Desnitsky, an academic at the Institute of Oriental Studies who has been chronicling his experience with vaccination, wrote on Facebook.

To followers posting comments, he said, hysterics in the style of You sold out, you bastard, to the bloody regime and They take us all for idiots, will be deleted.

Like Mr. Desnitsky, I was willing to take my chances. At Polyclinic No. 5 on a snowy morning, I filled out a form asking about chronic diseases, blood disorders or heart ailments. I showed my press pass as proof of my profession. A doctor asked a few questions about allergies. I waited an hour or so for my turn in a beige-tiled hospital corridor.

Sitting nearby was Galina Chupyl, a 65-year-old municipal worker. What did she think of getting vaccinated?

I am happy, of course, she said. Nobody wants to get sick.

I agreed.

More here:
Why I Got the Russian Vaccine - The New York Times

Read More...

Illumination at the limits of knowledge – The Economist

Tuesday, January 12th, 2021

Jan 7th 2021

ALL THE technologies discussed in this report are moving forward apace. The companies which provide machinery to solar-cell manufacturers are ceaselessly trying to make more efficient use of silicon and less costly modules. In universities and elsewhere researchers are looking at ways to add a second layer to such cells so as to capture energy at wavelengths silicon ignoresthough their best attempts so far do not last very long outdoors.

Advances in manufacturing and design are making LEDs ever better sources of illumination. In more and more screens they backlight the liquid-crystal shutters which brighten pixels by detenebration. Some screens already do without shuttering, using liquid-crystal-free arrays of micro-LEDs to produce images that offer better contrast and use less energy. In information technology the division of labour that sees data processing done by electrons and data transmission by photons is under attack; switches that could be programmed to do some information processing while keeping that information in the form of photons would allow data to flow around data centres more quickly and efficiently. Laser beams of slightly different wavelengths are being packed ever more densely into optical fibres, with more bits encoded into every symbol stamped on to their light. The current record for data transfer down a single fibre, held by researchers at UCL, a British university, is 178 terabits a second.

But if you want to see lasers which push the boundaries of the possible in the most dramatic of ways, you have to turn to those made, not for practical applications, but to further science. Wherever researchers require ludicrous amounts of power or precision, theres every chance that they are using a laser, some sort of digital photon detector, or both. To see the cutting edge of what light can do, head for a lab.

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California is a case in point: walking its halls evokes a sense of the technological sublime which is all but visceral. The 192 laser beams from the 100-metre-long, xenon-pumped beamlines that fill its two warehouse-sized clean rooms converge on a peculiarly perforated spherical chamber. When NIF is operational a tiny bubble at the centre of that chamber is illuminated with 500 terawatts, which is to say 500,000GW.

Given that the worlds total electricity generating capacity is less than 5TW, how is a 500TW system possible? The answer is brevity. Because power is energy divided by time, a relatively small amount of energy can provide a huge amount of power if it is delivered quickly enough. The NIF fires for only a few tens of nanoseconds (billionths of a second) at a time. Each blink-and-you-miss-it 500TW blast thus delivers only a kilowatt-hour or so of energy.

Using such a gargantuan device to provide such a modest amount of energy seems bizarre. But NIFs job requires the energy to be delivered with great spatial precision and almost instantaneously. Only then can it heat the lasers tiny targets to temperatures and pressures otherwise reached only in the centres of stars and the blasts of nuclear weaponsconditions which can fuse atomic nuclei. Congress paid billions for the NIF on the basis that it might open the way to making nuclear fusion of this sort a practical energy source. It has not delivered on those dreams. But it has provided new insights into astrophysics as well as experimental data relevant to the design and maintenance of hydrogen bombs, which is Lawrence Livermores main concern.

Physicists are not the only scientists entranced by lasers. One of the workhorses of genetic engineering is green fluorescent protein (GFP). The instructions for making GFP are easily added to genes for other proteins. When poked with finely focused lasers these modified proteins fluoresce, thus revealing their whereaboutsa handy way of learning which proteins cells put where.

A remarkable refinement of this technique, first demonstrated in 2011, is to turn the cell itself into a laser. Engineer a cell to produce GFP, put it between two mirrors and pump energy in and the proteins light will be amplified in just the same way as it would in a piece of ruby or neodymium-doped glass. Light-emission microscopy based on this possibility amplifies the light given off by fluorescent proteins and other light-emitting markers.

Photons can also be used to change how cells behave. By engineering proteins to be sensitive to light and then turning that light on and off, researchers can change what cells doincluding the ways they do, or dont, transmit nerve impulses. Laser light flashed on to the nerves of a suitably engineered flatworm, or shone down optical fibres into the brain of a mouse, allows researchers to turn different parts of the nervous system on and off and observe the changes in behaviour that follow. This optogenetic puppeteering provides all sorts of new insights into the machinery of the brain. With all due respect to those using photons to explore the strange interconnectedness of things in quantum mechanicswhich Einstein famously described as spookyphotons that can literally change a mind in mid-thought may be the spookiest of all.

The degree to which light-based techniques are changing sciences across the board can be seen in the past decades decisions by the Nobel Physics Committee. In 2014 the committee recognised a physical breakthrough in the production of lightthe development of blue LEDs, a technical tour de force which made the production of white light cheaper and easier than ever before. Since then the physics prize has been awarded to three different ways of using lasers either for experiments in the lab or observations of the world. A tour of these prize-winning accomplishments allows a last celebration of this golden age of light.

Start with pure power. A technique called chirped-pulse amplification, developed by Donna Strickland and Grard Mourou when they were both at the University of Rochester, allows lasers far more powerful than the NIFlasers which work in the petawatt range. It provides a way around the unfortunate fact that, above a certain power level, even a very short pulse will melt any laser trying to amplify it further. Chirp amplification solves the problem by stretching pulses out in both space and time. An intense packet of photons that is, say, a millimetre long, and thus passes through any machine in just three trillionths of a second, can be chirped into one that is a metre long and lasts a full three billionths of a second. This stretched pulse is low-power enough to be amplified, after which it can be compressed back into its original form as a burst just as short as ever but now containing many more photons.

Labs around the world now use this technique to produce bursts of light both far shorter and far more powerful than those at NIF using much cheaper equipment. This allows them to study nuclear processes that are even more extreme than fusion. If the pulses can be made 1,000 times shorter stillwhich Dr Mourou, at least, thinks is possible, given a decade or sothey could achieve something no other technology has yet managed: the creation of matter (and antimatter) from scratch.

Einsteins work dispensed with the need for an all-pervading luminiferous aether. But the fields evoked by quantum electrodynamics (QED), the mid-20th-century culmination of work on electromagnetism, quantum theory and relativity, populate empty space with something else instead: very faint possibilities. And QED says that, if light gets sufficiently intense, its photons will interact with these possibilities to bring forth brand new electrons from empty space. Einsteins insight that mass can be converted into energy has been proven many times, most terribly in nuclear weapons. Creating material particles from massless light alone would be a remarkable turning of the tables, and one that ought to provide new insight into the quantum fields involved.

After power, pressure. The momentum of photons is tiny; but when applied to tiny things it can do useful work. In the 1960s Arthur Ashkin of Bell Labs realised that, if a small transparent object is placed on the edge of a laser beam it will move to the beams centre (provided that the beam is brighter at the centre than the edge). This is because the photons that pass through the object have their path bent outward, away from the beam: conservation of momentum requires the object thus diverting them to move in the opposite direction. If, once caught up in the beam, the object strays from its bright centre, the light pressure will bring it back.

In the 1970s Dr Ashkin put this idea into practice, using laser beams as optical tweezers with which to manipulate microscopic beads. In the 1980s he got the technique to work on individual bacteria and virus particles, while his student Steven Chu used a variant to trap individual atomswork that won Dr Chu and colleagues a Nobel prize in 1997. The increasing use made of his tweezers in biology saw Dr Ashkin follow in his students footsteps in 2018, sharing the prize with Dr Strickland and Dr Mourou.

And then there is precision. Einsteins general theory of relativity, promulgated in 1915, explains gravity in terms of the distortions masses impose on spacetimespacetime being, to Einstein, simply the thing that clocks and rulers measure. His special theory of relativity had laid out the case for light being the ultimate ruler, a view that measurement professionals now share; the General Conference on Weights and Measures defines the metre not as the length of a specific rod in a vault in Paris, as it once did, but as the distance a photon in a vacuum travels in 1/299,792,458 of a second. Thus if you want to see ripples in spacetimesuch as those which relativity says must be produced when two very large masses pirouette around each otherlight is the best sort of ruler to use.

The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two such rulers. Its twin detectors, one in Louisiana and one in Washington state, both feature 4km-long perpendicular arms along which laser beams of truly phenomenal stability bounce back and forth (see chart). Instruments mounted at the point where the beams cross compare their phases in order to detect transitory differences in the arms lengths. Their precision is equivalent to that which would be needed to detect a hairs-breadth change in the distance to a nearby star.

On September 14th 2015 LIGO picked up the shiver in spacetime produced by the merger of two black holes 1.3bn light-years away. In 2017 the Nobel Physics Committee, free of naysaying ophthalmologists, awarded the prize to Rainer Weiss, Kip Thorne and Barry C. Barish, the three scientists who had done most to make that observation happen.

Their extraordinary measurement was treated, quite rightly, as a slightly late 100th-birthday present for Einsteins truly remarkable intellectual achievement. It was also an extraordinary demonstration of what can be done with photons. A century of work by scientists and engineers has taken the energy packets that Einstein first imagined in 1905 and produced a range of technologies with capabilities little short of the miraculousa collective achievement far greater than any single act of genius. Relativity is remarkable. Putting photons to use has been revolutionary.

This article appeared in the Technology Quarterly section of the print edition under the headline "New enlightenments"

Read this article:
Illumination at the limits of knowledge - The Economist

Read More...

Exacis Biotherapeutics Announces Its Launch and mRNA Technology In-Licensing For Targeted CAR-NK And CAR-T Cell Cancer Therapies – BioSpace

Tuesday, January 12th, 2021

CAMBRIDGE, Mass., Jan. 6, 2021 /PRNewswire/ -- Exacis Biotherapeutics, Inc., a development-stageimmuno-oncology company working to harness the immune system to cure cancer,today announcedits formation along with completion of in-licensing of certain technologies from Factor Bioscience, a leading cell sciences company. The exclusive license allows Exacis to create allogeneic engineered T and NK cells from induced pluripotent stem cells (iPSC). Exacis'next generation approachavoids useof DNA andviruses by usingmRNA.The technologies will be used for generatingiPSC and for performing genetic editing to create stealthed, allogeneic cell products, termed ExaCAR-Tor ExaCAR-NKcells.

Exacis also announcedthe addition of key members to its leadership team, Scientific Advisory Board and Board of Directors. Gregory Fiore, MD,a Harvard trained physician, seasoned pharmaceutical executiveand serial entrepreneur, has been named Chief Executive Officer.Dr. Fiore is joined on the management team by co-founder and Head of Discovery and Development, James Pan, PhD,an entrepreneur andbiologics expert. DimitriosGoundis, PhD, formerly CEO of MaxiVAX, a private Swiss immuno-oncology company, joins Exacis as the Chief Business Officer.

Exacis was launched by Factor Bioscience with an exclusive license to its intellectual property for developing targeted, allogeneic cell therapies for cancer treatment. Factor CEO Matthew Angel, PhD,is the Chair of Exacis'Scientific Advisory Board and is joined on the SAB by Factor Co-Founder Christopher Rohde, PhD, Eric Westin, MD,and Gunnar Kaufmann, PhD. Exacis' Board of Directors is chaired by Mark Corrigan,MD, a highly successfuldrug developer,biotechnology CEO and Board Chairperson.

Commenting on the new endeavor, Dr. Fiore said, "This is a wonderful opportunity to create innovative, next-generation NK and T cell therapies to improve outcomes and experiences for patients with challenging liquid and solid tumors."

Exacis' Board Chairman Corrigan added, "The ground- breaking science Exacis has in-licensed, along with the team we are building, provide a strong foundation for developing successful targeted cell therapies for the treatment of cancer."

Exacis has secured initial seed funding and is seeking to raise Series A funding in early 2021. The company has initiated discussions with several potential development collaborators.

About Exacis Biotherapeutics

Exacis is a development stage biotechnology company focused on harnessing the human immune system to cure cancerby engineering off-the-shelf NK and T cell therapies aimed at liquid and solid tumors.Exacis was founded in 2020 with an exclusive license to a broad suite of patents covering the use oftechnologies developed by Factor Biosciences.

About Factor Bioscience

Founded in 2011, Factor Bioscience develops technologies for engineering cells to advance the study and treatment of disease. It actively licenses its technologies to entities wishing to conduct commercial research, sell tools, reagents and other products, perform commercial services for third parties, and develop human and veterinary therapeutics. Factor Bioscience is privately held and is headquartered in Cambridge, MA.

About T and Natural Killer (NK) Cell Therapies

T and NK cells are types of human immune cells that are ableto recognize and destroy cancer cells and can be modified through genetic engineering to target specific tumors.

View original content:http://www.prnewswire.com/news-releases/exacis-biotherapeutics-announces-its-launch-and-mrna-technology-in-licensing-for-targeted-car-nk-and-car-t-cell-cancer-therapies-301202174.html

SOURCE Exacis Biotherapeutics, Inc.

Link:
Exacis Biotherapeutics Announces Its Launch and mRNA Technology In-Licensing For Targeted CAR-NK And CAR-T Cell Cancer Therapies - BioSpace

Read More...

Does Organic Mean Non-GMO? Here’s the Difference Between the Two – Green Matters

Tuesday, January 12th, 2021

Furthermore, there's somewhat of a gray area when it comes to understanding what organic means, and its relationship to genetically modified organisms (GMOs). Does an organic label automatically mean the item is non-GMO? Is organic always considered non-GMO? And what does non-GMO mean anyway? Keep reading to learn more about organic standards and non-GMO.

