header logo image


Page 3«..2345..1020..»

Archive for the ‘Genetic Engineering’ Category

Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups – Singularity Hub

Wednesday, December 22nd, 2021

Do you want a boy or a girl? can be an awkward question.

But in certain circles, its a question thats asked every day. Take agriculture. In a perfect world, most cows would only birth females. Chicks would grow up to be all hens. Sexing a farm animal when theyre at a young age wouldnt be a thingespecially when it means male animals, without the ability to produce milk or eggs, are often culled at a young age to preserve resources.

There might be a better way. This month, a team tapped into the power of CRISPR to control the sex of the offspring in mice. By splicing CRISPR components into the parents genome, the team was able to flip onor offa switch that nearly perfectly determined the sex of their litters.

Unlike previous attempts, the baby mice could go on to have litters of their own of both sexes. The targeted gene used for the edit is conserved across evolution, suggesting the technique could work in more animals than just mice.

But its controversial. Essentially, the technique selectively kills off embryos of a certain sex, which immediately raises ethical red flags. For now, scientists arent concerned about the technology being used in humans due to its complexity. But the study is the latest to showcase biotechs increasing ability to manipulate reproduction.

Its an impressive result and a state-of-the-art solution to producing single-sex species, said Dr. Ehud Qimron at Tel Aviv University, who was not involved in the work.

Skewing the sex of offspring is nothing new. For over a decade, scientists have gradually hijacked the mosquito genome with gene drives to rewrite evolution. The idea is that the genetic edit would override natural selection, spreading across subsequent generations into a dominant gene. Instead of a genes usual 50-50 chance of inheritance, artificial gene drives have a far higher chance of infiltrating the next generation, fundamentally changing a species genetic code. When its a gene that biases the sex of their offspring, a species could gradually only have one sex, leading to their extinction.

Its a doomsday plan with potentially massive benefits, such as curbing malaria. Because female mosquitoes are generally the carrier for the disease, a gene drive that leads to only males is a sure-fire way to reduce transmission. In one study, within a dozen generations, the genetic edit was sufficient to collapse a whole colony of mosquitoes in the lab. Similar studies have been tried in mice.

Its not a perfect solution. The gene edit is powerfulmaybe too much so. With farm animals, the goal isnt to eradicate a species, but rather to bias the sex of the animal towards one side and increase animal welfare. Animal and animal products are used globally, and ethical discussions regarding animal usage are ongoing, said the authors. Over 100,000 male calves are culled each year, and stats for other common farm animals paint a similarly uncomfortable picture.

The new study took a different approach. With CRISPR, the team skewed the sex of only the next generation in mice, allowing the same-sex litters to eventually reproduce normally.

CRISPR has two parts: an RNA guide (the bloodhound that sniffs out the target gene) and Cas9 (a scissor protein that physically cuts the gene). Usually, the two components are encoded into a single carrier, dubbed a vector, and inserted into a cell or animal. By targeting a gene that is essential for reproduction, for example, its then possible to trigger spontaneous failed pregnancies in animals.

But how does that help with sex selection? Let me explain.

The first step was to find a gene critical for embryo survivalone that when disrupted causes synthetic lethality. The team honed in on Top1, well known for its role in DNA repair. Cutting the gene triggers embryos to fail at a very early stage, when theyre just 8 to 16 cells, not yet implanted into the uterine wall and far from viable.

The team then engineered a CRISPR system that targets the start codons of Top1a chunk of DNA that acts as an on switch to activate the gene. Heres the clever part. They split the two components of CRISPR into two vectors.

One part, which carries the genetic code for a guide RNA that targets Top1, was then inserted into a female mouses X chromosome. The other vector, carrying the code for Cas9 scissors, was edited into the males Y chromosome.

When combined, the two components meet up like peanut butter and jelly, forming the full recipe to disrupt Top1. This can only happen in X/Y embryosthose that define maleand so selectively interrupt these embryos from developing. X/X, or genetically female embryos, are spared, as they only contain half of the CRISPR mechanism. The system is flexible. If Cas9 scissors were attached to the males X chromosome, all X/X embryos were eliminated before they grew to 16 cells.

The efficiency of the edit was crazy at 100 percent. Mice born from these genetically-edited parents were completely normal, with a hefty body size and in larger numbers than normally expected, suggesting the edit may cause less stress on the mother. Unlike those born using gene drives, the mice grew up to have perfectly normal litters with both male and female offspring.

The results are a long time in the making. Back in 2019, a team led by Dr. Udi Qimron at Tel Aviv University used CRISPR to produce mice in which 80 percent of the offspring were females. With the new study, the efficacy leaps to 100 percent, with the choice towards either sex. If further tested in farm animals, the technique could be a boost to both animal welfare and conservation.

Its not an entirely comfortable solution for some. To Sue Leary, president of the non-profit Alternatives Research & Development Foundation, You cant solve an ethical problem with another ethical problem, which is genetic engineering. And given the animosity towards GMOs, the new technology, regardless of efficacy, may be dead in the water.

For now, the CRISPR edits arent feasible in humans due to their complexity. Whats clear, though, is that weve begun parsing the biological machinery behind gender selection. Add in recent work on genetically-engineered embryos, or eggs and sperm from stem cells, and were on the fast track for CRISPR to completely change our current conception of reproduction.

Image Credit: Graphic Compressor/Shutterstock.com

Go here to read the rest:
Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub

Read More...

Report calls for broad public deliberation on releasing gene-edited species in the wild – EurekAlert

Wednesday, December 22nd, 2021

NEW YORK, December 21 -- A new report released by The Hastings Center, a leading ethics research institute, finds that the complex issues raised by releasing gene-edited species into the wild demand deep and broad public engagement. The report, Gene Editing in the Wild: Shaping Decisions Through Broad Public Deliberation, provides a path forward to move decision-making from the realm of experts to a more inclusive, values-based approach using the technique of public deliberation or deliberative democracy.

The goals of gene editing in the wild efforts are wide-ranging, and the benefits potentially transformative--such as preventing mosquitoes from spreading disease. But this work poses major trade-offs that require the publics consideration.

The reports twelve essays take up fundamental questions: how should public deliberation be designed? Who should participate? How should deliberation be linked to policy?

The introductory essay, Public Deliberation About Gene Editing in the Wild, summarizes the key design elements that can improve broad public deliberations about gene editing in the wild: Framing the question and deciding when to hold broad public deliberation, choosing participants, addressing power, and accounting for and capturing perspectives that are hard to express. The introduction was written by the special report editors: Michael K. Gusmano, Gregory E. Kaebnick, Karen J. Maschke, Carolyn P. Neuhaus, and Ben Curran Wills.

Regulating Gene Editing in the Wild: Building Regulatory Capacity to Incorporate Deliberative Democracy, by Karen J. Maschke and Michael K. Gusmano, says that there has not been enough attention to how we should connect public deliberation to the existing regulatory process. The authors argue that, while federal agencies may have capacity to undertake public deliberative activities, there may not be sufficient political support for them to do so.

Deliberative Public Consultation via Deliberative Polling: Criteria and Methods, by James S. Fishkin, makes the case that Deliberative Polling, an approach developed by the author, can be usefully employed to engage representative samples to deliberate in depth in controlled experiments so as to yield a picture of the publics considered judgments. Another it can be cost-effectively conducted online.

The Decision Phases Framework for Public Engagement: Engaging Stakeholders about Gene Editing in the Wild, by S. Kathleen Barnhill-Dilling, Adam Kokotovich, and Jason A. Delborne, puts forth a framework for shaping public engagement that tackles when and whom to engage on genetic engineering questions.

Empowering Indigenous Knowledge in Deliberations on Gene Editing in the Wild, by Riley Taitingfong and Anika Ullah, identifies Indigenous peoples as key stakeholders in decisions about gene-editing in the wild and argues that engagement activities need not only include Indigenous peoples but also should be designed, conducted, and analyzed in ways that confront longstanding power imbalances that dismiss Indigenous expertise.

The special report grew out of a Hastings Center project funded by the National Science Foundation, The complete report is available for download here.

For more information, contact:

Susan Gilbert or Mark Cardwellcommunications@thehastingscenter.org845-424-4040, ext. 244

Systematic review

Not applicable

Gene Editing in the Wild: Shaping Decisions through Broad Public Deliberation

15-Dec-2021

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

View original post here:
Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert

Read More...

RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry – BioSpace

Wednesday, December 22nd, 2021

RNA and DNA extraction plays a crucial role in cancer genetic studies, which involves mutation analysis, comparative genomic hybridization, and microsatellite analysis. The rising incidences of cancer globally are creating a need for the advanced RNA and DNA extraction kit and are expected to drive market growth in the coming years.

Based on the product, the market is expected to segregate into RNA extraction kit and DNA extraction kit. Of these, the DNA extraction kit segment is expected to account for the leading share in the overall RNA and DNA extraction kit market. Additionally, the applications of DNA extraction kits mainly in the genetic engineering of animals and plants in pharmaceutical manufacturing. This is expected to fuel growth of RNA and DNA extraction kit market.

Get Brochure of the Report @ https://www.tmrresearch.com/sample/sample?flag=B&rep_id=5600

Global RNA and DNA Extraction Kit Market: Notable Developments

Some of the most prominent competitors operating in the competitive landscape of global RNA and DNA extraction kit market include

Global RNA and DNA Extraction Kit Market: Drivers and Restraints

The rise and progress in customized drug have helped social insurance experts create exact sub-atomic focused on treatment dependent on a person's hereditary cosmetics and prescient information explicit to patients. The advancement of customized medication requires genome-mapping investigations of separated cells, which can be completed with the assistance of DNA and RNA extraction kits. DNA extraction kits are utilized to recognize quality polymorphisms identified with sickness or medication digestion though RNA extraction kits are utilized to break down RNA combination in separated cells. With the expanding appropriation of customized prescription, the demand for RNA and DNA extraction kits will likewise develop.

Get Table of Content of the Report @ https://www.tmrresearch.com/sample/sample?flag=T&rep_id=5600

There is a developing rate of malignant growth over the globe. The inside and out understanding of tumor hereditary qualities given by trend-setting innovations in malignant growth research has empowered the advancement of novel treatments to battle disease-causing qualities. The virtue, amount, and nature of separated RNA assume a huge job in the accomplishment of RNA examination and examination and consequent capacity of specific quality articulation. RNA extraction likewise helps in recognizing circulating tumor cells (CTCs) and non-intrusive observing of cutting edge malignant growths.

Global RNA and DNA Extraction Kit Market: Regional Outlook

On the basis of region, the RNA and DNA extraction kit market is segmented into North America, Europe, Latin America, Asia Pacific, and the Middle East & Africa. Of these, North America is expected to dominate the global RNA and DNA extraction kit market owing to robust innovation procedures running in the region. This factor is expected to offer robust growth opportunities to key players in RNA and DNA extraction kit market. Additionally, increasing demand for the automated systems coupled with the rising need for the RNA and DNA extraction kit across the extraction kits especially in the medical diagnosis is expected to drive growth of the market in coming years.

TMR Research is a leader in developing well-researched reports. The expertise of the researchers at TMR Research makes the report stand out from others. TMR Research reports help the stakeholders and CXOs make impactful decisions through a unique blend of innovation and analytical thinking. The use of innovation and analytical thinking while structuring a report assures complete and ideal information of the current status of the market to the stakeholders.

TMR Research has rich experience in developing state-of-the-art reports for a wide array of markets and sectors. The brilliance of the experts at TMR Research and their alacrity to conduct thorough research and create phenomenal reports makes TMR Research better than others.

Get Discount on the Latest Report @ https://www.tmrresearch.com/sample/sample?flag=D&rep_id=5600

5-Point Growth Formula

The 5-point growth formula developed by TMR Research provides an insight to the stakeholders and CXOs about the current situation in the market. The growth formula makes the report a perfect companion for the stakeholders and CXOs.

The 5-point growth formula includes the following points:

About TMR Research

TMR Research is a premier provider of customized market research and consulting services to business entities keen on succeeding in todays supercharged economic climate. Armed with an experienced, dedicated, and dynamic team of analysts, we are redefining the way our clients conduct business by providing them with authoritative and trusted research studies in tune with the latest methodologies and market trends.

Contact:

Rohit Bhisey

TMR Research,

3739 Balboa St # 1097,

San Francisco, CA 94121

United States

Tel: +1-415-520-1050

Visit Site: https://www.tmrresearch.com/

Visit link:
RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace

Read More...

Opinion: Allow Golden Rice to save lives – pnas.org

Wednesday, December 22nd, 2021

Vitamin A deficiency (VAD) has killed millions of children in less-developed countries for at least the last three decadesroughly 2 million annually in the early 1990s alone (14). Although the number is declining, it was estimated to be 266,200 (4) at the start of the millennium.

Widespread consumption of the genetically modified rice variety known as Golden Rice offers a potent and cost-effective strategy to combat vitamin A deficiency. Image credit: International Rice Research Institute; photo licensed under CC BY 2.0.

The consumption of the genetically modified rice variety known as Golden Rice (GR) offers a potent and cost-effective strategy to combat VAD. But this innovation has been cast aside owing to fear or false accusations, resulting in numerous lives needlessly lost (13). With the recent exception of the Philippines, governments have not approved the cultivation of GR (5). We believe it should be broadly approved and given the opportunity to save and improve lives.

In high-income nations where populations have access to a diversity of foods, VAD is rare. In many low-income nations, however, populations have limited access to foods rich in vitamin A or beta-carotene, a vitamin A precursor; hence, VAD rates can be dangerously high in children. There have been recent improvements: from 1991 to 2013, the VAD rate among children in low- and middle-income countries declined from 39% to 29%, with notable improvements among children in East and Southeast Asia (4). However, children in sub-Saharan Africa and South and Southeast Asia continue to disproportionately experience VAD and its associated risks: infectious and diarrheal diseases, irreversible blindness and other sensory losses, and premature death (1, 4, 6).

VAD has not been eradicated despite a variety of strategies used globally, including education on the value of dietary diversity, promotion of home gardens and maternal breastfeeding of infants, and community health programs including vitamin A supplementation with syrups or capsules (7). Principally, VAD is caused by insufficient dietary diversity, a result of poverty and agronomic and market constraints. Animal source foods and many kinds of produce are unavailable or expensive in local markets. Conversely, white rice or other cereal grains are easily available and inexpensive but primarily contain carbohydrates while lacking sufficient micronutrient levels.

GR, developed first in the 1990s and then modified in 2004 with transgenes from maize and a common soil bacterium Erwinia uredovora, could be an important public health intervention for VAD populations worldwide. This transgenic, or genetically modified, rice produces beta-carotene, a precursor to vitamin A, in the normally white endosperm (8) and has proven an effective source of vitamin A in humans (9). GR* is now awaiting final approval in Bangladesh. In July 2021, it was approved for cultivation in the Philippines. Other countries will likely follow.

A recent study has estimated that substituting conventional rice for GR could provide 89% to 113% and 57% to 99% of the recommended vitamin A requirement for preschool children in Bangladesh and the Philippines, respectively (10). Even if there were no other sources of vitamin A in the diets, this boost in dietary beta-carotene could do much to prevent diseases associated with VAD.

GR is also financially viable. In Bangladesh, the current practice of fortifying rice with vitamin A and zinc using food additives, although supported by the World Food Programme, increases the cost of rice by 5% to 6% and is applied to only about 1 million metric tonnes of rice of the roughly 25 million metric tonnes produced in Bangladesh per year (11). GR, by contrast, poses no extra cost to governments, growers, or consumers in comparison with white rice.

Meanwhile, VAD has continued to cause severe illness and death among certain populations worldwide, especially children (12). The total estimated deaths from VAD-related diarrheal diseases and measles in children under five years of age in 2013 was 94,500 and 11,200, respectively, totaling 105,700 deaths across the world (4). Had GR become a part of diets in vulnerable populations worldwide, a portion of these lives might have been saved. Hopefully, approval of the commercialization of GR in the Philippines will provide impetus for Bangladesh and other nations with high VAD rates to provide poor consumers with an option that may save lives and improve health.

Those who oppose transgenic or genetically modified organisms raised concerns that led policymakers to delay the approval of the technologies (13). One argument relates to biotechnology company profits. But because the GR technology to the public sector is available at no cost for humanitarian uses, this concern is irrelevant. There are no limitations, except export, on GR use: replanting or selling or giving away seed, or polishing for consumption or sale.

Greenpeace summarized a food security-related objection to GR in a 2012 statement (14): If introduced on a large scale, GR can exacerbate malnutrition and ultimately undermine food security. The implication: GR will worsen malnutrition because it leads to a diet based on one staple. However, the replacement of traditional rice with GR would not exclude the development of diversified diets; in the meantime, vitamin A status could improve for many in the population. And optimizing vitamin A delivery could improve public health in at-risk populations.

A reasonable objection concerns possible human or environmental health risks. The United Nations (UN) Cartagena Protocol on Biosafety (15) provides a framework for the regulation of genetically engineered crops in many countries, emphasizing the Precautionary Principle in assessing risks, and leaving out assessment of benefits. This Protocol was signed in 2000 and became effective in 2003, in the relatively early days of agricultural genetic engineering. Since then, multiple studies have reported on benefits of genetically modified organism (GMO) adoption through increased yields, reduced pesticide use, improved farmer income, reduced prices to consumers, and in some cases even improved food safety (16). Meanwhile, there have been no confirmed incidents of adverse human health or environmental effects from genetically engineered crops during nearly three decades of global use (16).

Transgenic crops are subject to many required regulatory tests before approval, including animal feeding and invitro studies for toxicity and allergenicity. Yet opponents of these crops have continued to amplify suspicion on the long-term health effects of genetically engineered crops (17). Protection against such risks can be achieved through monitoring of the performance and the impacts of technologies and intervening when setbacks occur. However, the food safety assessments for transgenic crops in many countries are more demanding than for conventionally bred varieties. In fact, often less is known about the properties of plants developed by conventional mutagenesis than those developed by transgenic methods.

Another concern is that GR genes may intermingle with those of conventionally bred rice varieties. This uncertainty, however, applies not just to GR but also to any other new rice variety. Humans have consumed rice for more than 4,000 years, including varieties that have been crossed genetically across multiple strains. Transgenic methods of introducing novel genes is not inherently of greater concern, unless those genes produce proteins with potential adverse health effectssomething that food safety tests for approval can determine. Clearly the lives saved with VAD outweigh concerns about these so-called unknown risks. In response to such criticisms, in 2016 more than 150 Nobel Laureates have signed an open letter to the UN, governments of the world, and Greenpeace, urging a more balanced approach toward genetically modified crops in general and GR in particular: Scientific and regulatory agencies around the world have repeatedly and consistently found crops and foods improved through biotechnology to be as safe as, if not safer than, those derived from any other method of production. Opposition based on emotion and dogma contradicted by data must be stopped (18).

The arguments used by organizations to delay adoption of GR often resemble the arguments of anti-vaccination groups, including those protesting vaccines to protect against COVID-19. Some of the opponents of GR and agricultural biotechnology more generally see the introduction of GR as forcing the consumption of GMOs on the population. However, for the case of GR, consumers have the option of easily avoiding consumption because GR is very easily identifiable by its color.

The tragedy of GR is that regulatory delays of approval have immense costs in terms of preventable deaths, with no apparent benefit (13). The approval of GR is even more urgent with the ongoing pandemic, which has made access to healthcare services more difficult in vulnerable populations worldwide. The World Bank has recommended that micronutrient biofortification of staple crops, including specifically GR, should be the norm and not the exception in crop breeding (19).

Golden rice can effectively control VAD. Delaying the uptake of a genetically modified product shown to have clear health benefits has and will cost numerous lives, frequently of the most vulnerable individuals. Policymakers must find ways to overcome this resistance and accelerate the introduction and adoption of Golden Rice.

Author contributions: J.W., D.Z., and A.D. designed research; F.W., J.W., C.C., and A.D. performed research; F.W., J.W., and C.C. analyzed data; and F.W., J.W., D.Z., R.R., C.C., and A.D. wrote the paper.

Competing interest statement: A.D. is a member and the Executive Secretary of the Golden Rice Humanitarian Board. He is a volunteer, unpaid and without grants. R.R. is a member of the Golden Rice Humanitarian Board. He is a volunteer, unpaid and without grants. The Golden Rice Humanitarian Board (http://www.goldenrice.org) holds the rights for humanitarian applications of the nutritional technology created by Professors Ingo Potrykus and Peter Beyer and related licensed technology. The Board is not legally incorporated in any way. It is a group of individuals who voluntarily share the objective of making Golden Rice available to resource-poor populations as a public good, delivered by the public sector in locally adapted and preferred rice varieties, at no greater cost than white rice and with no use limitations except export. All other authors declare no competing interests.

Any opinions, findings, conclusions, or recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the National Academy of Sciences.

*Many transformation events were produced (8), from which event GR2E has been selected on the basis of molecular structure and insertion in the rice genome, together with agronomic performance. It is the basis of the regulatory data generated and is the only form of GR which is offered for approval and use.

See the rest here:
Opinion: Allow Golden Rice to save lives - pnas.org

Read More...

It’s time for an alliance of democracies | TheHill – The Hill

Wednesday, December 22nd, 2021

President Joe BidenJoe BidenFederal class action lawsuit filed over treatment of Haitian migrants Staffer who had contact with Biden tests positive for COVID-19 Overnight Defense & National Security New rules try to tackle extremism in the ranks MORE recently assembled the leaders of more than 100 democracies worldwide for a virtual Summit for Democracy. Not surprisingly, the gathering drew the ire of China and Russia, whose ambassadors penned a joint op-ed castigating it a vestige of Cold War mentality and calling on countries to stop using "value-based diplomacy" to provoke division and confrontation.

The summit was useful to begin conversations on how to confront the daunting challenges facing the free world. But it is not sufficient. The time has come to establish an Alliance of Democracies that would bring together the United States and its allies in Europe and the Indo-Pacific, and other willing democracies worldwide that share common interests and values and are prepared to act.

As Biden underscored in his introductory remarks, democracy is facing alarming and sustained challenges, including from autocrats, who seek to advance their own power and export and expand their influence around the world.China and Russia, in particular, have become more assertive in challenging key tenets of the rules-based global order, Democracies are on the defensive as they contend with these and other global threats. To succeed in this fundamental struggle between democracy and autocracy, democracies must strengthen cooperation.

An Alliance of Democracies would provide a highly visible platform for fostering solidarity in the face of common threats and challenges. The leading democracies in North America, Europe and the Indo-Pacific make up roughly three-quarters of global gross domestic product. In combination with the European Union, the transatlantic partnership provides nearly 80 percent of official developmental aid worldwide. And the 20 highest scoring countries in terms of soft-power influence are all democracies. These assets provide the United States and its allies with an enormous source of leverage in addressing global challenges.

But the Alliance of Democracies must be more than symbolic. Instead, its members must be prepared to take meaningful action to address the three defining challenges facing the democratic world. The first is the increasing assertiveness by China and Russia to make the world safer from autocracy. Moscow and Beijing are using diplomatic and economic coercion including military threats, cyber operations, malign finance and other wolf warrior diplomacy tactics to pressure smaller governments and global corporations to accommodate their interests.

In response, the alliance could facilitate coordinated sanctions and other measures to deter such behavior, and provide a mechanism to provide joint assistance to targeted democracies. It could also help make democracies less vulnerable to economic coercion, including, for example, by facilitating alternative supply chains for sensitive technologies and critical energy supplies.

The second is backsliding within established democracies. Whether through the acquiescence of their electorate or manipulation of electoral processes, populist leaders in many democracies have been using their authority to undermine democratic norms. The alliance can serve as a mechanism to hold states accountable for their democratic practices at home. Building on the loose pledge system for leaders interventions at the Summit for Democracy, countries could be asked to make specific commitments to advance democratic renewal at home as part of their alliance membership obligations.

The third is the rise of emerging and potentially disruptive technologies. Such technologies including artificial intelligence, quantum computing, genetic engineering and 5G are developing rapidly and will significantly shape the future of geopolitics. While these innovations promise great benefits, they also carry serious risks, including security challenges. If China or other autocratic nations succeed in developing these technologies ahead of the democratic world, they could gain significant economic and military advantages. To counter this, the alliance should set common standards for advanced technologies that are consistent with liberal norms. The goal is to ensure that the democratic world and fundamental values prevail in the technological race.

Support for closer alignments among democracies is building. In hosting the Group of Seven (G7) summit earlier this year, British Prime Minister Boris JohnsonBoris JohnsonQueen cancels British royal family's Christmas gathering: report It's time for an alliance of democracies The Hill's Morning Report - Presented by National Industries for the Blind - Manchin says no; White House fires back MORE sought to advance the idea of a D-10 club of democracies. Lawmakers in Britain and Canada have expressed support for new coalitions of democracies, and the traffic light coalition making up the new government in Germany called for the creation of an Alliance of Democracies in a recent policy paper. In the United States, proposals for closer cooperation among democracies have drawn bipartisan support among lawmakers in Congress.

That China and Russia have spoken out so vehemently about the Summit for Democracy indicates a level of concern as to where this initiative might lead. Nevertheless, it would not serve the interests of the United States or its allies to provoke a new Cold War dynamic that could lead to escalating tensions or even direct confrontation. The reality is, however, that competition between democratic and autocratic powers is now an established feature of the current global system. The key question is how democracies will choose to respond. To minimize the risks of polarization, leading democracies should embrace a two-tracked approach: engaging with Beijing and Moscow though the United Nations, G20, and other venues in areas where cooperation may be feasible, and, at the same time, working through an Alliance of Democracies to uphold shared values and interests.

Bidens call to action with his Summit for Democracy could help propel the idea of an alliance forward. The administrations plan for a follow up summit next December could provide the building block for a sustainable cooperative network of democracies. The administration has rightly framed the current era as a historic inflection point between autocracy and democracy. An Alliance of Democracies would provide a signature initiative that is directly responsive to this challenge one that demonstrates leadership and can help align the democratic world in a common direction for will likely be a multi-decade era of strategic competition.

Ash Jain is director for democratic drder at the Atlantic Council.

Jonas Parello-Plesner is executive director of the Copenhagen-based Alliance of Democracies Foundation.

Go here to see the original:
It's time for an alliance of democracies | TheHill - The Hill

Read More...

Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19…

Wednesday, December 22nd, 2021

LOS GATOS, Calif., Dec. 21, 2021 /PRNewswire/ -- Aridis Pharmaceuticals, Inc. (Nasdaq: ARDS), a biopharmaceutical company focused on the discovery and development of novel anti-infective therapies to treat life-threatening infections, announced today that its fully human monoclonal antibody (mAb) cocktail AR-701 is broadly reactive against the Omicron and other COVID-19 (SARS-CoV-2) variants, SARS (Severe Acute Respiratory Syndrome), MERS (Middle East Respiratory Syndrome Coronavirus), and seasonal ('common cold') human coronaviruses.

"Omicron has rendered current COVID-19 vaccines and monoclonal antibodies substantially less effective, and likely future COVID 19 variants will arise that continue this trend" said Vu Truong, Ph.D., Chief Executive Officer of Aridis Pharmaceuticals. "AR-701 is the result of our successful search for a mAb therapy that is directed against a conserved region of the virus that would be less vulnerable to mutations and new variants such as Omicron. Our laboratory data suggest that AR-701 has the potential to be a future-proof COVID-19 therapy that can protect against SARS-CoV-2, SARS, or MERS pandemics," continued Dr. Truong. "To our knowledge AR-701 is the only COVID-19 therapy that targets two distinct viral mechanisms of action, making it much harder for the virus to generate resistance, and exhibits an unmatched combination of broad reactivity and high efficacy," continued Dr. Truong.

About AR-701AR-701 is a cocktail of two fully human immunoglobulin G1 (IgG1) mAbs discovered from screening the antibody secreting B-cells of convalescent SARS-CoV-2 infected (COVID-19) patients. AR-701 consists of AR-703 and AR-720 mAbs, each neutralizes coronaviruses using distinct mechanisms of action, namely inhibition of viral fusion and entry into human cells (AR-703) and blockage of viral binding to the human 'ACE2' receptor (AR-720). The two mAbs complement and enhance each other in a synergistic fashion, creating a potent first-in-class cocktail. AR-703 binds to the 'S2' stalk region of spike proteins from betacoronaviruses, including the SARS-CoV2 variants (beta, gamma, delta, epsilon), and binds to the Omicron variant with no loss in affinity compared to the original Wuhan strain. Multiple animal challenge models widely used to evaluate COVID-19 treatments support AR-701's broad efficacy, including:

The AR-701 mAbs are engineered to be active for 6-12 months in the blood. AR-701 is being developed as a long-acting intramuscular as well as a self-administered inhaled formulation for the treatment of COVID-19 patients who are not yet hospitalized. AR-701 mAbs were discovered through a collaboration with researchers at the University of Alabama in Birmingham and Texas Biomedical Research Institute (San Antonio, TX).

About Aridis Pharmaceuticals, Inc.

Aridis Pharmaceuticals, Inc. discovers and develops novel anti-infective therapies to treat life-threatening infections, including anti-infectives to be used as add-on treatments to standard-of-care antibiotics. The Company is utilizing its proprietary PEXTM and MabIgX technology platforms to rapidly identify rare, potent antibody-producing B-cells from patients who have successfully overcome an infection, and to rapidly manufacture monoclonal antibody (mAbs) for therapeutic treatment of critical infections. These mAbs are already of human origin and functionally optimized for high potency by the donor's immune system; hence, they technically do not require genetic engineering or further optimization to achieve full functionality.

The Company is advancing multiple clinical stage mAbs targeting bacteria that cause life-threatening infections such as ventilator associated pneumonia (VAP) and hospital acquired pneumonia (HAP), in addition to preclinical stage antiviral mAbs. The use of mAbs as anti-infective treatments represents an innovative therapeutic approach that harnesses the human immune system to fight infections and is designed to overcome the deficiencies associated with the current standard of care which is broad spectrum antibiotics. Such deficiencies include, but are not limited to, increasing drug resistance, short duration of efficacy, disruption of the normal flora of the human microbiome and lack of differentiation among current treatments. The mAb portfolio is complemented by a non-antibiotic novel mechanism small molecule anti-infective candidate being developed to treat lung infections in cystic fibrosis patients. The Company's pipeline is highlighted below:

Aridis' Pipeline

AR-301 (VAP). AR-301 is a fully human IgG1 mAb targeting gram-positive Staphylococcus aureus (S. aureus) alpha-toxin and is being evaluated in a global Phase 3 clinical study as an adjunctive treatment of S. aureus ventilator associated pneumonia (VAP).

AR-320 (VAP). AR-320 is a fully human IgG1 mAb targeting S. aureus alpha-toxin that is being developed as a preventative treatment of S. aureus colonized mechanically ventilated patients who do not yet have VAP. Phase 3 is expected to be initiated in 2Q22.

AR-501 (cystic fibrosis). AR-501 is an inhaled formulation of gallium citrate with broad-spectrum anti-infective activity being developed to treat chronic lung infections in cystic fibrosis patients. This program is currently in Phase 2a clinical development in CF patients.

AR-701 (COVID-19). AR-701 is a cocktail of fully human mAbs discovered from convalescent COVID-19 patients that are directed at multiple protein epitopes on the SARS-CoV-2 virus. It is formulated for delivery via intramuscular injection or inhalation using a nebulizer. AR-701 replaces AR-712 as the company's leading COVID mAb candidate.

AR-401 (blood stream infections). AR-401 is a fully human mAb preclinical program aimed at treating infections caused by gram-negative Acinetobacter baumannii.

AR-101 (HAP). AR-101 is a fully human immunoglobulin M, or IgM, mAb in Phase 2 clinical development targeting Pseudomonas aeruginosa (P. aeruginosa) liposaccharides serotype O11, which accounts for approximately 22% of all P. aeruginosa hospital acquired pneumonia cases worldwide.

AR-201 (RSV infection). AR-201 is a fully human IgG1 mAb out-licensed preclinical program aimed at neutralizing diverse clinical isolates of respiratory syncytial virus (RSV).

For additional information on Aridis Pharmaceuticals, please visit https://aridispharma.com/.

Forward-Looking Statements

Certain statements in this press release are forward-looking statements that involve a number of risks and uncertainties. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern Aridis' expectations, strategy, plans or intentions. These forward-looking statements are based on Aridis' current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. These factors include, but are not limited to, the need for additional financing, the timing of regulatory submissions, Aridis' ability to obtain and maintain regulatory approval of its existing product candidates and any other product candidates it may develop, approvals for clinical trials may be delayed or withheld by regulatory agencies, risks relating to the timing and costs of clinical trials, risks associated with obtaining funding from third parties, management and employee operations and execution risks, loss of key personnel, competition, risks related to market acceptance of products, intellectual property risks, risks related to business interruptions, including the outbreak of COVID-19 coronavirus, which could seriously harm our financial condition and increase our costs and expenses, risks associated with the uncertainty of future financial results, Aridis' ability to attract collaborators and partners and risks associated with Aridis' reliance on third party organizations. While the list of factors presented here is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Actual results could differ materially from those described or implied by such forward-looking statements as a result of various important factors, including, without limitation, market conditions and the factors described under the caption "Risk Factors" in Aridis' 10-K for the year ended December 31, 2020 and Aridis' other filings made with the Securities and Exchange Commission. Forward-looking statements included herein are made as of the date hereof, and Aridis does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.

Contact:Media Communications:Matt SheldonRedChip Companies Inc.Matt@redchip.com1.917.280.7329

Investor RelationsDave GentryRedChipDave@redchip.com1-800-733-2447

View original content to download multimedia:https://www.prnewswire.com/news-releases/aridis-pharmaceuticals-announces-a-pan-coronavirus-monoclonal-antibody-cocktail-that-retains-effectiveness-against-the-omicron-variant-other-covid-19-variants-sars-mers-and-the-common-cold-human-coronaviruses-301448791.html

SOURCE Aridis Pharmaceuticals, Inc.

Company Codes: NASDAQ-NMS:ARDS

Link:
Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19...

Read More...

2021: when the link between the climate and biodiversity crises became clear – The Guardian

Wednesday, December 22nd, 2021

Bats sweltering in their boxes, polar bears and narwhals using up to four times as much energy to survive, birds starving as Turkeys lakes dry up, and unique island species at high risk of extinction as the planet warms. If there was ever any doubt about the inextricable link between the climate emergency and the biodiversity crisis, those doubts were well and truly dispelled in 2021.

The science is clear: climate, biodiversity and human health are fully interdependent, Frans Timmermans, the European Commission vice-president who heads the European Green Deal; Achim Steiner, of the UN Development Programme; and Sandrine Dixson-Declve, of the Club of Rome, wrote before the Cop26 climate conference.

While the much-anticipated Cop15 Kunming biodiversity conference was delayed yet again, Cop26 brought together leaders from across the globe to discuss the climate emergency. Although the pledges on emissions cuts fell short of those required to limit the increase in temperatures to 1.5C, there were promises to halt and reverse global deforestation over the next decade.

Meanwhile, dozens of countries have committed to protecting 30% of the planets land and oceans by 2030, and in September, nine philanthropic foundations pledged $5bn (3.75bn) to finance the 30x30 pledge.

Despite the coronavirus pandemic and the many lockdowns, 2021 saw the worlds scientists, volunteers and conservationists continuing their efforts to protect nature. The International Union for Conservation of Nature launched its new green list of protected and conserved areas, researchers at the Natural History Museum worked on digitising its vast collection, Kenya held its first animal census, and a multimillion-pound project was launched that aims to describe and identify the web of life in large freshwater ecosystems with game-changing DNA technology.

In September, the IUCN world conservation congress in Marseille brought together innovators and policymakers from across the world for talks and debates on subjects as diverse as the universal declaration of the rights of the river, alien species, human-wildlife conflict, the use of smart technology in conservation, genetic engineering and much more.

Not all conservation efforts are down to scientists and policymakers though. There is growing recognition of the vital role communities and indigenous people play in conserving biodiversity and building livelihoods and this year we highlighted projects that included a shade-grown coffee initiative in Peru, islanders rallying to save the coco de mer nut in Seychelles and an army of nature recorders and seed conservers in the UK.

There was good news elsewhere. The flatpack homes for animals that fall victim to wildfires that we highlighted in April have since been trialled in Sydney, where a housing estate of the biodegradable cardboard pods has been put up to give shelter to wildlife after the bushfires.

In response to our piece on conservationists criticising Marks & Spencer for releasing 30 million honeybees, the British retailer filled 500 stores with little signs telling shoppers about the importance of native bumblebees in producing a number of foods. M&S has been really open to learning, said Gill Perkins, chief executive of the Bumblebee Conservation Trust, who believes it is the first UK supermarket to introduce bumblebee labels highlighting the work of these pollinators. She hopes others will follow suit.

Andrew Kerr, who spoke to the Guardian about wanting to create a UK eel rewilding programme, is having discussions with the relevant government ministry in January about the feasibility of getting rewilding permits sorted for this coming eel season.

Since we reported on the proposals to extend Barcelona airport, threatening neighbouring wetlands and a wealth of biodiversity, the plans have been put on hold. The future of the red wolf in North Carolina still hangs in the balance but the US Fish and Wildlife Service says it is planning to release nine wolves from captivity this winter. And an experimental feeding programme has been approved for Floridas manatees, after a record year of deaths.

Over the coming weeks, we will follow up on some of the stories that we covered during 2021 in more depth, but in the meantime, you might like to take a look at some of our favourite articles from the year that celebrate the planets beautiful and intricate biodiversity: why we need to stop treating soil like dirt; the wonderful world of fungi; the value of dead wood; how a wild night out could help you reconnect with nature; and, lastly, a lesson in why some things are worth waiting for, especially when they turn out like this

Find more age of extinction coverage here, and follow biodiversity reporters Phoebe Weston and Patrick Greenfield on Twitter for all the latest news and features

Excerpt from:
2021: when the link between the climate and biodiversity crises became clear - The Guardian

Read More...

Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs… – The US Sun

Wednesday, December 22nd, 2021

A LAB leak from Wuhan is now the "more likely" cause of the Covid pandemic, experts have told British MPs.

Dr Alina Chan, a genetic engineering expert,said she was "very confident" the truth will eventually come out about the origins of the deadly bug.

3

3

The molecular biologist at MIT and Harvard believes a lab leak from the Wuhan Institute of Virology (WIV) is "more likely than not" after two unsuccessful years of searching for an animal host.

The WIV - a high security facility specalising in coronaviruses - has been in the eye of the storm as questions rage over whetherCovidcould have escaped from its lab.

BothChinaand the lab have furiously denied any allegations,but evidence of a lab leak has been piling up over the last year as scientists, researchers and governments hunt for answers.

Dr Chan told the Science and Technology Select Committee: "I think the lab origin is more likely than a natural origin at this point.

"We all agree there was a critical event at the wet market that was a superspreader event - caused by humans. But there is no evidence pointing to a natural animal origin of the virus at that market."

And Dr Chan said she was "very confident" the truth about Covid will eventually emerge in years to come - when it's safe for whistleblowers to step forward.

"We've seen from previous cover-ups that it just takes time, because right now its not safe for people who know about the origin of the pandemic to come forward," she said.

"It might be five years from now, it might be 50 years from now, but we live in an era where there is so much data being collected and stored that it will eventually come out."

Matt Ridley, who co-authored Viral on the origins of the pandemic with Dr Chan, also said a lab leak was now the most likely origin - and urged investigators to find out in order to prevent the next pandemic.

The science writer told MPs: "I also think its more likely than not because we have to face the fact after two months we knew the origins of SARS through markets.

"After a couple of months we knew MERS was though through camels. In this case, after two years, we still haven't found a single infected animal that could be the progenitor of this pandemic, and thats incredibly surprising."

Some scientists have also argued Covid was genetically modified by humans - with one claiming it was "ready made" to infect humans when the virus first emerged in Wuhan.

Dr Chan told MPs: We have heard from many top virologists that a genetically engineered origin of this virus is reasonable - so it's worth investigating - and that includes virologists who made genetic modifications to the first SARS virus.

We know now this virus has a very unique feature, called the furin cleavage site, that makes it the pandemic pathogen it is. So without this feature there is no way this virus would be causing this pandemic.

A proposal was leaked showing that EcoHealth and the Wuhan Institute of Virology were developing a pipeline for inserting novel furin cleavage sites - these genetic modifications.

"So, you fund these scientists who said in early 2018 Im going to put horns on horses and at the end of 2019 a unicorn turns up in Wuhan city.

"It's a striking coincidence that needs to be investigated."

Mr Ridley added: "We need to find out so we can prevent the next pandemic.

"We need to know whether we should be tightening up work in laboratories or whether we should be tightening up regulations related to wildlife markets.

"At the moment we are really not doing either.

We also need to know to deter bad actors who are watching this episode and thinking that unleashing a pandemic is something they could get away with.

We know now that experiments were being done at Biosecurity Level 2 in Wuhan that resulted in 10,000 times increases in infectivity of viruses and three or four times their lethality.

"The important thing is to stop doing these experiments that are risky.

Meanwhile, Richard Horton, The Lancet editor-in-chief, said the lab leak was "a hypothesis that should be taken seriously and needs to be further investigated".

But he told MPs he agreed with the previous conclusions from the World Health Organisation that it was "extremely unlikely".

Dr Chan and Mr Ridley said they both believed the lab leak was an accident - rather than deliberate.

The experts had already warned that terrorists who are considering using bioweapons will have noted how quickly China was able to dismiss the idea of a lab leak - and avoid scrutiny.

It means militants will now know how easily they can "get away" with the release of a cataclysmic bioweapon, knowing the source of the attack will likely never be found.

China has repeatedly stated it is not responsible for the global pandemic and dismissed accusations from those who say the virus was manipulated by humans.

3

Excerpt from:
Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun

Read More...

Biotech ETFs That Outperformed Last Week – Yahoo Finance

Wednesday, December 22nd, 2021

Though the broad U.S. market saw a tumultuous ride last week with most of the sectors in red, biotechnology was the biggest gainer. This is especially true as the Nasdaq Biotechnology Index jumped 4.9% last week, pushing many ETFs higher.

Virtus LifeSci Biotech Products ETF BBP has been the biggest beneficiary, rising 7.9%. ETFMG Treatments Testing and Advancements ETF GERM, First Trust NYSE Arca Biotechnology Index Fund FBT, ALPS Medical Breakthroughs ETF SBIO and Invesco Dynamic Biotechnology & Genome ETF PBE rose at least 6% last week.

With the rise in Omicron, biotech companies are working on the development of new vaccines and strategies to tackle the spread of the new COVID-19 variant.

According to the latest study, two shots of the Moderna MRNA or Pfizer PFE/BioNTech vaccines or one of Jonson & Johnsons JNJ single-dose vaccine appear to offer significantly less protection against the newly-detected Omicron variant in laboratory testing but a booster dose likely restores most of the protection (read: 5 ETFs That Gained More Than 40% in 2021).

A separate study out of South Africa shows that Pfizers two-dose vaccine provides a high degree of protection against hospitalization from the fast-spreading Omicron. The study concluded that the vaccine offered only 33% protection against overall infection but 70% protection against hospitalization. It also concluded that while there was a higher risk of reinfections during this current surge, the risk of hospitalization among adults was 29% lower than during the initial wave.

Further, the industry trends are impressive. These include new drug nods, an accelerated pace of innovation, promising drug launches, the growing importance of biosimilars, cost-cutting efforts, an aging population, expanding insurance coverage, the rising middle class, an insatiable demand for new drugs and ever-increasing spending on healthcare.

Virtus LifeSci Biotech Products ETF (BBP)

Virtus LifeSci Biotech Products ETF follows the LifeSci Biotechnology Products Index, which measures the performance of biotechnology companies with at least one drug therapy approved by the FDA.

Holding 55 stocks, Virtus LifeSci Biotech Products ETF has accumulated AUM of $18.9 million and charges 79 bps in fees per year. BBP trades in volume of 2,000 shares a day on average and has a Zacks ETF Rank #3 (Hold) with a High-risk outlook.

ETFMG Treatments Testing and Advancements ETF (GERM)

ETFMG Treatments Testing and Advancements ETF offers exposure to biotech companies engaged in the testing and treatments of infectious diseases by tracking the Prime Treatments, Testing and Advancements Index. It is focused on advancements with targeted exposure to the forefront of R&D, vaccines, therapies and testing technologies. ETFMG Treatments Testing and Advancements ETF holds 86 stocks in its basket and charges 68 bps in annual fees (read: 5 Best Sector ETFs of November).

ETFMG Treatments Testing and Advancements ETF has amassed $51.1 million in its asset base and trades in an average daily volume of 14,000 shares.

First Trust NYSE Arca Biotechnology Index Fund (FBT)

First Trust NYSE Arca Biotechnology Index Fund follows the NYSE Arca Biotechnology Index, which measures the performance of companies in the biotechnology industry that are primarily involved in the use of biological processes to develop products or provide services. It holds about 30 securities in its basket and charges 55 bps in annual fees.

First Trust NYSE Arca Biotechnology Index Fund has accumulated $1.7 billion in its asset base and trades in a moderate volume of more than 43,000 shares a day. FBT has a Zacks ETF Rank #3 with a High-risk outlook.

ALPS Medical Breakthroughs ETF (SBIO)

ALPS Medical Breakthroughs ETF provides exposure to companies with one or more drugs in phase II or phase III FDA clinical trials by tracking S-Network Medical Breakthroughs Index. It holds 127 securities in its basket (read: 5 Top-Ranked ETFs to Buy At Bargain Prices).

ALPS Medical Breakthroughs ETF charges 50 bps in fees per year from its investors and trades in a moderate average daily volume of about 18,000 shares. It has AUM of $179.8 million in its asset base and carries a Zacks ETF Rank #3 with a High-risk outlook

Invesco Dynamic Biotechnology & Genome ETF (PBE)

Invesco Dynamic Biotechnology & Genome ETF follows the Dynamic Biotech & Genome Intellidex Index and provides exposure to companies engaged in the research, development, manufacture, and marketing and distribution of various biotechnological products, services and processes and companies that benefit significantly from scientific and technological advances in biotechnology and genetic engineering and research.

Invesco Dynamic Biotechnology & Genome ETF holds 31 stocks in its basket. The product has managed $272.8 million in its asset base and charges 59 bps in annual fees. Invesco Dynamic Biotechnology & Genome ETF has a Zacks ETF Rank #3 with a High-risk outlook.

Want the latest recommendations from Zacks Investment Research? Today, you can download 7 Best Stocks for the Next 30 Days. Click to get this free reportJohnson & Johnson (JNJ) : Free Stock Analysis ReportPfizer Inc. (PFE) : Free Stock Analysis ReportModerna, Inc. (MRNA) : Free Stock Analysis ReportFirst Trust NYSE Arca Biotechnology ETF (FBT): ETF Research ReportsInvesco Dynamic Biotechnology & Genome ETF (PBE): ETF Research ReportsALPS Medical Breakthroughs ETF (SBIO): ETF Research ReportsVirtus LifeSci Biotech Products ETF (BBP): ETF Research ReportsETFMG Treatments, Testing and Advancements ETF (GERM): ETF Research ReportsTo read this article on Zacks.com click here.Zacks Investment Research

Go here to read the rest:
Biotech ETFs That Outperformed Last Week - Yahoo Finance

Read More...

Human genetic enhancement – Wikipedia

Tuesday, October 5th, 2021

Human genetic enhancement or human genetic engineering refers to human enhancement by means of a genetic modification. This could be done in order to cure diseases (gene therapy), prevent the possibility of getting a particular disease[1] (similarly to vaccines), to improve athlete performance in sporting events (gene doping), or to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence.These genetic enhancements may or may not be done in such a way that the change is heritable (which has raised concerns within the scientific community).[2]

Genetic modification in order to cure genetic diseases is referred to as gene therapy. Many such gene therapies are available, made it through all phases of clinical research and are approved by the FDA. Between 1989 and December 2018, over 2,900 clinical trials were conducted, with more than half of them in phase I.[3] As of 2017, Spark Therapeutics' Luxturna (RPE65 mutation-induced blindness) and Novartis' Kymriah (Chimeric antigen receptor T cell therapy) are the FDA's first approved gene therapies to enter the market. Since that time, drugs such as Novartis' Zolgensma and Alnylam's Patisiran have also received FDA approval, in addition to other companies' gene therapy drugs. Most of these approaches utilize adeno-associated viruses (AAVs) and lentiviruses for performing gene insertions, in vivo and ex vivo, respectively. ASO / siRNA approaches such as those conducted by Alnylam and Ionis Pharmaceuticals require non-viral delivery systems, and utilize alternative mechanisms for trafficking to liver cells by way of GalNAc transporters.

Some people are immunocompromised and their bodies are hence much less capable of fending off and defeating diseases (i.e. influenza, ...). In some cases this is due to genetic flaws[clarification needed] or even genetic diseases such as SCID. Some gene therapies have already been developed or are being developed to correct these genetic flaws/diseases, hereby making these people less susceptible to catching additional diseases (i.e. influenza, ...).[4]

In November 2018, Lulu and Nana were created.[5] By using clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9, a gene editing technique, they disabled a gene called CCR5 in the embryos, aiming to close the protein doorway that allows HIV to enter a cell and make the subjects immune to the HIV virus.

Athletes might adopt gene therapy technologies to improve their performance.[6] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[7]

Other hypothetical gene therapies could include changes to physical appearance, metabolism, mental faculties such as memory and intelligence.

Some congenital disorders (such as those affecting the muscoskeletal system) may affect physical appearance, and in some cases may also cause physical discomfort. Modifying the genes causing these congenital diseases (on those diagnosed to have mutations of the gene known to cause these diseases) may prevent this.

Also changes in the mystatin gene[8] may alter appearance.

Behavior may also be modified by genetic intervention.[9] Some people may be aggressive, selfish, ... and may not be able to function well in society.[clarification needed] There is currently research ongoing on genes that are or may be (in part) responsible for selfishness (i.e. ruthlessness gene, aggression (i.e. warrior gene), altruism (i.e. OXTR, CD38, COMT, DRD4, DRD5, IGF2, GABRB2[10])

There is some research going on on the hypothetical treatment of psychiatric disorders by means of gene therapy. It is assumed that, with gene-transfer techniques, it is possible (in experimental settings using animal models) to alter CNS gene expression and thereby the intrinsic generation of molecules involved in neural plasticity and neural regeneration, and thereby modifying ultimately behaviour.[11]

In recent years, it was possible to modify ethanol intake in animal models. Specifically, this was done by targeting the expression of the aldehyde dehydrogenase gene (ALDH2), lead to a significantly altered alcohol-drinking behaviour.[12] Reduction of p11, a serotonin receptor binding protein, in the nucleus accumbens led to depression-like behaviour in rodents, while restoration of the p11 gene expression in this anatomical area reversed this behaviour.[13]

Recently, it was also shown that the gene transfer of CBP (CREB (c-AMP response element binding protein) binding protein) improves cognitive deficits in an animal model of Alzheimers dementia via increasing the expression of BDNF (brain-derived neurotrophic factor).[14] The same authors were also able to show in this study that accumulation of amyloid- (A) interfered with CREB activity which is physiologically involved in memory formation.

In another study, it was shown that A deposition and plaque formation can be reduced by sustained expression of the neprilysin (an endopeptidase) gene which also led to improvements on the behavioural (i.e. cognitive) level.[15]

Similarly, the intracerebral gene transfer of ECE (endothelin-converting enzyme) via a virus vector stereotactically injected in the right anterior cortex and hippocampus, has also shown to reduce A deposits in a transgenic mouse model of Alzeimers dementia.[16]

There is also research going on on genoeconomics, a protoscience that is based on the idea that a person's financial behavior could be traced to their DNA and that genes are related to economic behavior. As of 2015, the results have been inconclusive. Some minor correlations have been identified.[17][18]

George Church has compiled a list of potential genetic modifications based on scientific studies for possibly advantageous traits such as less need for sleep, cognition-related changes that protect against Alzheimer's disease, disease resistances, higher lean muscle mass and enhanced learning abilities along with some of the associated studies and potential negative effects.[19][20]

Link:
Human genetic enhancement - Wikipedia

Read More...

Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform – WWNY

Tuesday, October 5th, 2021

Published: Oct. 5, 2021 at 8:00 AM EDT|Updated: 10 hours ago

EMERYVILLE, Calif. and BOULDER, Colo., Oct. 5, 2021 /PRNewswire/ -- Amyris, Inc. (Nasdaq: AMRS), a leading synthetic biotechnology company active in the Clean Health and Beauty markets through its consumer brands, and a top supplier of sustainable and natural ingredients, today announced that Amyris has licensedthe Onyx genome engineering platform from Inscripta, a leading gene editing technology company. Amyris and Inscripta will also explore joint research and development opportunities to expand the Onyx platform functionality.

Amyris' product development and formulation teamuses a proprietaryLab-to-Market operating system to develop and scale a growing portfolio of sustainable ingredients. The Onyx platform automates benchtop biofoundry activity and will bring greater genetic diversity and value to Amyris' ingredient development pipeline, complementing Amyris' existing Lab-to-Market operating systemwith the goal of improving efficiency and reducing timelines for the development of future molecules. To date, Amyris has successfully commercialized 13 sustainable ingredients, which are formulated in over 20,000 products and used by over 300 million consumers, demonstrating the growing demand for sustainable products with clean and effective ingredients.

Automated, high-throughput gene editing is revolutionizing the writing of genomes the way next-generation sequencing transformed the reading of genomes. Inscripta is the first company to deliver an integrated and intuitive benchtop platform that will expand access to scalable, robust genome engineering and help scientists develop solutions to some of today's most pressing challenges.

"Amyris has shown the world how new products can be made more sustainable through biology. Their team has high proficiency in utilizing cutting-edge technology, and we are excited they will be pioneering the use of our platform," said Sri Kosaraju, President and CEO of Inscripta. "We have great regard for Amyris' mission, and we are committed to seeing the Onyx platform become a substantial contributor to new clean chemistry products in the future."

"The Onyx platform offers significant potential for generating greater genetic diversity in our projects, which we expect to lead to more efficient product innovation," said Sunil Chandran, Senior Vice President of Research and Development at Amyris. "Inscripta's platform seamlessly integrates with our own and opens up new experimentation avenues for our scientists to continue bringing unique bio-based products to customers. We pride ourselves on continuous innovation and expect Onyx to help us expand our pipeline, while achieving lower costs and reducing time to market."

For more information about Amyris visit amyris.comand to learn about Onyx, visitwww.inscripta.com/products.

About InscriptaInscripta is a life science technology company enabling scientists to solve some of today's most pressing challenges with the first benchtop system for genome editing. The company's automatedOnyx platform,consisting of an instrument, consumables, assays, and software, makes CRISPR-based genome engineering accessible to any research lab. Inscripta supports its customers around the world from facilities in Boulder, Colorado; San Diego and Pleasanton, California; and Copenhagen, Denmark. To learn more, visitInscripta.comand follow@InscriptaInc.

About AmyrisAmyris (Nasdaq: AMRS) is a science and technology leader in the research, development and production of sustainable ingredients for the Clean Health & Beauty and Flavors & Fragrances markets. Amyris uses an impressive array of exclusive technologies, including state-of-the-art machine learning, robotics and artificial intelligence. Our ingredients are included in over 20,000 products from the world's top brands, reaching more than 300 million consumers. Amyris is proud to own and operate a family of consumer brands - all built around its No Compromise promise of clean ingredients: Biossanceclean beauty skincare, Pipetteclean baby skincare, Purecane, a zero-calorie sweetener naturally derived from sugarcane, Terasanaclean skincare treatment, Costa Brazil luxury skincare, OLIKA hygiene and wellness, Rose Inc. clean color cosmetics and JVN clean haircare. For more information, please visit http://www.amyris.com.

Amyris, the Amyris logo, No Compromise, Biossance, Pipette, Purecane, Terasana, Rose Inc. and Lab-to-Market are trademarks or registered trademarks of Amyris, Inc. in the U.S. and/or other countries.

Forward-Looking StatementsThis release contains forward-looking statements, and any statements other than statements of historical fact could be deemed to be forward-looking statements.These forward-looking statements include, among other things, statements regarding Amyris' expectation of exploring additional research and development opportunities with Inscripta in the future and its expectation that Onyx will help Amyris expand its pipeline while achieving lower costs and reducing time to market. These statements are based on management's current expectations and actual results and future events may differ materially due to risks and uncertainties, including risks related to any delays or failures in the successful launch of a clean skincare brand; potential delays or failures in development, production, regulatory approval and commercialization of products, risks related to Amyris' reliance on third parties; Amyris' liquidity and ability to fund operating and capital expenses; and other risks detailed from time to time in filings Amyris makes with the Securities and Exchange Commission, including Annual Reports on Form 10-K, Quarterly Reports on Form 10-Q and Current Reports on Form 8-K. Amyris disclaims any obligation to update information contained in these forward-looking statements, whether as a result of new information, future events, or otherwise.

View original content to download multimedia:

SOURCE Amyris, Inc.

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

Visit link:
Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY

Read More...

Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop…

Tuesday, October 5th, 2021

Although acreage under GMO crop cultivation has expanded rapidly worldwide since GMOs first began to be grown in the mid to late 1990s, production remains highly concentrated in a handful of crops such as cotton, soybeans and corn which are grown in a few countries. Of the 190.4 million hectares (469.5 million acres) of GMO crops planted in 2019 for example, the US, Brazil, Argentina and Canada accounted for 84.5% of the total.

[su_panel color=#3A3A3A border=1px solid #3A3A3A radius=2 text_align=left]This is the first part of a two-part series.[/su_panel]

Most of the developing world has spurned the planting of GMO crops for a variety of reasons. First is their historical colonial links to countries in Europe, where GMOs are shunned because of a perception they are not natural. A reliance on the precautionary principle to prevent any possible risks to the health of humans and animals and the environment and active opposition by the influential organic food and anti-GMO lobby have also inhibited the development of GMO crops in Europe.

This reluctance of European nations to embrace GMOs has influenced developing countries, particularly as the EU is a major export market for many of them. The EUs strict regulatory approval system and stringent labeling requirements clearly are an inhibiting factor restraining the development of GM crops in many developing nations.

In 2020, the European Academies Science Advisory Council noted:

The EU over-regulation of GMOs had negative impact on science and innovation in developing countries who feared for their export markets and who were inclined to look to the EU to express leadership in research and development.

Unlike the US, the EU does not encourage or promote the development of GMOs in its foreign assistance programs to developing countries. A FDA website entitled, How GMO Crops Impact our World for example specifically states, The U.S. Agency for International Development (USAID) is working with partner countries to use genetic engineering to improve staple crops, the basic foods that make up a large portion of peoples diets. The USDA also publishes annual agricultural biotechnology reports for many developing countries that track their receptiveness to developing GE crops.

Second, the antipathy of many major western NGOs such as Greenpeace and Friends of the Earth to GMOs has influenced many developing countries. Many of these NGOs have operations or affiliates or contribute money to NGOs in the developing world. As a result, many environmental and food NGOs in developing nations also vehemently oppose the development of GMO crops. They are following the lead of their counterparts in western nations. According to Greenpeace, one of the most influential environmental NGOs:

Genetically modified crops encourage corporate control of the food chain and pesticide-heavy industrial farming. GM plants can also contaminate other crops and lead to super weeds. This technology must be strictly controlled to protect our environment, farmers and independent science.

Finally, a paper published in Food and Chemical Toxicology by the French molecular biologist Gilles-ric Sraliniin 2012 that purported to link consumption of GMOs to cancer influenced many developing countries to restrict their development as it seemed to highlight the worst fears of the opponents of GMOs. Kenya for instance, imposed a strict import ban in 2012 on GMOs citing the Seralini study. Although the study was subsequently debunked and retracted, the damage was done. The discredited paper was nonetheless promoted by GMO opponents and the perception that GMOs were dangerous lingered on for many years.

In recent years however, it has become increasingly apparent to many developing nations that genetic engineering of crops can be an important tool in helping feed a growing population at a time of climate change and when urbanization and desertification are reducing the amount of land for farming. Without a more productive farming sector, many developing nations will face a rising food import bill because of a swelling population. This is in sharp contrast to the developed world, where the population is growing at a very marginal rate or is actually shrinking:

As a result, it is imperative that many developing nations find a means of increasing their agricultural production, boost farm income and curb the cost of food imports. Genetic engineering offers that means.

This was Part One of a two-part post on the growing acceptance of GM foods and crops in the developing world. Part Two will review what specific actions countries are taking with certain foods.

Steven E. Cerier is a freelance international economist and a frequent contributor to the Genetic Literacy Project.

See the original post here:
Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop...

Read More...

Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -…

Tuesday, October 5th, 2021

While plenty of established companies have expertise in cultures for use in products such as yogurt and beer, Kingdom Supercultures is deploying computational biology to interrogate a vast database of microorganisms (yeast, bacteria, fungi etc) to identify combinations of microbes that will deliver specific functional or nutritional benefits, chief science officer Ravi Sheth told FoodNavigator-USA.

While the microbes may help improve the nutritional profile of certain products for example by enabling the production of kombuchas with less sugar - Kingdom Supercultures is not really a probiotics company, he stressed.

Nor is it a synthetic biology or precision fermentation company thats genetically engineering microbes to produce target proteins or other compounds and then engaging in complex downstream extraction and purification processes, explained Sheth. The combinations of cultures themselves which are all Non-GMO are the ingredients it plans to sell.

Were taking cultures already found in nature and combining them into specific novel combinations, and so we don't actually have to use any genetic engineering.

He added: Only in the last few years or so has it been possible to sequence these foodborne microorganisms, identify them, and predict their metabolic functionality, and so we've been able to leverage technologies from only the last couple of years, and build a biobank containing tens of thousands of microorganisms that are much broader in diversity than the kind of culture collections these legacy companies have.

The second thing we bring is the computation and data science capability, so were mining this data and using a number of novel algorithms and approaches we have internally to narrow down this design space and get to very specific cultures, in very specific ratios, that lead to these emergent functionalities, he explained.

We look at these almost like Lego building blocks, which we can rearrange into different combinations, and then create a community of them that delivers an emergent functionality that the individual strains don't have. Its like one plus one equals three.

Kingdom Supercultures has two main types of products, added Sheth, who said the firm is inactive R&D work with some of the largest most innovative CPG companies... and some of these projects are pretty late stage.

The first product type is starter cultures that can be used for things like plant based yogurts, cheeses, beers and wines. The second type is bioactives or other functional ingredients that can act as preservatives or elicit some sort of functional impact on the microbiome, exert nutritional benefits.

If you want to describe what the company does in a nutshell, he added:It took our ancestors hundreds of thousands of years to discover that hey, if I leave milk out it turns into yogurt or if I leave sugar tea out it turns into kombucha, what we can do is rationally design that process.

* This follows a $3.5M seed round with participation from Sequoia, Y-Combinator, Lakehouse Ventures, and Brand Foundry Ventures in 2020.

Follow this link:
Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -...

Read More...

Fact check: Genetically engineering your salad with the COVID-19 vaccines? We’re not there yet. – USA TODAY

Tuesday, October 5th, 2021

NYC demonstrators rally against COVID-19 vaccine requirements

NY Gov. Kathy Hochul has said she will take steps to replace medical personnel who refuse to meet the vaccination requirement.

USA TODAY, Associated Press

As COVID-19 vaccine mandates take effect across the U.S., one article circulating on social media claims getting jabbed in the arm may no longer be necessary.

"Vaccine Hesitant?" reads the headline of the Sept. 21 article published by an online outlet called Vision Times. "US Researchers Are Engineering Lettuce and Spinach to Carry mRNA COVID Jabs."

A University of California, Riverside research group, in collaboration with the University of California San Diego and Carnegie Mellon University, is reported as spearheading the scientific effort. The article details the study's research plans but makes no additional mention of the headline's reference to COVID-19 vaccines aside from describing how the mRNA vaccines work.

Fact check: Inhaling hydrogen peroxide for COVID-19 is dangerous, experts warn

The potential for splicing COVID-19 vaccines into food was echoed by former National Security Adviser Michael Flynn during a recent appearance on a podcast called "Thrivetime Show: Business School Without the B.S." In a viral clip shared to Twitter on Sept. 22, Flynn says he read an article where "they're talking about putting the (COVID-19) vaccine into salad dressings or salad."

As far-fetched as vaccine-infusedspinach and lettuce sounds, the claim is not entirely unfounded.

Researchers at UC Riverside and its collaborating universities are working on potentially turning plants into edible vaccine factories. But they'renot doing itfor COVID-19 specifically, and such foods won't be available in your local supermarket anytime soon.

USA TODAY reached out to Vision Times and Flynn for comment.

The National Science Foundation gave a UC Riversideresearch group $500,000 to study genetically engineering plants with mRNA, a molecule contained in the Pfizer-BioNTech and Moderna COVID-19 vaccines that isnormally used by our cells to make protein.

The effort was announced in a Sept. 16 press release.

Fact check: COVID-19 vaccination has no effect on blood color

But the study is looking generally toward all mRNA vaccines not COVID-19 specifically andwon't be available for human useanytime soon, said lead researcher Juan Pablo Giraldo, associate professor in the department of botany and plant sciences.

"This research will take a couple of years to show proof of concept of the technology," he wrote in an email to USA TODAY. "If successful, it will need more studies and several more years for people to use leafy greens as mRNA vaccine factories."

The idea behind using plantshas to do with mRNA vaccines' temperature requirements. Because the molecule needs to be transported and stored under cold conditions to maintainstability, researchers hope their study will help overcome this challenge and enable storage at room temperatures, according to the press release.

Fact check: False claim that cancer has spiked as a result of COVID-19 vaccines

In order to achieve this, genetic material contained in mRNA vaccines will be inserted into small, disk-like structures within plant cells called chloroplasts, solar panel-like structures that convert sunlight into chemical energy.

"Ideally, a single plant would produce enough mRNA to vaccinate a single person," Giraldo said in the release. "We are testing this approach with spinach and lettuce and have long-term goals of people growing it in their own gardens. Farmers could also eventually grow entire fields of it."

Based on our research, we rate PARTLY FALSE the claim spinach and lettuce are being genetically engineered with COVID-19 mRNA vaccines. Researchers at UC Riverside are indeed studying whether edible plants like spinach and lettuce can be genetically engineered to produce genetic material contained in mRNA vaccines. But thestudy isn't geared specifically toward COVID-19 vaccines. And the effort is in its infancy,meaning a product in this vein is years away from becoming reality.

Thank you for supporting our journalism. You can subscribe to our print edition, ad-free app or electronic newspaper replica here.

Our fact-check work is supported in part by a grant from Facebook.

Read more from the original source:
Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY

Read More...

Is The New York Times Finally ‘Learning To Love GMOS’? – American Council on Science and Health

Tuesday, October 5th, 2021

Genetically engineered (GE) crops, which have been commercially available for 25 years, have been widely misunderstood and under-appreciated, especially by certain news outlets. Arguably, the worst offender among the mainstream media has been the New York Times, whose manifold shortcomings in reportage and commentaries over many years are describedhereandhere.

Perhaps some glimmer of enlightenment toward genetic engineering is belatedly emerging. We were somewhat encouraged recently by Learning to Love GMOs, from science writer Jennifer Kahn in the New York Times Magazine in July. (GMO, or genetically modified organism, is a rather fluid, meaningless term used to refer to an organism modified with highly precise and predictable molecular techniques.)

At the risk of nitpicking, however, we felt that she over-emphasized the handful of genetically engineered farm products intended to be sold directly to consumers, while omitting the more important but less sexy story: the huge, palpable, proven benefits that GE crops have provided since they first hit the marketplace. Not surprisingly, there was also no mention of her newspapers decades-long, ugly history of disparaging and misrepresenting genetic engineering.

The big picture here is important, especially to Americas preeminence in the science, technologies, and application of genetic engineering. The U.S. is an agricultural powerhouse, but it is plagued by the eternal menaces to farming, including drought, floods, weeds, and pestilenceall of which are approachable by GE, in which America leads the world. Moreover, as valuable as GE is to the economic development of advanced countries, it is literally a life-saver to less developed ones. Kahn broaches none of this.

Kahn begins with a lively description of plant biologist and British professor Cathie Martin and her fabulous,GE cancer-fighting tomatoes. These fruits, dark purple in color, produce high amounts ofanthocyanins, compounds usually associated with blueberries and containing antioxidant activity. Professor Martin was able to demonstrate that cancer-prone mice fed these tomatoes lived 30% longer and were also less susceptible to inflammatory bowel disease than mice fed ordinary, non-engineered tomatoes.

The article discusses other GE specialty fruits, such as virus-resistantRainbow Papayas(which rescued Hawaiis papaya industry from oblivion) and non-browningArctic Apples, which have found valuable niches in todays market. Kahn also makes honorable mention of other GE fruits and vegetables in development, such as tastier berries and sweeter, kid-friendly kale, among many others.

Readers are left with the impression that such new crop varieties that will tickle consumers taste buds and satisfy their nutritional needs are the goaland the real valueof GE, and that these developments are just around the corner thanks to plant genetic engineering. Could that, Khan speculates, spell the turning point for widespread public acceptance of genetically engineered crops?

The problem is that Khan misidentifies the consumers who most need and would benefit from GE advances. Since their introduction in the mid-1990s, she writes, GMOs have remained wildly unpopular with consumers, who see them as dubious tools of Big Ag, with potentially sinister impacts on both people and the environment. Kahn frames the problem of GE production as the plight of small, artisanal food growers due to federal regulation that favors global agricultural conglomerates. [J]ust to go through the FDA approval process would cost a million dollars. Adding USDA approval could push that amount even higher, she writes. The regulatory barriers are, in fact, astronomical: it costs about$136 millionto bring a GE crop plant to market. This is the primary reason more than 99% of such crop plants are those that are grown at huge scale. (What makes this absurd is that plants modified with less precise, less predictable, conventional,pre-moleculartechniques arevirtually unregulated.)

The solutionadvances in the development of small-scale, bespoke GMO produceis inviting to Kahn, whose efforts seem directed at convincing WWWs:

[Professor] Martin is perhaps onto something when she describes those most opposed to GMOs as the WWWs: the well, wealthy, and worried, the same cohort of upper-middle-class shoppers who have turned organic food into a multibillion-dollar industry. If youre a WWW, the calculation is, GMOs seem bad, so Im just going to avoid them, she said. I mean, if you think there might be a risk, and theres no benefit to you, why even consider it?

Although its true that the potential for new, delicious, nutritious GE fruits and vegetables is vast, Kahn ignores the enormous success of genetically engineered crops across much of the world over the past three decadesimportantly, for more than just the well, wealthy, and worried. GE crops have in fact made food more affordable and proved to be a vital life-saving source of food and agricultural inputs for much of the developing world. Its time to set the record straight.

WORLDWIDE IMPACTS OF GE INNOVATION

Kahn laments that much of the effort in plant genetic engineering has been to produce improved varieties of our most commercially important crops, such as pest-resistant corn and cotton, herbicide-tolerant soybeans and canola (in order that weeds can be controlled more safely and effectively than by foliar spraying), and other agronomic traits such as resilience to flooding or drought. Although consumers may be unaware of these achievements, they have been eagerly embraced by farmers and critical to progress in agriculture. The acreage farmed with genetically engineered crops, which reached almost ahalf-million acres worldwide in 2018, increases every year, particularly in developing countries. (And that figure is only the official acreage; there is a great deal more cultivation with seeds obtained on theblack marketby farmers in countries where theyre not yet approved.)

In fact, the economic and environmental impacts of corn, cotton, canola, soybeans, and sugar beets alone have been enormous across the globe. According to economistsBrookes and Barfoot (2020), GE insect-resistant and herbicide-tolerant crops have reduced pesticide spraying by 775.4 million kg. This, in turn, has resulted in a decrease in the use of fuel and tillage, which is equivalent to a reduction of greenhouse gas release on the order of removing 15.27 million cars from the roads.

Improved environmental impacts coincide withsignificant economic benefits to farmersin the form of improved yields (72%) and savings in farming costs (28%) resulting from reduced use of agricultural inputs such as chemicals. Financial gains have exceeded $225 billion since genetically engineered crops first became commercially available, with the most gains realized by farmers in developing countries. Brookes and Barfoot estimate that for every dollar invested in the seeds of GE crops, farmers in developed countries received on average $3.24 extra income. This return on investment increased to $4.41 for farmers in developing countries, where such benefits can be the difference between subsistence farming and being able to sell some of their harvests.

It is unfortunate that a technology that has been so beneficial for so many farmers has been vilified since its beginnings (including, early and often, by reporters, columnists, and commentators in the New York Times), and we wish that Kahns article had put more emphasis on the extant, significant achievements.

The impressive data collected and reported by Brookes and Barfoot are only the beginning. The opportunities for genetically engineered crops to reduce malnutrition and increase farmers profits are endless. Kahn does mention in passingGolden Rice, which produces a precursor of vitamin A and prevents vitamin A deficiencya scourge of children that causes blindness and death in countries where most of their calories come from ricewhich was recentlyapproved for cultivation in the Philippines. (And which has been relentlesslyopposedby activists for decades.) But there are many more such examples, includingstaple engineered cropssuch as rice biofortified withiron,zinc, andfolate.

Besides higher yields and direct economic benefits, the cultivation of insect-resistant and herbicide-tolerant crops also has significant collateral effects in developing countries, such as reducing laborious tasks of women and girls in the field, improved childrens literacy, and greater gender equality. These, in turn, foster improved economic growth and quality of life for communities.

In addition, decreased crop losses due to pests lead not only to improved yields and farmers incomes, but,especially compared to organic farming, also reduce levels of food waste and lower the risk ofcancer,spina bifida in newborns, and other health problems caused by thefungal toxinsaflatoxinandfumonisin, respectively, which are less likely to accumulate in crops that are protected from predation by insects. Improved crop quality and yields and lower agronomic inputs also translate intoless release of greenhouse gases(and, thus, a lower carbon footprint) and less conversion of land to farming.

Unlike the spraying of chemical pesticides, the cultivation of crops like Bt-cotton and Bt-brinjal (eggplant), which contain a protein (from the bacteriumBacillus thuringiensis) toxic to certain insects, does not impactnon-target insects. They are helpful, therefore, for maintaining and restoring the health of natural ecosystems and the sustainable management of wilderness areas. At the same time, genetic engineering technologies related to biomass production using crops ranging fromsugarcanetoswitchgrass, and evenalgae, are helping to produce affordable, attainable energy.

Underscoring their significance, particularly for poor farmers in developing countries, many of these improvements fall under thesustainable development goalsestablished by the United Nations.

PUTTING SCIENCE AND INNOVATION FIRST

It seems that American consumers crave technology in every aspect of their lives except in food production. Why is that? We believe it is the result of a multi-decade, multi-national, multi-billion dollarfear-and-smearcampaign against GE crops and foods by what amounts to an anti-genetic engineering industry.

Technology has helped to double food production in the last 50 years. We have the cheapest, safest, most abundant food supply in history, but now, those seeking to increase the market for organic/natural products, abetted by the woke media, want to force agricultural science to a more primitive, less productive time by embracinginefficient practices. Although they have been successful in creating a niche for their products, we cannot let this way of thinking stymie or reverse the stunning scientific, economic, and environmentaladvancesthat have come from genetic engineering and gene editing technologies, in which the U.S. is preeminent.

Regulators permitting, the next wave of important developments could be in the genetic engineering of animals, in particular the creation of new varieties resistant to devastating, economically crippling diseases. These include pigs resistant to the devastatingPorcine Reproductive and Respiratory Syndrome Virus, the cause of losses to U.S. pig farmers of more than $600 million annually. The foreseeable development of chickens with genetic resistance to avian influenza will be a monumental breakthrough because there is no vaccine against it, and outbreaks result in the culling of tens of millions of birds annually. This field has the potential to create the Next Big Things in agricultureif only innovation were not strangled by unnecessary, misguided government regulation, abetted by an antagonistic media and highly organized, vocal activists.

Americans are experiencing shocking inflation in food prices, and the wider adoption of innovative GE technologies can help to stem it. Insect predation, weeds, and unpredictable weather events are the perennial enemies of farmers but, as discussed above, GE has already made significant strides to mitigate them. The greater exploitation of drought- and flood-resistant crop plants and the prevention of viral diseases in food animals can also aid food production in the parts of the nation plagued by those natural disruptions.

Putting America first means putting science and innovation first.

Billions in potential revenue and life-saving technologies have already been lost to us because of our failure to adopt this attitude. Consider biopharmingthe once-promising biotechnology area that uses genetic engineering techniques to induce crops such as corn, tomatoes ,and tobacco to produce high concentrations of high-value pharmaceuticals (one of which is the Ebola drug, ZMapp). The entire field is moribund because of the Agriculture Departments extraordinary regulatory burdens. And thanks to EPAs policies, which discriminate against organisms modified with the most precise and predictable techniques, the high hopes for genetically engineered biorational microbial pesticides and microorganisms to clean up toxic wastes have evaporated.

As a result, the potential for innovation that modern genetic engineering holds for long-term, robust U.S. economic growth and higher living standards has been drastically reduced. Amazon CEOJeff Bezosalso made this point in the context of developing commercial drones at a conference in 2014. Technology is not going to be the long pole, hesaid. The long pole is going to be regulatory. And yet, regulatory agencies seem to be becoming more imperious and politicized. If U.S. policymakers fail to seize the day, we will likely be overtaken by China, which is fast becoming a significant player. As University of Pennsylvania political scientist Scott Moore haswritten, Chinas progress has implications that span national security, data security, and economic competitiveness.

None of the big picture appeared on Kahn or the New York Timess radar screen. We hope, however, to see a follow-up from her that tells the whole storythat over four decades, genetic engineering has delivered myriad critical economic, health, humanitarian, environmental, and scientific benefits. That we need more of it, regulated more rationally. And that its critics, including her colleagues at the Times, are misinformed and misguided.

Kathleen Hefferon, Ph.D., teaches microbiology at Cornell University. Find Kathleen on Twitter@KHefferon. Henry Miller, a physician and molecular biologist, is a senior fellow at the Pacific Research Institute. He was a Research Associate at the NIH and the founding director of the FDA's Office of Biotechnology. Find Henry on Twitter@henryimiller.

#Reprinted with permission. The original article can be found here.

Read more here:
Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health

Read More...

Making the Transition from an Academic to a Biobusiness Entrepreneur – Genetic Engineering & Biotechnology News

Tuesday, October 5th, 2021

By William A. Haseltine, PhD

When I became an assistant professor at Harvard in the mid-1970s, creating a company was never part of my plan. I had only a dim understanding of how corporations were organized and no understanding of finance. But I was slowly becoming aware of how biotech businesses could be a positive force for health.

I had been keeping tabs as close friends from various universities gave up their tenured positions to join nascent companies gaining an early foothold in the new field of biotechnology. All were racing to apply the new techniques of recombinant DNA (gene splicing) to make new drugs and vaccines. I was beginning to realize that the work I was doing as a research scientist might create a conceptual breakthrough, but the businesses were the ones taking that breakthrough and delivering it in the form of drugs to patients in need.

I was working at the time on retroviruses and their potential role as a cancer-causing agent in animals. Id planned a trip to the West Coast to build up my collection of mouse leukemia viruses, which is where I learned from my friend Richard Lerner, a research chemist at Scripps who had been studying protein structures, that you could accelerate an antibody response by using peptide fragments, as opposed to using whole viruses or virus proteins. I understood the impact of the discovery immediately: using peptide fragments would be a faster, cheaper way to make vaccines.

That was the tipping point. I knew that this knowledge could shorten the time it took to develop new drugs, which at that time required at least ten years and many tens of millions of dollars. I also knew that pets and livestock suffered serious viral infections. If we could test the idea in animals, we wouldnt need to go through the FDA. I could create a company that would be a shortcut to demonstrate that a vaccine can prevent retrovirus infections that cause cancer.

I worked with Deborah Ferris, who had helped get Biogen off the ground, to develop the business plan for a company that would develop animal vaccines with this new technology. I went to every Wall Street banker and venture capitalist I knew, and I eventually landed myself a $5 million commitment. These financiers understood the power of knowledge and the economic benefits it could bring.

I thought, after securing financing, that I had jumped over the hardest and highest hurdle in the process, but I was wrong. I didnt yet realize the political hurdles I still had to jump at Harvard. There was no precedent for a Harvard assistant professor starting a company. Even for full professors, the idea was highly controversial. Harvards president had voiced skepticism, and faculty across the university grumbled, some with outrage, at the notion that biologists or biochemists might turn discoveries developed at Harvard into a personal fortune. This, despite the fact that many of the universitys history and economics professors were making tens of thousands from the sale of their books.

I was faced with many setbacks but managed to overcome them after a bit of luck followed me onto a plane flying from New York to Boston early the next year. I ended up seated beside Larry Fouraker, dean of the Harvard Business School at the time. I pitched him my idea for a company and explained the challenges I was running into at the university. He told me something I had not realized: thanks to the Bayh-Dole Act, which had been passed during a lame-duck session of Congress just months before, universities were now required to create a technology transfer office to turn new ideas into companies.

The laws intent was to promote commercialization of research funded by the federal government. Birch Bayh, Democrat of Indiana, and Bob Dole, Republican of Kansas, were the legislations sponsors in the Senate. Jimmy Carter signed the bill into law. The law states that all universities and research institutes that receive federal funding must file patent applications on all discoveries with practical application and must make best efforts to transfer the technology to businesses for commercial development.

That was my green light. Larry became a close friend and mentor to me. The only requests he ever made of me were to speak to his students at the business school from time to time about entrepreneurship and to pledge some shares of the company I would found, Cambridge BioScience, to the universitys endowment fund. I ended up offering Harvard 5% equity, but they turned it down. They hadnt worked out what they thought the ethics might be of such a transaction. I can assure you that by now they have.

Far from harming my career, creating Cambridge BioScience turned out to be a huge plus. I developed powerful relationships with some of the department chairs and became a role model and adviser to other faculty members in starting their companies. Eventually, Harvards governing board and administration embraced the benefits of professors starting companies, and I was asked to chair a university-wide committee that would clarify the rules governing relationships between professors and the companies they seek to start.

Ironically, the university now requires faculty to pledge a percentage of the founding shares as well as royalties received for startups based on a professors patents. As I noted earlier, Harvard never accepted my 5% offer. But after Cambridge BioScience went public, I sold the 5% and donated the cash. They were happy to accept it.

I learned through the process that our scientific reputation is our capital. I also learned that no person or company ever becomes a success without people like Larry to support and mentor them. This is why I am so pleased to have been invited to contribute to this commemorative, 40th Anniversary edition of GEN. The magazines founder, Mary Ann Leibert, has been a great support to me over many years, but especially at two inflection points in my life.

The first was in the early years of the HIV/AIDS crisis, when I suggested that we create a journal to help cover some of the most exciting, but often neglected, developments in the field. Mary Ann jumped at the idea and took no more than two seconds to agree, and we founded the Journal of AIDS Research and Human Retroviruses.

Fifteen years later, I conceived of the idea of regenerative medicine and began to work with Tony Atala and others to create awareness of the new field and its motto: Regenerative medicine is any medicine designed to restore a person to normal health, including cell and stem cell therapies, gene therapy, tissue engineering, genomic medicine, personalized medicine, biomechanical prosthetics, recombinant proteins, and antibody treatments.

Mary Ann responded immediately and positively once again, offering to create the Society of Regenerative Medicine and another new journal, initiatives that were soon launched. Mary Ann, through her journals, publishing company, and GEN, has always been the wind in the sails of the biotechnology industry.

William A. Haseltine, PhD, is known for his groundbreaking work on HIV/AIDS and the human genome. Haseltine was a professor at Harvard Medical School, where he founded two research departments on cancer and HIV/AIDS. Haseltine is a founder of several biotechnology companies, including Cambridge BioSciences, the Virus Research Institute, ProScript, LeukoSite, Dendreon, Diversa, X-VAX, and Demetrix. He was a founder, chairman, and CEO of Human Genome Sciences, a company that pioneered the application of genomics to drug discovery.

Haseltine is the president of the Haseltine hivFoundation for Science and the Arts and is the founder, chairman, and president of ACCESS Health International, a not-for-profit organization dedicated to improving access to high-quality health worldwide. He was listed by Time Magazine as one of the worlds 25 most influential business people in 2001 and one of the 100 most influential leaders in biotechnology by Scientific American in 2015.

See the original post here:
Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News

Read More...

Gene editing, joke theft and manifesting – The Week UK

Tuesday, October 5th, 2021

Olly Mannand The Week delve behind the headlines and debate what really matters.

You can subscribe to The Week Unwrapped wherever you get your podcasts:

In this weeks episode, we discuss:

The UK government has announced plans to allow gene-editing to be used in agricultural crops, diverging from an EU-wide ban on any genetic modification. Proponents of the technique say that it is more like accelerated selective breeding than genetic engineering - and that it could help farmers grow more produce while using fewer pesticides. But its opponents are worried that it will pave the way for riskier experiments.

A landmark legal case has begun between two stand-up comedians over who owns the rights to a comedy routine. One has hired Harbottle & Lewis, the lawyers best known for representing the Queen, to argue his case. So are we going to see lots of comedians taking one another to court? And how can you really establish who owns a joke anyway?

TikTok videos with the manifestation hashtag have been viewed a whopping ten billion times on TikTok, making it a buzzword of 2021. Its the latest incarnation of cosmic ordering - the practice of asking the universe to deliver what you expect from it, whether thats exam success or romantic fulfilment. Is it just harmless fun, or does it have a darker side to it?

Read the original here:
Gene editing, joke theft and manifesting - The Week UK

Read More...

Opinion: Saving lives through real social justice – Agri-Pulse

Tuesday, October 5th, 2021

The University of Missouri at Kansas City (UMKC) has invited Vandana Shiva to speak on October 7th.According to a speaker booking website, her asking price for a lecture is a cool 100k.Lets give UMKC the benefit of the doubt, and assume they got a deal.It is hard to imagine a price for this world famous charlatan that gives good value.

It is a safe bet that most of us have never heard of Vandana Shiva, and this is, on balance, a good thing. Shiva has earned a measure of fame and a great deal of fortune railing against the use of modern technology in agriculture. She burst upon the scene by arguing that genetically modified cotton was causing hundreds of thousands of suicides amongst Indian farmers. Farmers have many reasons to be depressed, Dr. Shiva amongst them, but I can guarantee you that a technology that safely controls bugs that used to eat your crops isnt one of them. A 2011 study published in India found no correlation between genetically modified cotton seeds and farmer suicide, a conclusion which will surprise no one whose livelihood doesnt depend on believing the opposite, at one hundred thousand dollars per Zoom call.

In 1999, a cyclone caused ten thousand deaths in India. The U.S. sent grain and soybeans to help feed survivors. Shiva held a news conference to protest the donation, accusing the U.S. of using the victims of the cyclone as guinea pigs for genetically engineered products. When India accepted the food donations, she was highly critical. Better starvation than the unthinkable alternative of eating food that has been safely consumed billions of times.

Shiva has long been opposed to the introduction of Golden Rice, a genetically modified rice that helps prevent blindness by increasing vitamin A in the rice. Every year, about five hundred thousand children lose their sight because of vitamin A deficiency, and 70% of those children die within a year.Shiva has called the technology a hoax. Her appearance at UMKC is part of something called the Social Justice Book and Lecture series.Although social justice may be hard to define, Shivas position on this life-saving technology would surely be its opposite.

Agriculture owes a great debt to those who have worked so hard and so long to counter the arguments of Shiva and others against genetic engineering. For most of us the issue was long ago settled, the arguments stale, the battle won, and it was time to move on.

However much we might wish it to be so, the issue never really goes away. The fruits of Shivas long and lucrative fight against modernity pop up in the most unexpected places and in the most costly ways. The arguments against Covid vaccines mirror Shivas insane opposition to saving the lives of children, and even though the two sides have largely switched ideological labels, the horrendous costs in lives and fortunes are eerily similar.

It has to be heartening to GMO warriors that, despite the arguments of Shiva and the like, much of humanity consumes food improved by genetic engineering every day and Golden Rice is finally being approved in countries where it is so desperately needed. In the face of unending social media criticism of vaccines, some three-quarters of the U.S. population eligible for vaccines have availed themselves of the opportunity. Facts do prevail, usually, but it sometimes takes a very long time.

UMKC is a wonderful institution, doing valuable work. College students ought to have their ideas, beliefs, and biases challenged at every turn. The kids at UMKC who attend the virtual lecture will survive their exposure to Shiva, and may even be challenged to learn more about the relationship, largely beneficial, between agriculture and technology.Having said all that, this taxpayer would hope that social justice will be better served in the future by more discerning choices in speakers.

Blake Hurst is a farmer and greenhouse grower in Northwest Missouri.

Here is the original post:
Opinion: Saving lives through real social justice - Agri-Pulse

Read More...

Science, business and the humanities: CP Snow’s ‘Two Cultures’ sixty years on – TheArticle

Tuesday, October 5th, 2021

CP Snow was a Cambridge scientist, a civil servant, and a novelist. He was, therefore, well placed to observe the gap between science, on one hand, and the arts and humanities on the other hand. He named it the two cultures divide, and his observations on it, in which he lamented the divides growing extent, formed the substance of his much-discussed Rede Lecture for 1959, subsequently published as a book.

His principal anxiety was that, whereas scientists can take a knowledgeable interest in the arts and humanities, the reverse is rarely true, and this is a problem because almost everyone in government in his day, whether politicians or civil servants, tended to be arts and humanities graduates, with little understanding of science but complete control of science policy and most of its funding.

The problem Snow identified had grown out of the extraordinarily rapid expansion of scientific knowledge in the period less than a century before he delivered his lecture, while the fundamentals of elite education, predicated on the classics and humanities, had not changed much. At the date of his lecture, science subjects were still looked down upon as bangs and smells, and were lumped together with engineering and technology as the domain of nerds with dirty fingernails and rows of pens in their top pockets, a far cry from the languid cravat-wearing aesthete with a volume of Shelley in one hand and a cigarette-holder in the other.

The real problem was that the depth and complexity of science had quickly resulted in a proliferation of specialisms, sometimes not fully accessible even to specialists in neighbouring areas of the same science. Competence in any area of, say, physics required a training and possession of mathematical abilities beyond the reach of most. This is even more true today. When Snow delivered his lecture, the Standard Model of the atom was still being formulated and the development of instruments of investigation was rudimentary in comparison to now, unsurprising given that when Snow wrote it was not much more than thirty years since quantum theory had been given, what might be called, its official imprimatur at the Solvay Conference of 1927.

In one very important respect, however, Snows two cultures division was incorrect. There was, in fact, not a division between two cultures but instead a three-way split, a triangle of cultures, though the third vertex of the triangle was so far beneath notice at the time Snow wrote that rather as one would expect from an Oxbridge don of the day it did not occur to him to include it. This third vertex is business. If the humanities student looked down his nose at the science student, neither of them even noticed the student of accountancy or commerce at the College of Further Education out in the suburbs.

This was the lingering attitude of snobbery about trade that had its origin in the far distant past in the classical Greek disdain for anything banausic, for buying and selling and taking an interest in money. Pythagoras said that people fell into three classes, mirroring those at the Games: competitors, spectators, and those who came to hawk their wares under the stands. He likened philosophers to spectators; in Greek to spectate is theorein, the source of our theory. Plato was disgusted by the sophists who offered to teach, for a fee, how to make a bad argument beat a good argument.

Statue of Plato, Athens (Alamy)

The unnoticed third vertex in Snows account has since risen into great importance in the triangle. Indeed, there has been a remarkable transformation in the respectability of business; successful businessmen and women are admired, the importance of business to the national economy is fully recognised, the wealth of top business people has risen hugely and given them significant influence in society and politics. Things had long been different in the US; there, money-making from business had been admired and encouraged at least since the years following the Civil War. In the unrestrained conditions of the expanding frontier and its abundant resources, together with a flow of both skilled and cheap labour through immigration, business millionaires became Americas aristocracy. That was still not the case in Snows Britain at the time he wrote. In the following decades it has become so; and it has radically changed the cultures divide he described.

It is still the case that few people can say what the Second Law of Thermodynamics is, which was Snows challenge to those who complained that scientists do not read poetry. But business entrepreneurs were not slow to recognise and profit from the scientific and technological advances which have transformed the world over the last half-century. It has made many of them rich, and they fuel the digital revolution by their energetic desire to see faster, smaller, more powerful, more capable technologies operative in many areas of activity. Meanwhile science genetics, biochemistry, neuroscience, particle physics, cosmology has continued to race ahead and astonish, with its applications via technology already outstripping our ability to manage its impacts (think of the potential downsides, along with the upsides, of artificial intelligence, genetic engineering, brain-chip interfaces, military robots, and the like).

The alliance between science and business and the prominence of both explains why the two areas of greatest pull in higher education are STEM subjects science, technology, engineering and mathematics and business studies. Between them they are the culturally dominant elements of the triangle, when in Snows day this role had been occupied by the humanities. In consequence, the humanities are withering. Parents and school advisers, together with the facts of life about what todays economies need in the way of skilled workforces, between them push and pull students into STEM or business studies in large and increasing numbers. In some universities the study of modern languages, literature, history and philosophy has vanished altogether; classics vanished from almost all universities long ago. The forces at work are Darwinian, and understandable.

You might cite the immortal words of Mandy Rice-Davies, He would say that, wouldnt he, in response to what I as a lifelong student of the humanities, and founder of a university college called New College of the Humanities (now part of Northeastern University) am about to say here. But note the concluding sentence of the preceding paragraph: I acknowledge the Darwinian imperatives, and do not propose to argue for a reassertion of the situation prevailing in Snows day. But allow me to recount an anecdote that explains why concentrating just on two vertices of the triangle at the expense of the third humanities is a mistake; as follows.

When Ronald Reagan was President he proposed that the US should develop an anti-ballistic missile system based on satellites in earth orbit the so-called Star Wars initiative so that an attack on the US by the Soviet Union could be interdicted in space. It eventually transpired that the suggestion was merely a propaganda device to turn the screws on the Soviet Union; there was, it seems, no real prospect of such a system being created. In the anxious debate that the suggestion prompted, however, one withering contribution was made by the physicist Steven Weinberg (pictured below, centre), who had won the Nobel prize for his contribution to showing how the weak nuclear force, responsible for radioactive decay in atomic nuclei, can be combined with the electromagnetic force that governs interactions between charged particles, thus yielding the electroweak force. He said (I paraphrase): It does not bother me that the President doesnt know any physics, but it does bother me that he doesnt know any history or philosophy, because if he did he would not dream of increasing tensions in the Cold War in this way.

Queen Beatrix with Christian de Duve and Steven Weinberg (centre)(Alamy)

This is a telling remark. History and philosophy and one might add literature, languages, the arts give us the insights, the overview, the understanding of human nature and the human condition, and with them the experiential and ethical dimensions of both individual and social existence, that provide context for how we use science, how we do business, how we direct public policy, and most importantly, why we do what we do in these respects. Weinbergs point concerned the larger human and social context, exactly the subject matter of historical and philosophical reflection.

The lessons learned in study of the humanities can be richly suggestive. Consider history: the Bronze Age Collapse around 1200 BCE was in significant part the result of disruption of supply chains, destroying economies and the political structures based on them. The French Revolution had, as a major cause, the social and economic injustices felt by those at the wrong end of a too great rich-poor gap. Personality politics rarely end well, from Caesar to Ceausescu. And so on. All three examples carry hints for very present discontents in our world.

Consider philosophy: ideas, beliefs, ideologies are the springs that vitalise society. Examining them and their implications, challenging them, exploring what is really at stake in this -ism or that, postulating fresh ways of thinking and seeing, are essential to a civilisations health. Think of what happens when an orthodoxy is imposed by force, and only one set of ideas is permitted and no discussion allowed, as in Kims North Korea. Think of the stagnation of any society under the heel of a monolithic ideology; history offers plenty of examples.

Consider literature: the stories we tell in novels, plays, poems, the cinema, are a million windows into human experience and feeling, extending our capacity if we are attentive to understand and sympathise with the variety in human motivation and to become acquainted with choices, perceptions, attitudes, ways of life, that we would not otherwise encounter. The same applies to learning languages, to appreciating the arts, to becoming receptive and perceptive as a result of being transported over the landscapes of human experience by all these expressive, communicative enterprises.

To become a research scientist, a chemical engineer, a financial advisor, one needs training. The complexities of science and business demand specialisation. A training is essential if one is to be successful in most of these fields. Therefore, training is important. But training is not education, and as the foregoing remarks show, what the humanities offer is education: the nourishing, equipping and expanding of mind and its capacities.

Oddly enough, a survey of what a complex modern economy requires shows that many of its arenas require precisely the sensibility that the arts and humanities offer to develop. They include journalism, politics, law, the civil service, creative industries, publishing, advertising, arts promotion and management, events, entertainment, human resources, education, performance, museology and curating, design, the tourism and hospitality industries, many aspects of retail, and more the list is long.

And this is to leave aside one enormously important point that most thinking about training and education ignores, with the result that the idea of education for its own sake has so significantly diminished. This is that people are not only their careers; they are not only infantry on the economic battlefield. They are also spouses, parents, voters, travellers, lovers, gardeners, readers, neighbours, dreamers, consumers, tennis players, cinema-goers, and much else again life is many things, and being awake to its variety and its possibilities requires much more equipment than just a training for a specific career.

My idea in founding the New College of the Humanities was to make a statement about two things: the importance of the humanities, and the fact that they can and should be combined with a full acknowledgment of the importance in our time of the other two vertices of the triangle, STEM and business. So I made it a requirement that throughout their undergraduate studies in the humanities my students take, for an additional diploma, courses in science literacy so that they would have an intelligent laypersons overview of the main developments in science and basic business studies, equipping them to understand entrepreneurship, the essentials of marketing, how to read a balance sheet, what is required in the world of work, and general financial literacy. In a world now so dependent on digital technologies, literacy and competence in these is a necessity too.

The thought was that the demand for appropriate preparation for life after formal education should not entirely displace the opportunity to explore ideas, the past and literature, but that what the humanities offer should be recognised as of great value in itself, and can readily be combined with practical considerations. Education and training do not have to be mutually exclusive. My design was to provide the opportunity for the humanities intellectual maturation and fertilisation, with an adjunct of practical knowledge, to overcome the false dichotomy of the two.

It is a principle of education viewed as the cultivation of a well-furnished and highly able mind that the beneficiary of it should develop a rich sense of context and connection. Someone interested in, say, medieval monasticism or Presocratic philosophy might relish the study of it for its own sake and find it absorbingly interesting, but might also see surprising relevances to his own life and times. This explains how, in the 18th and 19th centuries, Britain governed an empire by teaching Greek and Latin classics to those sent out to run it. For when you read and discuss the classics you read history, philosophy and literature, and through them you read about and discuss government, military affairs, ideas of justice and morality, statesmen and the way they handled problems, successes and disasters and what prompted either, subtleties of human nature, celebrations of virtue and condemnations of vice, poems of love and of mourning, the absurdity of certain beliefs, the nobility of certain ambitions and much besides of relevance to both the social and individual scales of life.

Of course, much of this might have gone over most of the heads of lazy and self-interested boys at their public schools we see an example of this vividly in our own day, alas but enough stuck so that the administration of empire was not always and everywhere a prejudiced and exploitative disaster. In any case, the point is that the aim of imparting the benefits of an education in the humanities might succeed often enough that the candles of civilisation will continue be carried, alight, over the floodwaters of time. Even if almost every educational institution should shed its commitment to the humanities, salvation would reside in that almost.

There might be another spin of the triangles orientation which changes which vertex is uppermost. Suppose most productive activity is taken over by artificial intelligence systems, with the result that more than enough wealth is generated to allow most of the population a comfortable national wage without having to work for a living. Then the arts and humanities will be at a premium, the practice and study of them the main avocation of many, the value of intellectual and educational attainment as great as the value of money-wealth is now. It is far from an impossibility that this might happen. It would be good if a flourishing tradition of the humanities were to survive into such a time.

CP Snow wished to see the two cultures divide closed, or at least narrowed. I say that that the three vertices of the triangle should be kept connected, because to lose the perspectives offered by the humanities would render our society technocratic and banausic merely, a fate it is already not far from. Snows anxiety was that science would be mishandled by uncomprehending humanists, whereas today the anxiety is very different; it is that technology and the imperatives of bottom lines will determine all our choices for us.

Perhaps one can sum up the matter by saying that whereas science and technology is about capability, and business is about profit and cost, the humanities are about value. That is a vertex of the triangle we cannot afford to lose.

We are the only publication thats committed to covering every angle. We have an important contribution to make, one thats needed now more than ever, and we need your help to continue publishing throughout the pandemic. So please, make a donation.

See the rest here:
Science, business and the humanities: CP Snow's 'Two Cultures' sixty years on - TheArticle

Read More...

Probiotic Yeast Engineered To Produce Beta-Carotene – Technology Networks

Saturday, April 17th, 2021

Researchers have genetically engineered a probiotic yeast to produce beta-carotene in the guts of laboratory mice. The advance demonstrates the utility of work the researchers have done to detail how a suite of genetic engineering tools can be used to modify the yeast.

"There are clear advantages to being able to engineer probiotics so that they produce the desired molecules right where they are needed," says Nathan Crook, corresponding author of the study and an assistant professor of chemical and biomolecular engineering at North Carolina State University. "You're not just delivering drugs or nutrients; you are effectively manufacturing the drugs or nutrients on site."

The study focused on a probiotic yeast called Saccharomyces boulardii. It is considered probiotic because it can survive and thrive in the gut, whereas most other yeast species either can't tolerate the heat or are broken down by stomach acid. It also can inhibit certain gut infections.

Previous research had shown that it was possible to modify S. boulardii to produce a specific protein in the mouse gut. And there are many well-established tools for genetically engineering baker's yeast, S. cerevisiae - which is used in a wide variety of biomanufacturing applications. Crook and his collaborators wanted to get a better understanding of which genetic engineering tools would work in S. boulardii.

Specifically, the researchers looked at two tools that are widely used for gene editing with the CRISPR system and dozens of tools that were developed specifically for modifying S. cerevisiae.

"We were a little surprised to learn that most of the S. cerevisiae tools worked really well in S. boulardii," Crook says. "Honestly, we were relieved because, while they are genetically similar, the differences between the two species are what make S. boulardii so interesting, from a therapeutic perspective."

Once they had established the viability of the toolkit, researchers chose to demonstrate its functionality modifying S. boulardii to produce beta-carotene. Their rationale was both prosaic and ambitious.

"On the one hand, beta-carotene is orange - so we could tell how well we were doing just by looking at the colonies of yeast on a petri dish: they literally changed color," Crook says. "On a more ambitious level, we knew that beta-carotene is a major provitamin A carotenoid, which means that it can be converted into vitamin A by the body - and we knew that vitamin A deficiency is a major public health problem in many parts of the world. So why not try to develop something that has the potential to be useful?"

Researchers tested the modified S. boulardii in a mouse model and found that the yeast cells successfully created beta-carotene in the guts of mice.

"This is a proof of concept, so there are a lot of outstanding questions," Crook says. "How much of this beta-carotene is getting absorbed by the mice? Are these biologically relevant amounts of beta-carotene? Would it work in humans? All of those are questions we'll have to address in future work. But we're excited to see what happens. And we're excited that these tools are now publicly available for use by others in the research community."

Reference:Durmusoglu D, AlAbri IS, Collins SP, et al. In situ biomanufacturing of small molecules in the mammalian gut by probiotic Saccharomyces boulardii. ACS Synth Biol. 2021. doi:10.1021/acssynbio.0c00562

This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.

See the article here:
Probiotic Yeast Engineered To Produce Beta-Carotene - Technology Networks

Read More...

Page 3«..2345..1020..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick