header logo image


Page 27«..1020..26272829..»

Archive for the ‘Genetic Engineering’ Category

Collapse in diversity threatens food security, seed rescuer says – The Age

Sunday, November 24th, 2019

"Theres been an enormous collapse in diversity," said Mr Blazey, the founder of gardening business The Diggers Club, which his family donated to the charity Diggers Foundation in 2011. He will also talk about the threat to food security at an event at Camperdown's Pocket City Farms on Sunday.

The number of seeds owned by the public had shrunk since genetic engineering was introduced in the early 1980s, Mr Blazey said.

First grown in 1802, the "lazy housewife" bean was one seed away from being lost forever, when it was propagated by The Diggers Club. The heirloom variety is now sold as a good bean for cooks and gardeners of any gender.

He started rescuing heirloom seeds 25 years ago, including the stringless bean, which was down to its last seed - in Germany - and sent to Australia. Since then, the world had lost about 60 per cent of vegetable varieties while the big companies such as Monsanto sold hybrids, he said.

"Thats a serious problem but most people dont see it. When you are buying a tomato, it is a hybrid and it won't be true to type [if you try to reproduce it]," he said. It also doesn't taste as good.

"If pestilence and climate change force us into disaster, we will have to ask Monsanto [recently taken over by Bayer] if we can grow [its] seeds and collect them.

"It is a disaster scenario, which nobody understands. Most of us don't realise we have lost complete control of seed supply," Mr Blazey said.

Five colour silverbeet, a very old variety, now sold by The Diggers Club.

The Grow It Local Festival and its website were started to encourage people to grow their own food, said co-founder Darryl Nichols, who also started the Garage Sale Trail 10 years ago.

There's also some "crowd farming": connecting locals who know how to garden with those who don't. Hundreds of people have registered their gardens, some running classes, including Composting 101, while others have offered advice and unused garden space.

When one of the site's Perth members offered a "seven-course plant-based patch-to-plate degustation", 14 strangers turned up, Mr Nichols said.

Like the Pocket City Farms, which is encouraging gardens in unused urban spaces, the site's members are growing vegetables wherever they can, horizontally and vertically.

In Bondi Junction, Tina has the beginning of a banana grove, with plans to fill up the nature strip with vegetables and ornamentals. In Killara, Mike is growing chili in his 15-square-metre back-garden. In Randwick, Jess and Andrew are "challenging the concept that you cant grow much in a concreted backyard". A woman is growing herbs on a vertical pallet on the verge to share with her neighbours.

It is a similar concept to The Diggers Club, which sells nearly 700 seed varieties, many heirloom, some brought to Australia by members when they migrated.

Different varieties of potatoes. Credit:David Cavanaro.

They include the pumpkin ironbark, which was down to 10 seeds a few years ago and unavailable anywhere else in the world. Reg, a market gardener, passed on seeds to two old heirloom varieties, red odourless onion and a carrot called "western red" before he died.

The number of vegetable seeds has shrunk to a fraction since 1900, according to this chart by Diggers Club. Credit:Clive Blazey

See the article here:
Collapse in diversity threatens food security, seed rescuer says - The Age

Read More...

How synthetic biology will allow us to redesign humans ‘from the ground up’ – Genetic Literacy Project

Sunday, November 24th, 2019

Just as physics and chemistry have given humans power over the world of the inanimate, biology is giving us the ability to engineer living systems, from viruses and bacteria to animals and people.

Which is why [Wired co-founder Jane] Metcalfe thinksdesigncould be the next big thing in medicine.

Well combat disease and improve human health by designing biological systems from the ground up. We can design embryos. We can edit genes in humans. We have synthetic biology. And so we really are looking at designing future humans, Metcalfe said.

The ultimate goal is writing whole human genomes from scratch, and [Andrew] Hessel cofounded Genome Project-write (GP-write) to convene the worlds top synthetic biologists to do just that.

There are obviouslybig hurdles that still need clearingincluding software that can make design more accurate and efficient and DNA synthesis tools that assemble longer base-pair sequencesand Hessels group recently published a paper outlining the challenges.

Literally in 10 years weve gone from making proteins synthetically to making a eukaryote, he said. As soon as we can start making whole chromosomes, well, weve only got 23 of them.

Read full, original post: Why Designing Our Own Biology Will Be the Next Big Thing in Medicine

Read more:
How synthetic biology will allow us to redesign humans 'from the ground up' - Genetic Literacy Project

Read More...

Exhibition explores a brave new world – Griffith News

Sunday, November 24th, 2019

A thought-provoking new exhibition by world-renowned artist Bonita Ely has opened at Griffith University Art Museum.

Bonita Ely: Future Tense explores dystopian futures wrought by environmental degradation and genetic engineering.

The major survey exhibition brings together several of Elys major works imagining an impossible future where nature has adapted with the assistance of science, and flourished despite the devastating effects of pollution and climate change.

Shown in Australia for the first time since its debut at documenta14 in 2017, Plastikus Progressus 2017/19 parodies natural history displays. Set in 2054, it features genetically-engineered creatures that consume plastic and, in the process, clean up our mess in the streets, oceans and rivers. The installation includes a new section examining the plastic pollution of the Brisbane River.

We Live to be Surprised 1989/2019 is Elys latest installation of snabbits half snail/half rabbits. Engineered as a food source for an over-populated planet, these creatures have evolved into an ominous feral monoculture.

The exhibition also includes a major 1973 painting by Ely, The Locust People, which shows