An organic label refers to an organism (plant, crop, food, or fabric) that has been produced without the aid of chemical or synthetic fertilizers, pesticides, herbicides, insecticides, or fungicides. In order to reach the certification standard of organic, items cannot be grown using antibiotics or artificial growth hormones either. If items have used fertilizers, pesticides, artificial growth hormones, or antibiotics during the growing process, these items are referred to as conventional.

Is organic better? There are absolutely environmental and health benefits to buying organic. According to Organic Trade Association, such benefits include promoting public health and health of the environment, no use of toxic pesticides and petroleum-based fertilizers, increased levels of nutrients and antioxidants, no use of artificial preservatives, colorings, added flavors, or ionizing radiation, and no antibiotics, growth hormones, or artificial drugs.

Article continues below advertisement

Organic regulations also constitute specific regulations about soil, ensuring the soil in which organic seeds are grown is healthy and promotes biodiversity, which is another meaningful environmental benefit.

Article continues below advertisement

In order to live up to the stringent organic standards, an item may not be genetically modified. According to USDA, the use of GMOs in organic products is explicitly prohibited in the definition of what organic is. The USDA states, The use of genetic engineering, or genetically modified organisms (GMOs), is prohibited in organic products. This means an organic farmer cant plant GMO seeds, an organic cow cant eat GMO alfalfa or corn, and an organic soup produced cant use any GMO ingredients.

You may be wondering, though: What guarantee is there that farmers wont use GMOs in their alleged organic products? Well, the USDA makes it difficult for farmers to get an organic certification. First, farmers have to prove that they can meet USDA organic standards. The website continues, To meet the USDA organic regulations, farmers and processors must show they arent using GMOs and that they are protecting their products from contact with prohibited substances, such as GMOs, from farm to table.

Article continues below advertisement

The USDA also has a National List of Allowed and Prohibited Substances for organic products and GMOs arent the only items on the list. The list also prohibits ash from manure burning, arsenic, calcium chloride, lead salts, potassium chloride, rotenone, sodium fluoaluminate, sodium nitrate, strychnine, and tobacco dust.

Article continues below advertisement

Yes, according to the USDAs very vigorous standards, all foods labeled organic are inherently also non-GMO. This means organic foods have not been genetically modified in anyway. In the example of organic meat, this means an organic cow was not fed any feed that was genetically modified either.

That being said, certain foods are at a higher risk for being genetically engineered or modified in some way, so if youre looking to only eat non-GMO, you might want to only eat these foods if they specifically are labeled organic or non-GMO. According to CNN, vegetables that are high-risk for GMOs include edamame, sweet corn, yellow summer squash, zucchini, and papaya from Hawaii or China. So, make sure to buy those organic.

Article continues below advertisement

Prganic seeds are also non-GMO. An organic farmer is not allowed, under the USDAs standards, to plant genetically modified seeds. According to a 2014 article from the USDAs blog, organic seeds are described as a fundamental right from the start.

The article states, The use of organic seed is also an important aspect of organic certification. During each farms annual review and inspection, certifying agents also verify that certified operations use organic seed varieties."

Article continues below advertisement

Certifying agents also make sure that USDA organic products meet all of the organic standards, including reviewing substances and inputs used to treat seeds and planting stock.

The article also adds, Like other organic products, seeds used in organic agriculture cannot be genetically engineered or be treated with prohibited substances.

Article continues below advertisement

To ensure that organic seeds get proper treatment on organic farms, the USDA works with the National Organic Program (NOP), the Organic Seed Alliance (OSA), and the Association of Official Seed Certifying Agencies (AOSCA). These organizations collaborate to better understand the organic seed market and to help farmers locate seed producers and supplies. This is a direct response to an increased demand for organic seeds, as the demand for organic food increases.

To help with this increase in demand, the NOP aided the USDA in the creation of the AOSCA Organic Seed Finder, a website that works to connect organic seed vendors with potential customers. The website allows users to search specific categories such as vegetables, fruits, herbs and flowers, and field crops, to accurately curate searches based on what the user is looking for.

The USDA states, Certifying agents and organic operations can use this tool to locate available organic seed and ensure the integrity of those seeds.

Read more here:
Does Organic Mean Non-GMO? Here's the Difference Between the Two - Green Matters

Read More...

UPDATED: Bluebird spins itself into two companies, severing gene therapy and cancer units – Endpoints News

Tuesday, January 12th, 2021

Bluebird bio, once one of biotechs flashiest companies, is taking a sweeping step as it looks to right the ship after a series of high-profile setbacks: splitting the company in two.

The Cambridge-based company will split itself into a unit focused on cancer and a unit focused on rare disease, severing the cell therapy and gene therapy units that the biotech rode to prominence. CEO Nick Leschly explained the move as a practical one, reflecting the different kinds of expertise in the disease areas.

You dont build an oncology company by hiring people who are experts in severe genetic disease, nor do you do vice versa, Leschly told WSJ. A lot of this comes down to priorities and focus.

Yet the move comes as bluebirds stock has lost much of its initial luster, as bluebird has struggled to turn strong data into commercial therapies and investors moved on to newer gene therapy companies such as CRISPR Therapeutics.

And it will effectively end Leschlys day-to-day involvement in the biotech he has become synonymous with and a gene therapy field where he long served as the most prominent CEO. Leschly will lead the as-yet-unnamed newco, while Andrew Obenshain, their longtime European chief, will lead bluebird bio. Leschly will hang on as bluebirds executive chair.

Analysts were skeptical that the approach was the solution. In a note to investors, Piper Sandlers Tyler Van Buren said bluebird had struggled to replenish its pipeline over the years, despite significant funding, and he worried that they didnt have enough assets or cash to sustain multiple companies.

Ultimately, while these two franchises are different, we are not convinced that their respective pipelines are robust enough to sustain the independent entities, he wrote, and we believe some investors appreciated the balance of the two franchises.

The companys stock $BLUE, which has fallen dramatically from its 2011 peak, when it was worth over $11 billion, remained flat at just under $49.

After commanding attention with curative data for a sickle cell gene therapy and numerous remissions in trials for a multiple myeloma cell therapy, bluebird has struggled to bring both past the finish line.

After their most recent delay, the company remains nearly two years away from submitting their sickle cell gene therapy to the FDA. The FDA is now reviewing the multiple myeloma cell therapy ide-cel, now partnered with Bristol Myers Squibb, but the agency initially served the company with a refuse-to-file letter for submitting insufficient manufacturing information.

The gene therapy, known as Zynteglo, was approved in Europe for another rare blood disease, beta thalassemia. But the $1.8 million price tag bluebird placed on it shocked analysts and industry watchers and, with the pandemic hitting shortly after their official launch, the company had yet to sell a single unit as of their November Q3 filing.

Despite the setbacks, the company still remains at the front of a now crowded pack to commercialize a sickle cell cure, and analysts peg peak sales for ide-cel as high as $900 million. Bluebird also has an immunotherapy for Merkel cell carcinoma and a gene therapy for cerebral adrenoleukodystrophy in clinical development.

Read the rest here:
UPDATED: Bluebird spins itself into two companies, severing gene therapy and cancer units - Endpoints News

Read More...

Hamsters genetically engineered by USU researchers are on the front lines of COVID-19 vaccine trials in Belgium – KSL.com

Thursday, December 3rd, 2020

LOGAN Genetically engineered golden Syrian hamsters developed by Utah State University researchers played a key role in animal trials of a possible vaccine to protect against the virus that causes COVID-19.

The Rega Institute in Leuven, Belgium, has used the hamsters produced by professor Zhongde Wang and his lab at USU to test the safety and effectiveness of a possible vaccine.

Details of the research conducted by the Rega Institute and its findings were published online in the journal Nature this week.

The candidate vaccine was found to be safe and effective in several animal models by a team of scientists at the institute.

Animal models play a vital role in vaccine research "because we cannot directly test them in humans. We need to use animal models, (it's) very critical," Wang said.

Wang said two pairs of hamsters were shipped to the Belgium lab in 2018 to start a breeding colony in an agreement with his lab.

"The scientists in my lab and I are very gratified that our research is contributing to combating this raging COVID-19 pandemic," Wang said in a statement.

"We also feel grateful for the excellent support from USU's Laboratory Animal Research Center to help us to carry out the research."

The Wang lab, established at USU in 2012, developed the first genetic hamster models in the world. The models are used in more than a dozen labs and institutions including the National Institutes of Health, the U.S. Army Medical Research Institute of Infectious Diseases, and Public Health Agency of Canada.

Hamsters from Wang's lab are also utilized in COVID-19 and other studies in USU's Institute for Antiviral Research.

"We pioneered development of genetic engineering techniques in this species and now we have about 30 different models. These are 30 different genetic modifications," Wang said in an interview Wednesday,

Typically, rodents carry many disease-causing organisms without becoming sick. The USU lab genetically engineered the golden Syrian hamsters to be susceptible to viruses that infect humans.

Viruses frequently attach to receptors in humans that are not present in animals, which limits effective testing of potential drugs to prevent or treat diseases. Hamsters from Wang's lab have a human gene inserted into their DNA for the receptor to which this coronavirus binds to facilitate testing, according to a university press release.

Because the hamsters are designed specifically to react to disease challenges more like humans, it takes fewer experiments to verify results, which expedites the process and can reduce numbers of animals used in research.

"We take animal welfare extremely seriously, and only the minimum numbers of animals required are used," said Wang, a professor in the Department of Animal, Dairy and Veterinary Sciences, in an article posted on a university website.

"In addition to that, all procedures are approved by Institutional Animal Care and Use Committees. It is essential to use these animals in vaccine studies before trials can be done in human subjects."

See original here:
Hamsters genetically engineered by USU researchers are on the front lines of COVID-19 vaccine trials in Belgium - KSL.com

Read More...

Combination enhances solid tumor immunotherapy | 2020-12-02 – BioWorld Online

Thursday, December 3rd, 2020

Combining metabolic intervention with T-cell immunotherapy is safe and resulted in improved efficacy in two mouse models of solid tumors, providing an alternative combination strategy for boosting solid tumor immunotherapy, according to a new study by scientists at China Pharmaceutical University (CPU).

The study proves the concept of cell-surface anchor-bioengineering, which can be readily adapted to other combinations of cell therapy and metabolic drugs and/or antibodies, the authors reported in the November 25, 2020, edition of Science Translational Medicine.

"We have constructed a cell-surface anchor-bioengineered T cell combining metabolic and T-cell therapy, then shown this strategy be safe and effective against solid tumors in mice," said lead researcher Can Zhang, a professor in the Center of Advanced Pharmaceuticals and Biomaterials at CPU in Nanjing.

T-cell therapy has achieved considerable clinical and preclinical success in treating hematologic malignancies, but has had limited therapeutic effects in solid tumors.

Most studies have focused on combining proinflammatory cytokines or immune checkpoint inhibitors with T cells to improve efficacy, but that approach is effective only in a fraction of patients, and has toxicity risks.

The oxygen- and nutrient-deprived tumor microenvironment has been shown to impede T-cell infiltration, survival, and function, limiting the benefit of solid tumor T-cell therapy.

T-cell metabolic pathways offer potential intervention targets. For example, T-cell function requires cell membrane cholesterol to cluster T-cell receptors (TCRs) and form an immune synapse. Cholesterol metabolic modulation plus T-cell therapy may thus improve solid tumor immunotherapy.

Avasimibe is an effective cholesterol acetyl-CoA acetyltransferase 1 (ACAT1) inhibitor, which increases plasma membrane cholesterol, thereby promoting TCR clustering and improving T-cell effector function.

"ACAT1 is the major enzyme of cholesterol esterification in CD8+ T cells, and it has recently been shown that inhibiting ACAT1 activity via avasimibe can significantly potentiate the effector function of these T cells," said Zhang.

Moreover, "avasimide has previously progressed to phase III trials in atherosclerosis patients, in whom it showed a good safety profile," she told BioWorld Science.

This established safety and efficacy led to the hypothesis that combining avasimide with T-cell therapy might boost solid tumor immunotherapy, but it has been challenging to optimize the two modalities as a combination therapy.

Thus it is necessary to develop combinatorial technologies that maximize both treatments, whereby genetically engineered T cells can be used to produce designed protein drugs.

Unfortunately, heterogeneous expression of engineered proteins and toxicity potential reduces this strategy's efficacy and small molecule drugs cannot be genetically manipulated.

An alternative to genetic engineering involves 'backpacking' nanoparticle drugs onto the T-cell surface via chemical conjugation or ligand-receptor interaction to augment T-cell function and increase the therapeutic efficacy of combinations.

However, previous studies have shown that backpacking may impair T-cell physiological functions, due to long-term occupation of T-cell membrane biomolecules or altered T-cell glycometabolism.

Thus, technology involving backpacking nanoparticle drugs onto the T-cell surface needs to be further improved to reduce the impact of backpacking on T-cell function.

In their new Science Translational Medicine study, Zhang and her team attached liposomal avasimide onto the T-cell surface by lipid insertion and a click molecular insertion technique, without disturbing T-cell physiological function.

They demonstrated that avasimide could be retained on the T-cell surface during circulation and extravasation then locally diffused to increase the T-cell membrane cholesterol concentration, inducing rapid TCR clustering and sustained T-cell activation.

Treatment with cell-surface anchor-engineered T cells, including mouse TCR transgenic CD8+ T cells or human chimeric antigen receptor T (CAR T) cells, resulted in superior antitumor efficacy in mouse models of melanoma and glioblastoma.

Moreover, glioblastoma was completely eradicated in 3 of 5 mice receiving surface anchor-engineered CAR T cells, whereas saline-treated control mice survived no more than 64 days. Regarding safety, the administration of bioengineered T cells showed no apparent systemic side effects in these mouse tumor models.

"Although safety findings made with engineered T cells in mice can reflect safety in humans to some extent, potential interspecies differences should also be considered," noted Zhang. These findings show that cell-surface anchor-engineered T cells hold translational potential, because of their simple generation and their good safety profile, but further developmental work is necessary.

"We need to optimize preparation techniques to improve the yield of bioengineered T cells and to develop integrated and automated production techniques, in order to realize large-scale production," said Zhang.

"It will also be necessary to establish quality standards and corresponding rapid detection methods during each production stage, all of which might take several years or more," said Zhang.

"This new therapeutic strategy of combining metabolic intervention and CAR T therapy, including the use of different CAR T cells, might also be effective in diverse solid tumors," she said.

"Our group will continue to investigate the safety and efficacy of cell-surface-modification technologies that can be deployed to various cell types, including neutrophils, natural killer cells and so forth."

Here is the original post:
Combination enhances solid tumor immunotherapy | 2020-12-02 - BioWorld Online

Read More...

Battle over 15-year GMO ban extension rages in Peru as farmers breed and cultivate illegal biotech seed – Genetic Literacy Project

Thursday, December 3rd, 2020

In the midst of a ferocious debate over the future of biotechnology in Latin America, the Peruvian Congress recently extended the nations decade-old moratorium on GMOs for another 15 years, alleging that biotech crops would have a negative impact on the countrys megadiversity. The news was not particularly surprising to scientists, who have watched no fewer than six bills introduced over four months that would have extended the current moratorium, way before its December 2021 expiration date.

Once the moratorium was extended, the presidents signature would have made it official. But weeks of political turmoil, during which three presidential contenders vied for executive power, have thrown the bans future into uncertainty. Congress kicked the former president out of office and installed his successor, who was forced to resign just a few days later. Peru appears to have selected a new chief executive to serve for at least the next several months, and the countrys choice has anti-GMO activists concerned.

The new head of State, Francisco Sagasti, is a dedicated academic, science advocate and former congressman who voted against the moratorium, arguing that such a measure should not be approved unless and until the Science, Innovation, and Technology Commission signs off on the proposal:

I regret that the moratorium on entry, production, and research on GMOs has been approved for such a long term 15 yearswithout input from experts who staff the Commission on Science, Innovation, and Technology. We will soon start a round of consultations to calmly and thoroughly analyze this complex issue.

Following this statement, the new environment minister announced that the Executive Branch is awaiting presidential approval to initiate a technical debate that will benefit from the input of government regulators and scientists, giving crop biotechnology advocates a brief opportunity to make their case and highlighting Perus complicated history with genetic engineering.

The coalition of highly organized anti-GMO activists and organic food lobbyists behind the moratorium legislation did all they could to monopolize the debate, while simultaneously accusing the biotech industry of employing the same strategy. They claimed that seed companies were trying to force their way into the country, which of course wasnt possible with a ban already in place. The activists also took to social media to attack GMOs and organize webinars to explain why the moratorium extension was necessary. Biotech experts were never invited to take part in the discussions, and events that presented both sides of the debate were few and far between.

As the moratorium legislation underwent exhaustive revision, many old myths about GM crops were utilizedyet againto justify the ban. For example, the scandalous study conducted by Gilles-ric Sralini was trotted out to associate GMOs with cancer, though experts have conclusively shown that the French geneticists findings are dubious. The activists also revived a classic argument, widely used around the world though new to Peru: Marca Per, which means, the country as a brand.

Inspired by this rhetoric, politicians feared that the countrys brand could be harmed by the adoption of GM crops, since Peru has sold itself as an ancestral homeland to organic food produced from native seeds. While this argument generated enough support to extend the moratorium, it is little more than a marketing myth used to sell the image of Peru as a GM-free territory.

As it turns out, GM crops are anything but foreign to Peru. Many farmers in the country, perhaps unwittingly, have been cultivating insect-resistant biotech corn for years. The illegal practice has been universally condemned, but the experience of these growers nonetheless undermines the case made by ban proponents who claim biotechnology poses a threat to Peru.

During the previous 10-year moratorium, commercializing and planting transgenic seeds was completely banned in Peru. That said, Peru was (and still is) an avid importer of commodities grown from genetically modified seeds, such as corn and soy. In 2019 alone, Peru spent $142.6 million on imported soy, 81% of which came from the United States, one of the top GM soy producers in the world. One of Perus most precious staple foods, maize, is likewise often grown from GM seeds in other countries. Last year, Peru imported almost four million tons of yellow corn, mainly from Argentina, one of the top GM crop producers in Latin America.

And this is where the story gets interesting. According to a report released this year by the Ministry of Environment (MINAM), some Peruvian farmers have for years repurposed this imported genetically modified grain as seed and planted it in their own fields.

The report noted that regulators in 2019 detected transgenes (GMOs) in 88.3% of the fields inspected and in 100% of collected grains, all samples coming from three maize varieties: Pato (duck) maizewhich is a hybrid of yellow corn and alazan (a native race that has an intense red color)and two other local races of white and purple corn. These findings arent unprecedented, either. Back in 2016 and 2018, authorities also found transgenes in the same region of the country (Piura), and inspections of other farming regions could reveal more illegal GM seed once the pandemic travel restrictions are lifted.

Seed companies have never sold biotech products in Peru, even before the moratorium was enacted, mainly because the law has to be respected, but also because operating in a country with no GM crop regulations can invite problems no firm wants to deal with. However, the dearth of commercialized GM seed wasnt much of a barrier for farmers.

Historically, Piura farmers have planted their own hybrid yellow maize, a common practice in the region because its far cheaper than buying certified hybrid seed. They recently began crossing their hybrid seed with alazan to obtain Pato (duck), a variety with a mix of both phenotypes. Its used as animal feed (hence the name) and to make chicha de jora, a traditional beverage in the area.

At some point, farmers starting crossing this cultivated maize with imported GM yellow corn that was easily found in local markets, thus obtaining a pato maize with insect resistance. Farmers noticed the benefits of this new corn and decided to stick with it.

MINAM was able to better assess the situation after interviewing farmers in the region. Most notable were their reasons for choosing not to plant certified hybrid seed:

Whether or not farmers knew they were planting and breeding genetically modified grain remains a mystery. It is also difficult to know precisely when their off-the-books breeding efforts began. But in a 2009 study, researchers from the National Agrarian University La Molina detected transgenes in grains from three different regions of Peru. As for the data coming from the most recent study in Piura, 89.9% of samples were positive for the Cry1A protein that most likely came from MON810, an old Monsanto insect-resistance event released back in the late 1990s that is no longer commercially available (new and improved varieties have since been released in other countries).

Even though this insect-resistance trait is many years old, farmers benefited from the technology. MINAM reported: Although [Cry1As] effectiveness in controlling the pest is not the most optimal (due to the segregation of genes or the appearance of resistance), it is enough to reduce the use of pesticides by half or a third. It is important to clarify that pest tolerance to the insecticidal protein was bound to evolve; Peruvian farmers have no knowledge of good farming practices designed to preserve the effectiveness of insect-resistant crops.

This evidence points to the possibility that growers have been illegally planting imported GM grain for over a decade, even before the official ban went into effect. But the eradication process is proving to be a real challenge. Farmers are not excited about giving up their pato maize for expensive hybrid seed that requires more water and twice the amount of pesticide. As a result, officials are looking forward to replacing the certified hybrid corn with different crops:

The reconversion of agriculture for another more profitable crop requires . long-term work, taking into account the supply and demand of these products. Precisely, rice (produced in the big season) was the crop that displaced the hundreds of hectares of Pima cotton that were planted in the area, because the latter was no longer profitable. The farmer will always choose the crop that gives him the best income, especially if it is immediate since his agriculture is mainly subsistence.

Regulators, biotech advocates, and anti-GMO groups know there are GM crops grown in Peruvian soil, but none of them wants to address the issue. Regulators do not want to reveal their actual position on such a politicized topic; the risk of a heavy media backlash is too great. Biotech advocates also avoid talking about this since they do not want the public to think they endorse illegal activity. On the other hand, anti-GMO groups simply wont talk about farmers growing biotech crops to cut pesticide and water use because it challenges their narrative.

At this point, biotech advocates are struggling to keep their cause alive, wondering if GM crops will ever be approved by a country whose farmers clearly see the benefits of genetic engineering. Although the new administrations comments have strengthened their resolve, the science community knows whats at stake: rising crop losses they wont be allowed to stop.

Perus biodiversity, which anti-biotech activist groups have sworn to protect, will also suffer. According to MINAMs National Forest and Wildlife Service, smallholder farmers who cut down trees to cultivate agricultural areas smaller than five hectares are responsible for 78% of the countrys deforestation. The adoption of GM crops could curb land expansion by increasing crop yield and farmers incomes.

In a country where agricultural biotechnology research has been held back for a decade, scientists can only encourage the new administration to change course. If it wont, consumers, farmers and the environment will suffer unnecessarily.

Sherly Montaguth is a biologist, content strategist and editor currently working as Communications Coordinator for the Andean Region of Agro-Bio. Follow her on Twitter @cherrymontaguth

Excerpt from:
Battle over 15-year GMO ban extension rages in Peru as farmers breed and cultivate illegal biotech seed - Genetic Literacy Project

Read More...

SAB Biotherapeutics Awarded $57.5M from BARDA and US Department of Defense for Manufacturing of SAB-185 for the Treatment of COVID-19 | Antibodies |…

Thursday, December 3rd, 2020

DetailsCategory: AntibodiesPublished on Tuesday, 01 December 2020 10:26Hits: 470

SIOUX FALLS, SD, USA I November 30, 2020 I SAB Biotherapeutics (SAB), a clinical stage biopharmaceutical company developing a novel immunotherapy platform to produce specifically targeted, high-potency, fully human polyclonal antibodies without the need for human serum, today announced that, as part of Operation Warp Speed, the Biomedical Advanced Research and Development Authority (BARDA), part of the Office of the Assistant Secretary for Preparedness and Response at the U.S. Department of Health and Human Services, and the Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND) have awarded SAB $57.5 million in expanded scope for its DiversitAb Rapid Response Antibody Program contract for the manufacturing of SAB-185, the companys clinical stage therapeutic candidate for COVID-19.

"We are pleased to be awarded this additional contract scope, which we believe is a reflection of the compelling science that supports SAB-185s potential in COVID-19, as well as the urgent need for treatment options amidst the global pandemic. Previous data has indicated that this human polyclonal antibody therapeutic has potent neutralizing activity against SARS-CoV-2, potentially driving more available doses, giving us the confidence to continue to progress our clinical development programs for SAB-185, said Eddie J. Sullivan, PhD, co-founder, president and CEO of SAB Biotherapeutics. This manufacturing agreement with BARDA and the Department of Defense supports our vision of bringing a novel, first-of-its-kind human polyclonal antibody therapeutic candidate for COVID-19 to patients, and I am proud of the work by our team and appreciate the continued support from BARDA and JPEO as we continue to rapidly advance SAB-185.

SAB-185 is currently being tested as a COVID-19 therapeutic in an ongoing Phase 1 trial in healthy volunteers and an ongoing Phase Ib trial in patients with mild or moderate COVID-19. SAB has leveraged its expertise to develop scalable manufacturing capabilities to support clinical activities, and continues to increase capacities in working with contract manufacturing organizations.

About SAB-185

SAB-185 is a fully-human, specifically-targeted and broadly neutralizing polyclonal antibody therapeutic candidate for COVID-19. The therapeutic was developed from SABs novel proprietary DiversitAb Rapid Response Antibody Program. SAB filed the Investigational New Drug (IND) application and produced the initial clinical doses in just 98 days from program initiation. The novel therapeutic has shown neutralization of both the Munich and Washington strains of mutated virus in preclinical studies. Preclinical data has also demonstrated SAB-185 to be significantly more potent than human-derived convalescent plasma.

About SAB Biotherapeutics, Inc.

SAB Biotherapeutics, Inc. (SAB) is a clinical-stage, biopharmaceutical company advancing a new class of immunotherapies leveraging fully human polyclonal antibodies. Utilizing some of the most complex genetic engineering and antibody science in the world, SAB has developed the only platform that can rapidly produce natural, specifically-targeted, high-potency, human polyclonal immunotherapies at commercial scale. SAB-185, a fully-human polyclonal antibody therapeutic candidate for COVID-19, is being developed with initial funding supported by the Biomedical Advanced Research Development Authority (BARDA), part of the Assistant Secretary for Preparedness and Response (ASPR) at the U.S. Department of Health and Human Services and the Department of Defense (DoD) Joint Program Executive Office for Chemical, Biological, Radiological, and Nuclear Defense (JPEO-CBRND) Joint Project Lead for Enabling Biotechnologies (JPL-EB). In addition to COVID-19, the companys pipeline also includes programs in Type 1 diabetes, organ transplant and influenza. For more information visit: http://www.sabbiotherapeutics.com or follow @SABBantibody on Twitter.

SOURCE: SAB Biotherapeutics

Go here to see the original:
SAB Biotherapeutics Awarded $57.5M from BARDA and US Department of Defense for Manufacturing of SAB-185 for the Treatment of COVID-19 | Antibodies |...

Read More...

Output: What is the current situation of Genome Editing/Genome Engineering Market – PharmiWeb.com

Thursday, December 3rd, 2020

Pune, New York, USA, November 27 2020 (Wiredrelease) Research Dive :The global genome editing/genome engineering market is estimated to surpass $15,306.3 million by 2027, exhibiting a CAGR of 17.0% from 2020 to 2027.

The report aims to offer a clear picture of the current scenario and future growth of the global Genome Editing/Genome Engineering Market market. The report provides scrupulous analysis of global market by thoroughly reviewing several factors of the market such as vital segments, regional market condition, market dynamics, investment suitability, and key players operating in the market. Besides, the report delivers sharp insights into present and forthcoming trends & developments in the global market.

The report articulates the key opportunities and factors propelling the global Genome Editing/Genome Engineering Market market growth. Also, threats and limitations that have the possibility to hamper the market growth are outlined in the report. Further, Porters five forces analysis that explains the bargaining power of suppliers and consumers, competitive landscape, and development of substitutes in the market is also sketched in the report.

For More Detail Insights, Download Sample Copy of the Report at: https://www.researchdive.com/download-sample/1783

The report reveals various statistics such as predicted market size and forecast by analyzing the major factors and by assessing each segment of the global Genome Editing/Genome Engineering Market market. Regional market analysis of these segments is also provided in the report. The report segments the global market into four main regions including Asia-Pacific, Europe, North America, and LAMEA. Moreover, these regions are sub-divided to offer an exhaustive landscape of the Genome Editing/Genome Engineering Market market across key countries in respective regions. Furthermore, the report divulges some of the latest advances, trends, and upcoming opportunities in every region.

Furthermore, the report profiles top players active in the global Genome Editing/Genome Engineering Market market. A comprehensive summary of 10 foremost players operating in the global market is delivered in the report to comprehend their position and footmark in the industry. The report highlights various data points such as short summary of the company, companys financial status and proceeds, chief company executives, key business strategies executed by company, initiatives undertaken & advanced developments by the company to thrust their position and grasp a significant position in the market.

RESEARCH METHODOLOGY

The research report is formed by collating different statistics and information concerning the Genome Editing/Genome Engineering Market market. Long hours of deliberations and interviews have been performed with a group of investors and stakeholders, including upstream and downstream members. Primary research is the main part of the research efforts; however, it is reasonably supported by all-encompassing secondary research. Numerous product type literatures, company annual reports, market publications, and other such relevant documents of the leading market players have been studied, for better & broader understanding of market penetration. Furthermore, medical journals, trustworthy industry newsletters, government websites, and trade associations publications have also been evaluated for extracting vital industry insights.

Connect with Our Analyst to Contextualize Our Insights for Your Business:https://www.researchdive.com/connect-to-analyst/1783

KEY MARKET BENEFITS

This report is a compilation of qualitative assessment by industry analysts, detailed information & study, and valid inputs from industry participants & experts across the value chainAn in-depth analysis along with recent trends of the industry are provided in the report to identify & comprehend the prevailing opportunities and the tactical assessment of the global Genome Editing/Genome Engineering Market market growthThe market size and forecasts are derived by scrutinizing market boomers and restraints, and key developments in the Genome Editing/Genome Engineering Market marketThe report studies the market from 2019 to 2027 and maps the qualitative impact of several industry factors on market segments as well as geographiesThe development strategies implemented by the key industry players are conscripted in the report to understand the competitive scenario of the global Genome Editing/Genome Engineering Market marketThe report also offers insights into foremost market players, Porters Five Analysis, and top winning business strategies

KEY MARKET SEGMENTS

The global Genome Editing/Genome Engineering Market market is segmented on the basis of the following:

Global Genome Editing/Genome Engineering Market Market By Product Type:

Reagents & Consumables, Software & Systems, Services

Global Genome Editing/Genome Engineering Market Market By Applications:

Cell Line Engineering, Genetic Engineering, Diagnostic Applications, Drug Discovery & Development, Other Applications

Global Genome Editing/Genome Engineering Market Market By Regions:

North America (U.S, Canada, and Mexico.)Europe (Germany, UK, France, Spain, Italy, Rest of Europe.)Asia-Pacific (Japan, China, India, Australia, South Korea, Rest of APAC.)LAMEA (Brazil, Argentina, Saudi Arabia, South Africa, UAE, Rest of LAMEA)

Top Leading key players stated in Global Genome Editing/Genome Engineering Market Market report are:

Thermo Fisher Scientific, Merck, Horizon Discovery Limited, Lonza, GenScript, Eurofins Scientific, Sangamo Therapeutics, Editas Medicine, CRISPR Therapeutics, Precision Biosciences

The report also summarizes other important aspects including financial performance, product portfolio, SWOT analysis, and recent strategic moves and developments of the leading players.

Contact Us:

Mr. Abhishek PaliwalResearch Dive30 Wall St. 8th Floor, New YorkNY 10005 (P)+ 91 (788) 802-9103 (India)+1 (917) 444-1262 (US) TollFree : +1 -888-961-4454Email:support@researchdive.comLinkedIn:https://www.linkedin.com/company/research-diveTwitter:https://twitter.com/ResearchDiveFacebook:https://www.facebook.com/Research-DiveBlog:https://www.researchdive.com/blogFollow us on:https://covid-19-market-insights.blogspot.com

This content has been published by Research Dive company. The WiredRelease News Department was not involved in the creation of this content. For press release service enquiry, please reach us at contact@wiredrelease.com.

See the article here:
Output: What is the current situation of Genome Editing/Genome Engineering Market - PharmiWeb.com

Read More...

Historical Bias Overlooks Genes That Are Related to COVID-19 – Technology Networks

Thursday, December 3rd, 2020

Based on genome-wide experiments, the human body has 2,064 genes relevant to COVID-19. So why are researchers only studying 611 of them?

A historical bias -- which has long dictated which human genes are studied -- is now affecting how biomedical researchers study COVID-19, according to new Northwestern University research.

Although biomedical researchers know that many overlooked human genes play a role in COVID-19, they currently do not study them. Instead, researchers that study COVID-19 continue to focus on human genes that have already been heavily investigated independent of coronaviruses.

"For understandable reasons, researchers tend to build upon existing knowledge and research tools. They appear to select genes to study based on the ease of experimentation rather than their ultimate relevance to a disease," said Northwestern's Thomas Stoeger, who co-led the research. "This means that research into COVID-19 concentrates only on a small subset of the human genes involved in the response to the virus. Consequently, many aspects of the response of human cells toward COVID-19 remain not understood."

"There are many genes related to COVID-19, but we don't know what they are doing in the context of COVID-19," added Northwestern's Lus Amaral, who co-led the study with Stoeger. "We didn't study these genes before the pandemic, and COVID-19 does not seem to be an incentive to investigate them."

The research is published in the journaleLife.

Stoeger is a data science scholar at the Northwestern Institute on Complex Systems (NICO) and the Center for Genetic Medicine. Through a "Pathway to Independence" award from the National Institute of Aging, Stoeger is starting a research laboratory dedicated to uncovering unstudied genes with important contributions to aging and age-related diseases. Amaral is the Erastus O. Haven Professor of Chemical and Biological Engineering in Northwestern's McCormick School of Engineering. Stoeger and Amaral are both members of Successful Clinical Response in Pneumonia Therapy (SCRIPT) Systems Biology Center.

Despite the increasing availability of new techniques to study and characterize genes, researchers continue to study a small group of genes that scientists have studied since the 1980s. Historically, these genes have been easier to investigate experimentally. If an animal model has a similar gene to humans, for example, researchers are more likely to study that gene. The Northwestern team also discovered that postdoctoral fellows and Ph.D. students who focus on poorly characterized genes have a 50% reduced chance of becoming an independent researcher.

Although the Human Genome Project -- the identification and mapping of all human genes, completed in 2003 -- aimed to expand the scope of scientific study beyond this small subset of genes, it has yet to fulfill this aim.

"The bias to study the exact same human genes is very high," Amaral said. "The entire system is fighting the very purpose of the agencies and scientific knowledge, which is to broaden the set of things we study and understand. We need to make a concerted effort to incentivize the study of other genes important to human health."

Bias continues into COVID-era

For the new study, Stoeger and Amaral turned to LitCOVID, a collection of research publications related to COVID-19, curated by the National Library of Medicine. LitCOVID tags genes mentioned in the titles, abstracts or results sections of individual publications.

Northwestern researchers analyzed 10,395 published papers and pre-prints from the collection. Then, they integrated them into a custom database along with more than 100 different biological and bibliometric databases in an effort to survey and measure all aspects of biomedical research. Finally, they compared genes mentioned in the COVID-19 papers to COVID-19-related genes as identified by four genome-wide studies.

Stoeger and Amaral also tracked the occurrence of genes appearing in COVID-19 literature over time. Surprisingly, they observed that studies of COVID-19 genes are becoming not more but less expansive since the onset of the pandemic.

The team hopes its study inspires other researchers to be aware of past biases and to explore unstudied genes.

"Our findings have a direct implication on the long-term planning of scientific policymakers," Stoeger said. "We can point researchers toward human genes that are important for the cellular response against viruses but risk being ignored due to historically acquired biases, which are culturally reinforced."Reference: Stoeger T, Nunes Amaral LA. COVID-19 research risks ignoring important host genes due to pre-established research patterns. Rodgers P, Danchev V, Zheng H, Brown S, eds. eLife. 2020;9:e61981. doi:10.7554/eLife.61981.

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

Excerpt from:
Historical Bias Overlooks Genes That Are Related to COVID-19 - Technology Networks

Read More...

15-Year-Old Indian-American Gitanjali Rao Becomes TIMEs First-Ever ‘Kid Of The Year’ – ABP Live

Thursday, December 3rd, 2020

We have always heard, 'Childrenare the building blocks of the nation' and a 15-year-old Indian-American kid has proved this right. An Indian-American girl Gitanjali Rao, a brilliant young scientist and inventor, has been named by TIME magazine as the first-ever Kid of the Year for her astonishing work using technology to tackle issues ranging from contaminated drinking water to opioid addiction and cyberbullying.

The 15-year-old from Colorado, US was selected from 5,000 nominees and was interviewed by Academy award-winning Hollywood actor Angelina Jolie for TIME.Jolie is also a special envoy of the United Nations High Commissioner for Refugees.

From developing an app to tackle cyberbullying to working on affordable technology that would allow one to ensure the purity of drinking water, for Gitanjali Rao, the sky is the limit.

The world belongs to those who shape it. And however uncertain that world may feel at a given moment, the reassuring reality seems to be that each new generation produces more of what these kidshave already achieved: positive impact, in all sizes, Time said.

Speaking from her home in Colorado, Gitanjali Rao told Angelina Jolie that she wanted to research carbon nanotube sensor technology at the Denver Water quality research lab when she was 10. "It was just that changing factor of, you know this work is going to be in our generation's hands pretty soon. So if no one else is gonna do it, I'm gonna do it," Rao added.

Raos latest discovery is an app called, Kindly, that detects cyberbullying at an early stage, based on artificial-intelligence technology.

In another similar development, Rao has developed another application called Tethys, a device that can measure the content of lead contamination in water with the help of carbon nanotubes.

At present, she is working on a product that will help to diagnose prescription-opioid addiction at an early stage based on protein production of the mu-opioid receptor gene.

In 2018, she was the prestigious recipient United States Environmental Protection Agency Presidents Environmental Youth Award.

In the interview with TIME, the 15-year-old says, I dont look like your typical scientist. Everything I see on TV is that its an older, usually white man as a scientist. Its weird to me that it was almost like people had assigned roles, regarding like their gender, their age, the color of their skin.

If I can do it, you can do it, and anyone can do it, she added.

Rao said that her generation is facing many challenges that were never seen before.

"But then at the same time, we're facing old problems that still exist. Like, we're sitting here in the middle of a new global pandemic, and we're also still facing human-rights issues. There are problems that we did not create but that we now have to solve, like climate change and cyberbullying with the introduction of technology," she said. "I think more than anything right now, we just need to find that one thing we're passionate about and solve it. Even if it's something as small as, I want to find an easy way to pick up litter. Everything makes a difference. Don't feel pressured to come up with something big," Rao said.

Rao also shared that she always wanted to bring a smile to someone's face. "That was my everyday goal, just to make someone happy. And it soon turned into, How can we bring positivity and community to the place we live?" she said.

Rao is an ardent follower of MIT Tech Review and considers that her go-to pop culture news. I read it constantly. I think thats really where inspiration strikes: hearing about all these amazing people at schools like MIT and Harvard who are doing such amazing work with technology, said the young scientist.

Gitanjali is also a winner of the Top Health Pillar Prize for the TCS Ignite Innovation Student Challenge in May 2019 for developing a diagnostic tool based on advances in genetic engineering for early diagnosis of prescription opioid addiction.

Excerpt from:
15-Year-Old Indian-American Gitanjali Rao Becomes TIMEs First-Ever 'Kid Of The Year' - ABP Live

Read More...

5G and ‘Biohackers’: Technology rules! (Is that a good thing?) – People’s World

Thursday, December 3rd, 2020

5G Makes the World Safe for Consumerism

There seems to be no questioning the technological imperative. 5G will, when it is fully operative, increase download speeds such that general mobile phone internet activity will be 20 to 100 times faster, thus, for example, greatly enhancing watching Series TV on the go. 5G will also, its promoters claim, fulfill the promise of both Artificial Intelligence and the internet of things: interconnected smart homes, smart cars, and consumers served by smart farms and operated on by smart machines. Likewise, in genetics, the cracking of DNA and RNA codeswhich may enable current COVID-19 stimulators to allow the body to suppress the virus without a dangerous ingestion of COVIDmay eventually lead to promoting a generalized immunity from many diseases.

What could go wrong? Plenty, say 5G critics in France. Likewise, in the realm of genetic algorithms, the German series Biohackers equally sounds the alarm.

In the U.S. and across Asia, in particular, in China and South Korea, the answer to what can go wrong is Nothing. In the U.S. the debate over 5G is only about how fast and efficient the service is. The criticism is that the Verizon-Apple iPhone 12 and the AT&T-Galaxy 5G rollout, even in the large cities, is only partial, four times rather than 20 times faster. China, meanwhile, leads the world in 5G patents and sees the technology as its way to climb out of the stigma of the worlds low-end manufacturer, throwing off the Made in China labeling to be replaced by the Huawei branding of assembled technology, this time Made in Vietnam. In South Korea, the debate is on how soon 6G will arrive.

Europe is behind in the race to 5G, though one of its two telecom companies, Ericsson, has now announced its ready for a rollout. But not so fast. Across the continent questions are being raised about the safety, the consumerist changes, planned obsolescence and inequality the technology will effectuate, and about how 5G is part of the capitalist profit-driven productivist imperative that has so ravaged the planet. In Germany and Britain, angry citizens have pulled down towers. In France, especially with the rise of a progressive Green Party called EELV, the entire ethos of 5G is being questioned.

The opening salvo against the technology was fired by the Green Party Mayor of Grenoble, Eric Piolle, who questioned its supposed benefits. With 5G I can watch porn in HD in my elevator and know if I still have yogurt in the refrigerator is the way he described the new promised land that proponents claim the network will usher in. In return, the Rothschild banker-turned-President Emmanuel Macron, a prime promoter of neoliberal technology as the savior of French society, labeled the Greens Amish who wanted to return to the era of the oil lamp. His fellow right-wing confrres warned of a Green Peril, using the Cold War overlay of Red Peril, and branded those questioning this imperative as Khmer Green, likening them in the digital realm to Cambodias murderous Khmer Rouge.

There is little doubt that the primary reason 5G, the star of the Christmas consumer push, is being so thoroughly trumpeted is the profits it will reap, forecast to account for 668 billion dollars globally in six years and predicted, with the gain in the sale of mobile phones, with an enhanced gaming experience and with more widespread virtual reality headsets, to account for 5 percent of global GDP this year.

Elements of the French left, though, including Franois Ruffin, a legislator and director of the film Merci, Patron, or Thanks, Boss, a kind of French Roger and Me about Frances richest bosses mercilessly closing factories, have suggested that this technological bounty is being asked to fill the void in lives that are increasingly despairing. Ruffin notes also how this techno-totalitarianism, what media critic Evgeny Morozov calls solutionism, will amplify already existing inequalities. The technology may widen the gaps between the increasingly more plugged-in cities with 5G, the periphery around those cities with 4G, and the countrys rural areas with no G, thus in France exacerbating what is termed the territorial fracture and what in the U.S. might be called the Red/Blue dichotomy.

Echoing Morozov, Ruffin points out this kind of thinking leads not to, for example, regulating agribusiness to produce healthier and more eco-friendly food, but to supplying more intelligent forks. In Catholic France 5G is breathlessly talked about, Ruffin says, as the second coming of the Holy Spirit, illuminating our smartphones in the way the first coming descended on the apostles at Pentecost. In the holy light of such a miracle, the telecom industry shakes off the shackles of any sense of being a public good, and instead regulation becomes only about how market competition can be promoted.

France has always been suspicious of consumer miracles which its leading thinkers have often seen as foisted on it by American capitalism in its drive for global hegemony. Witness Godards Two or Three Things I Know About Her and Weekend and the films of Jacques Tati (Playtime, Mr. Hulots Holiday) in their unfolding of a critique of a French society being remade from without.

The debate here is raising important questions that are given short shrift in the rest of the world. Europe is simply being asked to conform and told that if it does not it will be left out of a mainspring of the global economy, with its devices unable to catch up or be plugged into the global flow.

Studies indicate that the digital economy emits 4 percent of greenhouse gas, a number that is predicted to double in five years and which 5 and 6G will accelerate. The Green Party labels 5G an enevore, that is, energy gorging, noting that mobile phone use already accounts for 2 percent of electric use in France.

The introduction of this speedier technology is designed to increase costs, not only of a monthly mobile bill as more data is accessed and downloaded, but also necessitating replacing existing mobile phones with 5G-ready equipment, phones which are now already on the average replaced every 18 months to 2 years. Eventually, the technology with increased pixilation for faster and clearer viewing will be a part of computers and televisions and, like the changeover in television sets from analog to digital, will require a wholescale worldwide replacement.

The ecological question also involves not only the global waste in disposing of the used devices which is estimated to reach 2 million tons, but also in their creation with 70 kilos or 154 pounds of raw materials, including rare metals, necessary for the assembling of one of these super devices. These rare metals, which emit radiation, are strip-mined in the south of China where production is still largely private and loosely regulated. Elsewhere, 80 percent of the cobalt and tantalum needed for assembly comes from the east of the Republic of Congo, a war-torn area where 40,000 children work in the mining zones.

Consumer enhancement, of course, with the tech companies goes hand in hand with consumer surveillance, and 5G increases the drive to a global data center where billions of data packages will be available to publicity and advertising agencies for use in instantaneously molding and soliciting user taste depending on the content of individual cell phones and the store any consumer passes or, more creepily, any impulses they have. By 2025 it is predicted that 75 billion objects will be interconnected, all transmitting user data so that the refrigerator that is telling you to buy more yogurt is also spying on you. The internet highway becomes a spy way.

The implementation of 5G is also wasteful. Huawei is clearly the global leader in cheap and efficient 5G construction. A mobile phone is made up of a complex of 250,000 inventions and patents. In 2020 the Chinese lead the world with 34 cell phone patents, followed by South Korea and Europe with the U.S. a distant fourth. Yet, in labeling the Chinese company a security riskwhen in fact the real threat is that it is a more skillful competitorand forcing its allies to boycott the company as well, installation of 5G will be more costly with companies required to duplicate already established efforts.

Finally, there is the question of safety. There has been no comprehensive government study on the effects of the increased sonic waves on the human body. Private corporate studies, which are not required to be made public, all negate this possibility, while public studies suggest there may be some danger. The U.S. National Toxicology Program found evidence of cancer tumors in rats exposed to high frequencies, and in Italy, the Ramazzini Institute warned there were potential carcinogens in radio frequencies. The French government has commissioned a thoroughgoing study, the results to be reported in Spring 2021. The newspaper of record Le Monde and 70 legislators have asked for a moratorium until the findings are revealed, but Macrons Minister of Finance Bruno Le Maire wants to hasten 5G installation, warning that a delay would contribute to France losing its digital sovereignty.

The corporate sector sees 5G as simply an economic issue with the question being when and how, not why. The Greens and the French left see 5G, in the way it will change French life, perhaps increasing what the French philosopher Gilles Deleuze called societies of control, as a social and ecological issue and a place where the overwhelming drive to more and faster which has so devastated the planet must be questioned. On the continental, national and individual level, to not have 5G means to drop out of the digital flow, with capital arguing, as Theodor Adorno warned in the mid-20th century, that the worst of all conditions is to be left behind. What a bleak future indeed without porn on our elevators and without knowing if we need another yogurt in our refrigerator!

Are you ready for more genetic engineering?

A series which similarly questions how technological prowess is being implemented and controlled, this time in the area of genomes and the human body, is the German show Biohackers. The series is financed by German government and Bavarian Television funds and shot in the same studio as another German series, Dark, both available on Netflix. The simplicity of Biohackers, which begins with a highly dramatic bio attack on a train and then flashes back to explain how the young female student Mia got there and why she is not susceptible to the attack, works in its favor, as opposed to the labored three-era, almost impenetrable flashbacks of Dark.

The action takes place on the Bavarian campus of the University of Freiburg, the German center of all kinds of genetic engineering experimentation. The students at the school, a band of renegades working on their own socially uplifting mutations, are part of a do-it-yourself biology known as the biotechnological social movement or as bio- or wetware hacking, similar to the early rough and tumble cyberpunks of the internet. Mias roommatesbotanist Chen Lu, monied beauty queen Lotta, and nerd seed experimenter Oleform an international group of scientific Scooby Doos who comes to her rescue as she is first taken under the wing of the universitys star biologist Dr. Tanya Lorenz and then threatened by her, as Mia and her friends expose the ruthlessness of their professors experiments to perfect a subject immune to disease.

Mias futon and her rumpled student quarters are contrasted to the corporate-funded Dr. Lorenzs elaborate multi-storied, impeccably furnished and ordered home in the Bavarian forest, complete with a lab in the basement. As with 5G, Dr. Lorenz issues a warning that Germany, which has lost out and is behind in digital mastery, must conquer the realm of biotechnology to compensate.

Dr. Lorenz, though, is revealed to be experimenting on human subjects, leaving a murderous trail behind her and recalling earlier experiments by the Nazis who also claimed to be benefiting humanity. She is Dr. Mengele in a pants suit. This contemporary version of the former ethos features Lorenz, as Mia points out, marking her subjects with a bar code, as the Nazis burnt prison numbers into their subjects flesh.

We are reminded that the Bavarian countryside and its dark forests hatched Hitler in his first coup attempt and that Freiburg University was the place the philosopher Martin Heidegger, in his moment of embracing National Socialism, accepted an appointment as head of the university until his gradual disgust with the movement resulted in his resignation.

Biohackers, renewed for a second season when the conspiracy to hide the experimentation reaches a national level, does not shy away from the subject of chemical and biological warfare. However, instead of the hackneyed usual and usually insane terrorist, the terror here is far better organized and financed not by rogue fanatics but by a corporate-medical ethos which values profit above human life.

Read the original here:
5G and 'Biohackers': Technology rules! (Is that a good thing?) - People's World

Read More...

CRISPR And CRISPR-Associated (Cas) Genes Market Competitive Insights with Global Outlook 2020-2026| Caribou Biosciences, Addgene, CRISPR THERAPEUTICS…

Thursday, December 3rd, 2020

The global CRISPR And CRISPR-Associated (Cas) Genes market is broadly analyzed in this report that sheds light on critical aspects such as the vendor landscape, competitive strategies, market dynamics, and regional analysis. The report helps readers to clearly understand the current and future status of the global CRISPR And CRISPR-Associated (Cas) Genes market. The research study comes out as a compilation of useful guidelines for players to secure a position of strength in the global CRISPR And CRISPR-Associated (Cas) Genes market. The authors of the report profile leading companies of the global CRISPR And CRISPR-Associated (Cas) Genes market, such as , Caribou Biosciences, Addgene, CRISPR THERAPEUTICS, Merck KGaA, Mirus Bio LLC, Editas Medicine, Takara Bio USA, Thermo Fisher Scientific, Horizon Discovery Group, Intellia Therapeutics, GE Healthcare Dharmacon They provide details about important activities of leading players in the competitive landscape.

The report predicts the size of the global CRISPR And CRISPR-Associated (Cas) Genes market in terms of value and volume for the forecast period 2019-2026. As per the analysis provided in the report, the global CRISPR And CRISPR-Associated (Cas) Genes market is expected to rise at a CAGR of XX % between 2019 and 2026 to reach a valuation of US$ XX million/billion by the end of 2026. In 2018, the global CRISPR And CRISPR-Associated (Cas) Genes market attained a valuation of US$_ million/billion. The market researchers deeply analyze the global CRISPR And CRISPR-Associated (Cas) Genes industry landscape and the future prospects it is anticipated to create.

This publication includes key segmentations of the global CRISPR And CRISPR-Associated (Cas) Genes market on the basis of product, application, and geography (country/region). Each segment included in the report is studied in relation to different factors such as consumption, market share, value, growth rate, and production.

Get Sample Copy of This Report:https://www.qyresearch.com/sample-form/form/1434599/global-crispr-and-crispr-associated-cas-genes-market

The comparative results provided in the report allow readers to understand the difference between players and how they are competing against each other. The research study gives a detailed view of current and future trends and opportunities of the global CRISPR And CRISPR-Associated (Cas) Genes market. Market dynamics such as drivers and restraints are explained in the most detailed and easiest manner possible with the use of tables and graphs. Interested parties are expected to find important recommendations to improve their business in the global CRISPR And CRISPR-Associated (Cas) Genes market.

Readers can understand the overall profitability margin and sales volume of various products studied in the report. The report also provides the forecasted as well as historical annual growth rate and market share of the products offered in the global CRISPR And CRISPR-Associated (Cas) Genes market. The study on end-use application of products helps to understand the market growth of the products in terms of sales.

Global CRISPR And CRISPR-Associated (Cas) Genes Market by Product: , :, Genome Editing, Genetic engineering, gRNA Database/Gene Librar, CRISPR Plasmid, Human Stem Cells, Genetically Modified Organisms/Crops, Cell Line Engineering ,

Global CRISPR And CRISPR-Associated (Cas) Genes Market by Application: :, Biotechnology Companies, Pharmaceutical Companies, Academic Institutes, Research and Development Institutes

The report also focuses on the geographical analysis of the global CRISPR And CRISPR-Associated (Cas) Genes market, where important regions and countries are studied in great detail.

Global CRISPR And CRISPR-Associated (Cas) Genes Market by Geography:

Methodology

Our analysts have created the report with the use of advanced primary and secondary research methodologies.

As part of primary research, they have conducted interviews with important industry leaders and focused on market understanding and competitive analysis by reviewing relevant documents, press releases, annual reports, and key products.

For secondary research, they have taken into account the statistical data from agencies, trade associations, and government websites, internet sources, technical writings, and recent trade information.

Enquire For Customization in the Report:https://www.qyresearch.com/customize-request/form/1434599/global-crispr-and-crispr-associated-cas-genes-market

Key questions answered in the report:

Table Of Contents:

Table of Contents 1 CRISPR And CRISPR-Associated (Cas) Genes Market Overview1.1 Product Overview and Scope of CRISPR And CRISPR-Associated (Cas) Genes1.2 CRISPR And CRISPR-Associated (Cas) Genes Segment by Type1.2.1 Global CRISPR And CRISPR-Associated (Cas) Genes Sales Growth Rate Comparison by Type (2021-2026)1.2.2 Genome Editing1.2.3 Genetic engineering1.2.4 gRNA Database/Gene Librar1.2.5 CRISPR Plasmid1.2.6 Human Stem Cells1.2.7 Genetically Modified Organisms/Crops1.2.8 Cell Line Engineering1.3 CRISPR And CRISPR-Associated (Cas) Genes Segment by Application1.3.1 CRISPR And CRISPR-Associated (Cas) Genes Sales Comparison by Application: 2020 VS 20261.3.2 Biotechnology Companies1.3.3 Pharmaceutical Companies1.3.4 Academic Institutes1.3.5 Research and Development Institutes1.4 Global CRISPR And CRISPR-Associated (Cas) Genes Market Size Estimates and Forecasts1.4.1 Global CRISPR And CRISPR-Associated (Cas) Genes Revenue 2015-20261.4.2 Global CRISPR And CRISPR-Associated (Cas) Genes Sales 2015-20261.4.3 CRISPR And CRISPR-Associated (Cas) Genes Market Size by Region: 2020 Versus 2026 2 Global CRISPR And CRISPR-Associated (Cas) Genes Market Competition by Manufacturers2.1 Global CRISPR And CRISPR-Associated (Cas) Genes Sales Market Share by Manufacturers (2015-2020)2.2 Global CRISPR And CRISPR-Associated (Cas) Genes Revenue Share by Manufacturers (2015-2020)2.3 Global CRISPR And CRISPR-Associated (Cas) Genes Average Price by Manufacturers (2015-2020)2.4 Manufacturers CRISPR And CRISPR-Associated (Cas) Genes Manufacturing Sites, Area Served, Product Type2.5 CRISPR And CRISPR-Associated (Cas) Genes Market Competitive Situation and Trends2.5.1 CRISPR And CRISPR-Associated (Cas) Genes Market Concentration Rate2.5.2 Global Top 5 and Top 10 Players Market Share by Revenue2.5.3 Market Share by Company Type (Tier 1, Tier 2 and Tier 3)2.6 Manufacturers Mergers & Acquisitions, Expansion Plans2.7 Primary Interviews with Key CRISPR And CRISPR-Associated (Cas) Genes Players (Opinion Leaders) 3 CRISPR And CRISPR-Associated (Cas) Genes Retrospective Market Scenario by Region3.1 Global CRISPR And CRISPR-Associated (Cas) Genes Retrospective Market Scenario in Sales by Region: 2015-20203.2 Global CRISPR And CRISPR-Associated (Cas) Genes Retrospective Market Scenario in Revenue by Region: 2015-20203.3 North America CRISPR And CRISPR-Associated (Cas) Genes Market Facts & Figures by Country3.3.1 North America CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.3.2 North America CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.3.3 U.S.3.3.4 Canada3.4 Europe CRISPR And CRISPR-Associated (Cas) Genes Market Facts & Figures by Country3.4.1 Europe CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.4.2 Europe CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.4.3 Germany3.4.4 France3.4.5 U.K.3.4.6 Italy3.4.7 Russia3.5 Asia Pacific CRISPR And CRISPR-Associated (Cas) Genes Market Facts & Figures by Region3.5.1 Asia Pacific CRISPR And CRISPR-Associated (Cas) Genes Sales by Region3.5.2 Asia Pacific CRISPR And CRISPR-Associated (Cas) Genes Sales by Region3.5.3 China3.5.4 Japan3.5.5 South Korea3.5.6 India3.5.7 Australia3.5.8 Taiwan3.5.9 Indonesia3.5.10 Thailand3.5.11 Malaysia3.5.12 Philippines3.5.13 Vietnam3.6 Latin America CRISPR And CRISPR-Associated (Cas) Genes Market Facts & Figures by Country3.6.1 Latin America CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.6.2 Latin America CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.6.3 Mexico3.6.3 Brazil3.6.3 Argentina3.7 Middle East and Africa CRISPR And CRISPR-Associated (Cas) Genes Market Facts & Figures by Country3.7.1 Middle East and Africa CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.7.2 Middle East and Africa CRISPR And CRISPR-Associated (Cas) Genes Sales by Country3.7.3 Turkey3.7.4 Saudi Arabia3.7.5 U.A.E 4 Global CRISPR And CRISPR-Associated (Cas) Genes Historic Market Analysis by Type4.1 Global CRISPR And CRISPR-Associated (Cas) Genes Sales Market Share by Type (2015-2020)4.2 Global CRISPR And CRISPR-Associated (Cas) Genes Revenue Market Share by Type (2015-2020)4.3 Global CRISPR And CRISPR-Associated (Cas) Genes Price Market Share by Type (2015-2020)4.4 Global CRISPR And CRISPR-Associated (Cas) Genes Market Share by Price Tier (2015-2020): Low-End, Mid-Range and High-End 5 Global CRISPR And CRISPR-Associated (Cas) Genes Historic Market Analysis by Application5.1 Global CRISPR And CRISPR-Associated (Cas) Genes Sales Market Share by Application (2015-2020)5.2 Global CRISPR And CRISPR-Associated (Cas) Genes Revenue Market Share by Application (2015-2020)5.3 Global CRISPR And CRISPR-Associated (Cas) Genes Price by Application (2015-2020) 6 Company Profiles and Key Figures in CRISPR And CRISPR-Associated (Cas) Genes Business6.1 Caribou Biosciences6.1.1 Corporation Information6.1.2 Caribou Biosciences Description, Business Overview and Total Revenue6.1.3 Caribou Biosciences CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.1.4 Caribou Biosciences Products Offered6.1.5 Caribou Biosciences Recent Development6.2 Addgene6.2.1 Addgene CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.2.2 Addgene Description, Business Overview and Total Revenue6.2.3 Addgene CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.2.4 Addgene Products Offered6.2.5 Addgene Recent Development6.3 CRISPR THERAPEUTICS6.3.1 CRISPR THERAPEUTICS CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.3.2 CRISPR THERAPEUTICS Description, Business Overview and Total Revenue6.3.3 CRISPR THERAPEUTICS CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.3.4 CRISPR THERAPEUTICS Products Offered6.3.5 CRISPR THERAPEUTICS Recent Development6.4 Merck KGaA6.4.1 Merck KGaA CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.4.2 Merck KGaA Description, Business Overview and Total Revenue6.4.3 Merck KGaA CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.4.4 Merck KGaA Products Offered6.4.5 Merck KGaA Recent Development6.5 Mirus Bio LLC6.5.1 Mirus Bio LLC CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.5.2 Mirus Bio LLC Description, Business Overview and Total Revenue6.5.3 Mirus Bio LLC CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.5.4 Mirus Bio LLC Products Offered6.5.5 Mirus Bio LLC Recent Development6.6 Editas Medicine6.6.1 Editas Medicine CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.6.2 Editas Medicine Description, Business Overview and Total Revenue6.6.3 Editas Medicine CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.6.4 Editas Medicine Products Offered6.6.5 Editas Medicine Recent Development6.7 Takara Bio USA6.6.1 Takara Bio USA CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.6.2 Takara Bio USA Description, Business Overview and Total Revenue6.6.3 Takara Bio USA CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.4.4 Takara Bio USA Products Offered6.7.5 Takara Bio USA Recent Development6.8 Thermo Fisher Scientific6.8.1 Thermo Fisher Scientific CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.8.2 Thermo Fisher Scientific Description, Business Overview and Total Revenue6.8.3 Thermo Fisher Scientific CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.8.4 Thermo Fisher Scientific Products Offered6.8.5 Thermo Fisher Scientific Recent Development6.9 Horizon Discovery Group6.9.1 Horizon Discovery Group CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.9.2 Horizon Discovery Group Description, Business Overview and Total Revenue6.9.3 Horizon Discovery Group CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.9.4 Horizon Discovery Group Products Offered6.9.5 Horizon Discovery Group Recent Development6.10 Intellia Therapeutics6.10.1 Intellia Therapeutics CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.10.2 Intellia Therapeutics Description, Business Overview and Total Revenue6.10.3 Intellia Therapeutics CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.10.4 Intellia Therapeutics Products Offered6.10.5 Intellia Therapeutics Recent Development6.11 GE Healthcare Dharmacon6.11.1 GE Healthcare Dharmacon CRISPR And CRISPR-Associated (Cas) Genes Production Sites and Area Served6.11.2 GE Healthcare Dharmacon CRISPR And CRISPR-Associated (Cas) Genes Description, Business Overview and Total Revenue6.11.3 GE Healthcare Dharmacon CRISPR And CRISPR-Associated (Cas) Genes Sales, Revenue and Gross Margin (2015-2020)6.11.4 GE Healthcare Dharmacon Products Offered6.11.5 GE Healthcare Dharmacon Recent Development 7 CRISPR And CRISPR-Associated (Cas) Genes Manufacturing Cost Analysis7.1 CRISPR And CRISPR-Associated (Cas) Genes Key Raw Materials Analysis7.1.1 Key Raw Materials7.1.2 Key Raw Materials Price Trend7.1.3 Key Suppliers of Raw Materials7.2 Proportion of Manufacturing Cost Structure7.3 Manufacturing Process Analysis of CRISPR And CRISPR-Associated (Cas) Genes7.4 CRISPR And CRISPR-Associated (Cas) Genes Industrial Chain Analysis 8 Marketing Channel, Distributors and Customers8.1 Marketing Channel8.2 CRISPR And CRISPR-Associated (Cas) Genes Distributors List8.3 CRISPR And CRISPR-Associated (Cas) Genes Customers 9 Market Dynamics 9.1 Market Trends 9.2 Opportunities and Drivers 9.3 Challenges 9.4 Porters Five Forces Analysis 10 Global Market Forecast10.1 Global CRISPR And CRISPR-Associated (Cas) Genes Market Estimates and Projections by Type10.1.1 Global Forecasted Sales of CRISPR And CRISPR-Associated (Cas) Genes by Type (2021-2026)10.1.2 Global Forecasted Revenue of CRISPR And CRISPR-Associated (Cas) Genes by Type (2021-2026)10.2 CRISPR And CRISPR-Associated (Cas) Genes Market Estimates and Projections by Application10.2.1 Global Forecasted Sales of CRISPR And CRISPR-Associated (Cas) Genes by Application (2021-2026)10.2.2 Global Forecasted Revenue of CRISPR And CRISPR-Associated (Cas) Genes by Application (2021-2026)10.3 CRISPR And CRISPR-Associated (Cas) Genes Market Estimates and Projections by Region10.3.1 Global Forecasted Sales of CRISPR And CRISPR-Associated (Cas) Genes by Region (2021-2026)10.3.2 Global Forecasted Revenue of CRISPR And CRISPR-Associated (Cas) Genes by Region (2021-2026)10.4 North America CRISPR And CRISPR-Associated (Cas) Genes Estimates and Projections (2021-2026)10.5 Europe CRISPR And CRISPR-Associated (Cas) Genes Estimates and Projections (2021-2026)10.6 Asia Pacific CRISPR And CRISPR-Associated (Cas) Genes Estimates and Projections (2021-2026)10.7 Latin America CRISPR And CRISPR-Associated (Cas) Genes Estimates and Projections (2021-2026)10.8 Middle East and Africa CRISPR And CRISPR-Associated (Cas) Genes Estimates and Projections (2021-2026) 11 Research Finding and Conclusion 12 Methodology and Data Source 12.1 Methodology/Research Approach 12.1.1 Research Programs/Design 12.1.2 Market Size Estimation 12.1.3 Market Breakdown and Data Triangulation 12.2 Data Source 12.2.1 Secondary Sources 12.2.2 Primary Sources 12.3 Author List 12.4 Disclaimer

About Us:

QYResearch always pursuits high product quality with the belief that quality is the soul of business. Through years of effort and supports from huge number of customer supports, QYResearch consulting group has accumulated creative design methods on many high-quality markets investigation and research team with rich experience. Today, QYResearch has become the brand of quality assurance in consulting industry.

Go here to see the original:
CRISPR And CRISPR-Associated (Cas) Genes Market Competitive Insights with Global Outlook 2020-2026| Caribou Biosciences, Addgene, CRISPR THERAPEUTICS...

Read More...

New genetic tools will deliver improved farmed fish, oysters, and shrimp. Here’s what to expect – Science Magazine

Wednesday, November 25th, 2020

At research pens in Chile researchers develop strains of farmed Atlantic salmon with improved traits such as growth and health.

By Erik StokstadNov. 19, 2020 , 2:00 PM

Two years ago, off the coast of Norway, the blue-hulled Ro Fjell pulled alongside Ocean Farm 1, a steel-netted pen the size of a city block. Attaching a heavy vacuum hose to the pen, the ships crew began to pump brawny adult salmon out of the water and into a tank below deck. Later, they offloaded the fish at a shore-based processing facility owned by SalMar, a major salmon aquaculture company.

The 2018 harvest marked the debut of the worlds largest offshore fish pen, 110 meters wide. SalMars landmark facility, which dwarfs the typical pens kept in calmer, coastal waters, can hold 1.5 million fishwith 22,000 sensors monitoring their environment and behaviorthat are ultimately shipped all over the world. The fish from Ocean Farm 1 were 10% larger than average, thanks to stable, favorable temperatures. And the deep water and strong currents meant they were free of parasitic sea lice.

Just a half-century ago, the trade in Atlantic salmon was a largely regional affair that relied solely on fish caught in the wild. Now, salmon farming has become a global business that generates $18 billion in annual sales. Breeding has been key to the aquaculture boom. Ocean Farm 1s silvery inhabitants grow roughly twice as fast as their wild ancestors and have been bred for disease resistance and other traits that make them well suited for farm life. Those improvements in salmon are just a start: Advances in genomics are poised to dramatically reshape aquaculture by helping improve a multitude of species and traits.

Genetic engineering has been slow to take hold in aquaculture; only one genetically modified species, a transgenic salmon, has been commercialized. But companies and research institutions are bolstering traditional breeding with genomic insights and tools such as gene chips, which speed the identification of fish and shellfish carrying desired traits. Top targets include increasing growth rates and resistance to disease and parasites. Breeders are also improving the hardiness of some species, which could help farmers adapt to a shifting climate. And many hope to enhance traits that please consumers, by breeding fish for higher quality fillets, eye-catching colors, or increased levels of nutrients. There is a paradigm shift in taking up new technologies that can more effectively improve complex traits, says Morten Rye, director of genetics at Benchmark Genetics, an aquaculture breeding company.

After years of breeding, Atlantic salmon grow faster and larger than their wild relatives.

Aquaculture breeders can tap a rich trove of genetic material; most fish and shellfish have seen little systematic genetic improvement for farming, compared with the selective breeding that chickens, cattle, and other domesticated animals have undergone. Theres a huge amount of genetic potential out there in aquaculture species thats yet to be realized, says geneticist Ross Houston of the Roslin Institute.

Amid the enthusiasm about aquacultures future, however, there are concerns. Its not clear, for example, whether consumers will accept fish and shellfish that have been altered using technologies that rewrite genes or move them between species. And some observers worry genomic breeding efforts are neglecting species important to feeding people in the developing world. Still, expectations are high. The technology is amazing, its advancing very quickly, the costs are coming down, says Ximing Guo, a geneticist at Rutgers University, New Brunswick. Everybody in the field is excited.

Fish farmingmay not have roots as old as agriculture, but it dates back millennia. By about 3500 years ago, Egyptians were raising gilt-head sea bream in a large lagoon. The Romans cultivated oysters. And carp have been grown and selectively bred in China for thousands of years. Few aquaculture species, however, saw systematic, scientific improvement until the 20th century.

One species that has received ample attention from breeders is Atlantic salmon, which commands relatively high prices. Farming began in the late 1960s, in Norway. Within 10 years, breeding had helped boost growth rates and harvest weight. Each new generation of fishit takes salmon 3 to 4 years to maturegrows 10% to 15% faster than its forebears. My colleagues in poultry can only dream of these kinds of percentages, says Robbert Blonk, director of aquaculture R&D at Hendrix Genetics, an animal breeding firm. During the 1990s, breeders also began to select for improved disease resistance, fillet quality, delayed sexual maturation (which boosts yields), and other traits.

Another success story involves tilapia, a large group of freshwater species that doesnt typically bring high prices but plays a key role in the developing world. An international research center in Malaysia, now known as WorldFish, began a breeding program in the 1980s that quickly doubled the growth rate of one commonly raised species, Nile tilapia. Breeders also improved its disease resistance, a task that continues because of the emergence of new pathogens, such as tilapia lake virus.

Genetically improved farmed tilapia was a revolution in terms of tilapia production, says Alexandre Hilsdorf, a fish geneticist at the University of Mogi das Cruzes in Brazil. China, a global leader in aquaculture production, has capitalized on the strain, building the worlds largest tilapia hatchery. It raises billions of young fish annually.

Now, aquaculture supplies nearly half of the fish and shellfish eaten worldwide (see chart, below), and production has been growing by nearly 4.5% annually over the past decadefaster than most sectors of the farmed food sector. That expansion has come with some collateral damage, including pollution from farm waste, heavy catches of wild fish to feed to penned salmon and other species, and the destruction of coastal wetlands to build shrimp ponds. Nevertheless, aquaculture is now poised for further acceleration, thanks in large part to genomics.

Aquaculture is rivaling catches from wild fisheries and is projected to increase. Much of the growth comes from freshwater fish in Asia, such as grass carp, yet most research has focused on Atlantic salmon and other high-value species. Genomic technology is now spreading to shrimp and tilapia.

(GRAPHIC) N. DESAI/SCIENCE; (DATA, TOP TO BOTTOM) FOOD AND AGRICULTURE ORGANIZATION OF HE UNITED NATIONS; HOUSTON et al., NATURE REVIEWS GENETICS 21, 389 (2020)

Breeders are most excited about a technique called genomic selection. To grasp why, it helps to understand how breeders normally improve aquaculture species. They start by crossing two parents and then, out of hundreds or thousands of their offspring, select individuals to test for traits they want to improve. Advanced programs make hundreds of crosses in each generation and choose from the best performing families for breeding. But some tests mean the animal cant later be used for breeding; measuring fillet quality is lethal, for instance, and screening for disease resistance means the infected individual must remain quarantined. As a result, when researchers identify a promising animal, they must pick a sibling to use for breedingand hope that it performs just as well. You dont know whether theyre the best of the family or the worst,says Dean Jerry, an aquaculture geneticist at James Cook University, Townsville, who works with breeders of shrimp, oysters, and fish.

With genomic selection, researchers can identify siblings with high-performance traits based on genetic markers. All they need is a small tissue samplesuch a clipping from a finthat can be pureed and analyzed. DNA arrays, which detect base-pair changes called single nucleotide polymorphisms (SNPs), allow breeders to thoroughly evaluate many siblings for multiple traits. If the pattern of SNPs suggests that an individual carries optimal alleles, it can be selected for further breeding even if it hasnt been tested. Genomic analyses also allow breeders to minimize inbreeding.

Cattle breeders pioneered genomic selection. Salmon breeders adopted it a few years ago, followed by those working with shrimp and tilapia. There is a big race from industry to implement this technology, says geneticist Jos Yez of the University of Chile, who adds that even small-scale producers are now interested in genetic improvement. As a rough average, the technique increases selection accuracy and the amount of genetic improvement by about 25%, Houston says. It and other tools are helping researchers pursue goals such as:

This trait improves the bottom line, allowing growers to produce more frequent and bigger hauls. Growth is highly heritable and easy to measure, so traditional breeding works well. But breeders have other tactics for boosting growth, including providing farmers with fish of a single sex. Male tilapia, for example, can grow significantly faster than females. Another strategy is to hybridize species. The dominant farmed catfish in the United States, a hybrid of a female channel catfish and a male blue catfish, grows faster and is hardier.

Inducing sterility stimulates growth, too, and has helped raise yields in shellfish, particularly oysters. In the 1990s, Guo and Standish Allen, now at the Virginia Institute of Marine Science, figured out a new way to create triploid oysters, which are infertile because they have an extra copy of each chromosome. These oysters dont devote much energy to reproduction, so they reach harvest size sooner, reducing exposure to disease. (When oysters reproduce, more than half their body consists of sperm or eggs, which no one wants to eat.)

Looking ahead, researchers are exploring gene transfer or gene editing to further enhance gains. And one U.S. company, AquaBounty, is just beginning to sell the worlds first transgenic food animal, an Atlantic salmon, that it claims is 70% more productive than standard farmed salmon. But the fish is controversial and has faced consumer resistance and regulatory hurdles.

Disease is often the biggest worry and expense for aquaculture operations. In shrimp, outbreaks can slash overall yield by up to 40% annually and can wipe out entire operations. Vaccines can prevent some diseases in fish, but not invertebrates, because their adaptive immune systems are less developed. So, for all species, resistant strains are highly desirable.

To improve disease resistance, researchers need a rigorous way to test animals. Thanks to a collaboration with fish pathologists at the U.S. Department of Agriculture (USDA), Benchmark Genetics was able to screen tilapia for susceptibility to two major bacterial diseases by delivering a precise dose of the pathogen and then measuring the response. They identified genetic markers correlated with infection and used genomic selection to help develop a more resistant strain. USDA scientists have also worked with Hendrix Genetics to increase the survival of trout exposed to a different bacterial pathogen from 30% to 80% in just three generations.

The fecundity of most aquatic species, like this trout (left), helps breeding efforts. Salmon eggs, 0.7 millimeters wide (right), are robust and easy for molecular biologists to work with.

Perhaps the most celebrated success has been in salmon. After researchers discovered a genetic marker for resistance to infectious pancreatic necrosis, companies quickly bred strains that can survive this deadly disease. Oyster breeders, meanwhile, have had success in developing strains resistant to a strain of herpes that devastated the industry in France, Australia, and New Zealand.

A big problem for Atlantic salmon growers is the sea louse. The tiny parasite clings to the salmons skin, inflicting wounds that damage or kill fish and make their flesh worthless. Between fish losses and the expense of controlling the parasites, lice cost growers more than $500 million a year in Norway alone. Lice are attracted to fish pens and can jump to wild salmon that pass by.

For years farmers have relied on pesticides to fight lice, but the parasite has become resistant to many chemicals. Other techniques, such as pumping salmon into heated water, which causes the lice to drop off, can stress the fish.

Researchers have found that some Atlantic salmon are better than others at resisting lice, and breeders have been trying to improve this trait. So far, theyve had modest success. Better understanding why several species of Pacific salmon are immune to certain lice could lead to progress. Scientists are exploring whether sea lice are attracted to certain chemicals released by Atlantic salmon; if so, its possible these could be modified with gene editing.

No sex on the farm. Thats a goal with many aquaculture species, because reproduction diverts energy from growth. Moreover, fertile fish that escape from aquaculture operations can cause problems for wild relatives. When wild fish breed with their domesticated cousins, for instance, the offspring are often less successful at reproducing.

Salmon can be sterilized by making them triploid, typically by pressurizing newly fertilized embryos in a steel tank when the chromosomes are replicating. But this can have side effects, such as greater susceptibility to disease. Anna Wargelius, a molecular physiologist at Norways Institute of Marine Research, and colleagues have instead altered the genes of Atlantic salmon to make them sterile, using the genome editor CRISPR to knock out a gene calleddeadend. In 2016, they showed that these fish, though healthy, lack germ cells and dont sexually mature. Now, theyre working on developing fertile broodstock that produce these sterile offspring for hatcheries. Embryos with the knocked-out genes should develop into fertile adults if injected with messenger RNA, according to a paper the group published last month inScientific Reports. When these fish mature later in December, they will try to breed them. It looks very promising, Wargelius says.

Another approach would not involve genetic modifications. Fish reproductive physiologists Yonathan Zohar and Ten-Tsao Wong of the University of Maryland, Baltimore County, are using small molecule drugs to disrupt early reproductive development so that fish mature without sperm or eggs.

Cooks and diners hate bones. Nearly half of the top species in aquaculture are species of carp or their relatives, which are notorious for the small bones that pack their flesh. These bones cant be easily removed during processing, so you cant just get a nice, clean fillet, says Benjamin Reading, a reproductive physiologist at North Carolina State University.

Researchers are studying the biology of these fillet bones to see whether they might one day be removed through breeding or genetic engineering. A few years ago, Hilsdorf heard that a Brazilian hatchery had discovered mutant brood stock of a giant Amazonian fish, the widely farmed tambaqui, that lacked these fillet bones. After trying and failing to breed a boneless strain, hes studying tissue samples from the mutants for clues to their genetics.

Geneticist Ze-Xia Gao of Huazhong Agricultural University is focusing on blunt snout bream, a carp that is farmed in China. Guided by five genetic markers, she and colleagues are breeding the bream to have few fillet bones. It could take 8 to 10 years to achieve, she says. They have also had some success with gene editingtheyve identified and knocked out two genes that control the presence of fillet bonesand they plan to try the approach in other carp species. I think it will be feasible, Gao says.

Aquaculture projects worldwide are hustling to domesticate new speciesa kind of gold rush rare in terrestrial farming. In New Zealand, researchers are domesticating native species because they are already adapted to local conditions. The New Zealand Institute for Plant and Food Research began to breed the Australasian snapper in 2004. Early work concentrated on simply getting the fish to survive and reproduce in a tank. One decade later, researchers started to breed for improved growth, and theyve since increased juvenile growth rates by 20% to 40%.

Genomic techniques have proved critical. Snapper are mass spawners, so it was hard for breeders to identify the parents of promising offspring, which is crucial for optimizing selection and avoiding inbreeding. DNA screening solved that problem, because the markers reveal ancestry. The institute is also breeding another local fish, the silver trevally, aiming for a strain that will reproduce in captivity without hormone implants. Its a long-term effort to breed a wild species to make it suitable for aquaculture, says Maren Wellenreuther, an evolutionary geneticist at the New Zealand institute and the University of Auckland.

These breeding effortsrequire money. Despite the growth of aquaculture, the fields research funding lags the amounts invested in livestock, although some governments are boosting investments.

Looking globally, geneticist Dennis Hedgecock of Pacific Hybreed, a small U.S. company that is developing hybrid oysters, sees a huge disparity between breeding investment in developed countrieswhich produce a fraction of total harvests but have the biggest research budgetsand the rest of the world. Simply applying classical breeding techniques could rapidly improve production, especially in the developing world, he says. Yet the hundreds of species now farmed could overwhelm breeding programs, especially those aimed at enhancing disease resistance, Hedgecock adds. The growth and the production is outstripping the scientific capability of dealing with the diseases, he says, adding that a focus on fewer species would be beneficial.

For genomics to help, experts say costs must continue to come down. One promising development in SNP arrays, they note, is a technique called imputation, in which cheaper arrays that search for fewer genetic changes are combined with a handful of higher cost chips that probe the genome in more detail. Such developments suggest genomic technology is at a pivot point where youre going to see it used broadly in aquaculture, says John Buchanan, president of the Center for Aquaculture Technologies, a contract research organization.

Many companies are already planning for larger harvests. SalMar will decide next year whether it will order a companion to Ocean Farm 1. It has already drawn up plans for a successor that can operate in the open ocean and would be more than twice the size, big enough to hold 3 million to 5 million salmon at a time.

More here:
New genetic tools will deliver improved farmed fish, oysters, and shrimp. Here's what to expect - Science Magazine

Read More...

As a Wiser World Looks to Make a Strong Sustainable Recovery From COVID-19, Synthetic Biology to Receive New Opportunities for Growth – GlobeNewswire

Wednesday, November 25th, 2020

New York, Nov. 24, 2020 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Global Synthetic Biology Industry" - https://www.reportlinker.com/p01375238/?utm_source=GNW With humans continuing their mindless plunder of the planet, natural habitat destruction and climate change has already set the stage for an era of pandemics. Animal-borne infectious diseases will continue to rise in the coming years, as human become the new host for displaced animal viruses. The current scenario has amplified the urgency to address environmental issues & ensure strict compliance among polluting businesses. Synthetic biology unfolds a new scientific era, in which synthetic organisms can be created to serve different purposes. The new biological research area is a nascent science and engineering discipline that seeks to integrate science with engineering for designing and building novel biological entities, including cells, genetic circuits and enzymes, or for redesigning active biological systems and living organisms, such as bacteria inexpensively and rapidly. Synthetic biology has already come out of the lab, buoyed by significant investments both from private and public organizations in organisms synthesized to produce chemicals, materials, medicines and biofuels. Synthetic biology derives its existence from advances in the fields of molecular biology, nanotechnology, engineering, chemistry, physics and computer science.

Synthetic biology enables the development of standardized and interchangeable DNA strands, which do not exist in the natural world. Synthetic biology techniques create base pair sequences from component parts, and assemble them from the beginning. This field of engineering organisms at the molecular level offers enormous potential and scope. In recent years the field of synthetic biology witnessed rapid development due to the development of CRISPR-Cas9, a gene editing tool, which was first introduced in the year 2013. This tool enables in locating, cutting, and replacing DNA at certain specific locations. Synthetic biology is expected to create huge generic capabilities to be used in bio-inspired processes and tools applicable in the industry along with the whole economy. The approach holds a tremendous potential to assist researchers in designing, creating and testing systems, parts and even entire set of genomes. While genetic sequencing is associated with reading DNA, and genetic engineering is related to copy, cut and paste these DNAs, synthetic biology involves writing as well as programming DNAs to build genomes from the scratch and understand how life works. Synthetic biology can be applied to a large number of industrial segments, and holds potential to develop spectacular systems and processes such as nitrogen fixation and create edible wonder protein with various essential amino acids. In near future, majority of research activities in this field are expected to focus on energy products, chemicals, pharmaceuticals and diagnostic tools. In addition, the concept is anticipated to play a major role in addressing concerns associated with energy, water and cultivable land to reduce carbon footprint and drastically change the way people farm and eat.

With the U.S. leading the way, sustainable products are poised to emerge into a big global opportunity. From sustainable chemistry to renewable energy & biofuels, synthetic biology holds the potential to eliminate market barriers to developing sustainable, environment friendly products, materials & services. Interestingly, the global COVID-19 pandemic has opened opportunities for new approaches and accelerated several innovative trends that were already underway. During the early stages of the global COVID-19 outbreak, 3D printing or additive manufacturing was found to play an important role in urgently producing much needed personal protective equipment and ventilator equipment locally for bridging the shortage caused by disruptions in global supply chains. The world is also now looking for ways of developing vaccines and treatments for coronavirus, which is where synthetic biology can contribute at a much faster pace as compared to conventional approaches. Synthetic biologys toolset seems poised to create vaccines as well as treatments that are not only more potent and stable, but also are quicker and easier to manufacture. These benefits are extremely critical in addressing the existing health crisis as well as enabling health systems and governments to quickly respond to any unanticipated and new future threats. While synthetic biology has been for long bringing profound changes to the process of producing chemicals, materials, and food, as well as helping addressing other major global challenges, such as food security, chronic disease, and climate change, it is the COVID-19 pandemic that could eventually provide a breakout moment for synthetic biology.

Competitors identified in this market include, among others,

Read the full report: https://www.reportlinker.com/p01375238/?utm_source=GNW

I. INTRODUCTION, METHODOLOGY & REPORT SCOPE I-1

II. EXECUTIVE SUMMARY II-1

1. MARKET OVERVIEW II-1 Impact of Covid-19 and a Looming Global Recession II-1 COVID-19 Pandemic Poised to Drive Demand for Synthetic Biology II-1 Exhibit 1: COVID-19 Vaccines in Pipeline by Technology II-4 Synthetic Biologists Create Slow-Growing Version of COVID-19 as Vaccine Candidate II-5 Role of Synthetic Biology in Combating COVID-19 II-5 Synthetic Biology: A Prelude II-6 Growing Importance of Synthetic Biology II-7 Applications of Synthetic Biology II-9 Synthetic Biology Tools II-10 Technologies Involved II-10 Current and Future Analysis II-11 Regional Landscape II-12 Major Challenges and Concerns II-13 Teeming R&D Funding & Potential to Alter Molecular Landscape Enable Global Synthetic Biology Market to Remain in High Spirits II-14 Competitive Landscape II-15 Major Players by Industry Verticals II-15 Synthetic Biology Startups Get Aggressive on Bioengineered Product Commercialization II-16 Compelling Breakthroughs Drive Funding II-16 Top Funded Synthetic Biology Startups in Q2 2020 II-18 Recent Market Activity II-19

2. FOCUS ON SELECT PLAYERS II-21

3. MARKET TRENDS & DRIVERS II-23 Synthetic Biology Market Witnesses Significant Rise in Investments II-23 Importance of Synthetic Biology for Investments II-23 Efforts from Leading Players Bodes Well for Market Growth II-24 Patent Landscape Gets Richer II-25 Exhibit 2: Synthetic Biology Patent Landscape by Assignee Countries (in %) : 2003-2018 II-26 Exhibit 3: Top 15 Patent Assignees in Synthetic Biology Domain: 2003-2018 II-27 Select Patent Assignees for Synthetic Biology in the US: 2019 II-28 Robotics and Workflow Automation Support Market Expansion II-29 Advancements in Instrumentation Augurs Well II-29 Improvements in Computer-Aided Biology II-30 Fusion of AI and Synthetic Biology Expands Opportunities II-31 Synthetic Biology Brings a Paradigm Shift in the Field of Biological Research II-32 DNA Sequencing Plays an Important Role II-33 Plummeting Cost of DNA Sequencing Bolsters Market Growth II-33 Exhibit 4: Cost per Genome Sequencing: 2001-2020 II-34 Food Scarcity to Fuel Synthetic Biology Application in Agriculture II-35 Select Companies Engaged in Making Food Using Synthetic Biology II-36 Synthetic Biology Aids in Development of Exotic and Artificially Grown Meats and Proteins to Meet Future Food Demand II-37 Growing Demand for GM Crops Opens Up Growth Avenues II-37 Synthetic Biology-based Ingredients Gain Traction II-38 Role of Synthetic Biology in Producing Plants with Desirable Characteristics II-38 Synthetic Biology Gains Prominence in Biomedical Applications II-39 Synthetic Genes Open up a New World of Drug Development II-40 Synthetic Biology to Transform Healthcare with Captivating Advances in Biomedicine II-40 Synthetic Biology Enables Creation of Advanced Biosensing Systems II-41 Synthetic Biology Gains Significance in Production of Bio-Based Chemicals and Biofuels II-42 Exhibit 5: Global Biofuels Market in US$ Billion: 2019 and 2024 II-44 Synthetic Biology Gains Importance as Focus on Carbon Recycling Increases II-44 Synthetic Biology Disrupts the Cosmetics Sector II-45 Capability of Synthetic Biology in Environmental Applications II-45 Synthetic Biology Creates Buzz as Key Enabler of Exciting & Dynamic Applications for Diverse Domains II-47 Synthetic Biology for Advanced, Multifunctional Materials II-47 Genetically Engineered Fabrics and Sustainable Dyes Using Synthetic Biology to Transform Textile Industry II-48 Select Synthetic Biology Offerings in Textile Industry II-49

4. GLOBAL MARKET PERSPECTIVE II-50 Table 1: World Current & Future Analysis for Synthetic Biology by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-50

Table 2: World Historic Review for Synthetic Biology by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-51

Table 3: World 12-Year Perspective for Synthetic Biology by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets for Years 2015, 2020 & 2027 II-52

Table 4: World Current & Future Analysis for Oligonucleotides & Synthetic DNA by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-53

Table 5: World Historic Review for Oligonucleotides & Synthetic DNA by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-54

Table 6: World 12-Year Perspective for Oligonucleotides & Synthetic DNA by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-55

Table 7: World Current & Future Analysis for Enzymes by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-56

Table 8: World Historic Review for Enzymes by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-57

Table 9: World 12-Year Perspective for Enzymes by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-58

Table 10: World Current & Future Analysis for Cloning Technology Kits by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-59

Table 11: World Historic Review for Cloning Technology Kits by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-60

Table 12: World 12-Year Perspective for Cloning Technology Kits by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-61

Table 13: World Current & Future Analysis for Synthetic Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-62

Table 14: World Historic Review for Synthetic Cells by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-63

Table 15: World 12-Year Perspective for Synthetic Cells by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-64

Table 16: World Current & Future Analysis for Xeno-Nucleic Acids (XNA) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-65

Table 17: World Historic Review for Xeno-Nucleic Acids (XNA) by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-66

Table 18: World 12-Year Perspective for Xeno-Nucleic Acids (XNA) by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-67

Table 19: World Current & Future Analysis for Chassis Organism by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-68

Table 20: World Historic Review for Chassis Organism by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-69

Table 21: World 12-Year Perspective for Chassis Organism by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-70

Table 22: World Current & Future Analysis for Nucleotide Synthesis & Sequencing by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-71

Table 23: World Historic Review for Nucleotide Synthesis & Sequencing by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-72

Table 24: World 12-Year Perspective for Nucleotide Synthesis & Sequencing by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-73

Table 25: World Current & Future Analysis for Genome Engineering by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-74

Table 26: World Historic Review for Genome Engineering by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-75

Table 27: World 12-Year Perspective for Genome Engineering by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-76

Table 28: World Current & Future Analysis for Microfluidics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-77

Table 29: World Historic Review for Microfluidics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-78

Table 30: World 12-Year Perspective for Microfluidics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-79

Table 31: World Current & Future Analysis for Other Technologies by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-80

Table 32: World Historic Review for Other Technologies by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-81

Table 33: World 12-Year Perspective for Other Technologies by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-82

Table 34: World Current & Future Analysis for Pharmaceuticals & Diagnostics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-83

Table 35: World Historic Review for Pharmaceuticals & Diagnostics by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-84

Table 36: World 12-Year Perspective for Pharmaceuticals & Diagnostics by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-85

Table 37: World Current & Future Analysis for Industrial by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-86

Table 38: World Historic Review for Industrial by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-87

Table 39: World 12-Year Perspective for Industrial by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-88

Table 40: World Current & Future Analysis for Food & Agriculture by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-89

Table 41: World Historic Review for Food & Agriculture by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-90

Table 42: World 12-Year Perspective for Food & Agriculture by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-91

Table 43: World Current & Future Analysis for Environmental by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-92

Table 44: World Historic Review for Environmental by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-93

Table 45: World 12-Year Perspective for Environmental by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-94

Table 46: World Current & Future Analysis for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 II-95

Table 47: World Historic Review for Other Applications by Geographic Region - USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 II-96

Table 48: World 12-Year Perspective for Other Applications by Geographic Region - Percentage Breakdown of Value Sales for USA, Canada, Japan, China, Europe, Asia-Pacific and Rest of World for Years 2015, 2020 & 2027 II-97

III. MARKET ANALYSIS III-1

GEOGRAPHIC MARKET ANALYSIS III-1

UNITED STATES III-1 Table 49: USA Current & Future Analysis for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-1

Table 50: USA Historic Review for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-2

Table 51: USA 12-Year Perspective for Synthetic Biology by Tool - Percentage Breakdown of Value Sales for Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism for the Years 2015, 2020 & 2027 III-3

Table 52: USA Current & Future Analysis for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-4

Table 53: USA Historic Review for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-5

Table 54: USA 12-Year Perspective for Synthetic Biology by Technology - Percentage Breakdown of Value Sales for Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies for the Years 2015, 2020 & 2027 III-6

Table 55: USA Current & Future Analysis for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-7

Table 56: USA Historic Review for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-8

Table 57: USA 12-Year Perspective for Synthetic Biology by Application - Percentage Breakdown of Value Sales for Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications for the Years 2015, 2020 & 2027 III-9

CANADA III-10 Table 58: Canada Current & Future Analysis for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-10

Table 59: Canada Historic Review for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-11

Table 60: Canada 12-Year Perspective for Synthetic Biology by Tool - Percentage Breakdown of Value Sales for Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism for the Years 2015, 2020 & 2027 III-12

Table 61: Canada Current & Future Analysis for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-13

Table 62: Canada Historic Review for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-14

Table 63: Canada 12-Year Perspective for Synthetic Biology by Technology - Percentage Breakdown of Value Sales for Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies for the Years 2015, 2020 & 2027 III-15

Table 64: Canada Current & Future Analysis for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-16

Table 65: Canada Historic Review for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-17

Table 66: Canada 12-Year Perspective for Synthetic Biology by Application - Percentage Breakdown of Value Sales for Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications for the Years 2015, 2020 & 2027 III-18

JAPAN III-19 Table 67: Japan Current & Future Analysis for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-19

Table 68: Japan Historic Review for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-20

Table 69: Japan 12-Year Perspective for Synthetic Biology by Tool - Percentage Breakdown of Value Sales for Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism for the Years 2015, 2020 & 2027 III-21

Table 70: Japan Current & Future Analysis for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-22

Table 71: Japan Historic Review for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-23

Table 72: Japan 12-Year Perspective for Synthetic Biology by Technology - Percentage Breakdown of Value Sales for Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies for the Years 2015, 2020 & 2027 III-24

Table 73: Japan Current & Future Analysis for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-25

Table 74: Japan Historic Review for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-26

Table 75: Japan 12-Year Perspective for Synthetic Biology by Application - Percentage Breakdown of Value Sales for Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications for the Years 2015, 2020 & 2027 III-27

CHINA III-28 Table 76: China Current & Future Analysis for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-28

Table 77: China Historic Review for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-29

Table 78: China 12-Year Perspective for Synthetic Biology by Tool - Percentage Breakdown of Value Sales for Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism for the Years 2015, 2020 & 2027 III-30

Table 79: China Current & Future Analysis for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-31

Table 80: China Historic Review for Synthetic Biology by Technology - Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-32

Table 81: China 12-Year Perspective for Synthetic Biology by Technology - Percentage Breakdown of Value Sales for Nucleotide Synthesis & Sequencing, Genome Engineering, Microfluidics and Other Technologies for the Years 2015, 2020 & 2027 III-33

Table 82: China Current & Future Analysis for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-34

Table 83: China Historic Review for Synthetic Biology by Application - Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-35

Table 84: China 12-Year Perspective for Synthetic Biology by Application - Percentage Breakdown of Value Sales for Pharmaceuticals & Diagnostics, Industrial, Food & Agriculture, Environmental and Other Applications for the Years 2015, 2020 & 2027 III-36

EUROPE III-37 Table 85: Europe Current & Future Analysis for Synthetic Biology by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2020 through 2027 III-37

Table 86: Europe Historic Review for Synthetic Biology by Geographic Region - France, Germany, Italy, UK and Rest of Europe Markets - Independent Analysis of Annual Sales in US$ Thousand for Years 2015 through 2019 III-38

Table 87: Europe 12-Year Perspective for Synthetic Biology by Geographic Region - Percentage Breakdown of Value Sales for France, Germany, Italy, UK and Rest of Europe Markets for Years 2015, 2020 & 2027 III-39

Table 88: Europe Current & Future Analysis for Synthetic Biology by Tool - Oligonucleotides & Synthetic DNA, Enzymes, Cloning Technology Kits, Synthetic Cells, Xeno-Nucleic Acids (XNA) and Chassis Organism - Independent Analysis of Annual Sales in US$ Thousand for the Years 2020 through 2027 III-40

Continued here:
As a Wiser World Looks to Make a Strong Sustainable Recovery From COVID-19, Synthetic Biology to Receive New Opportunities for Growth - GlobeNewswire

Read More...

Page 6«..5678..2030..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick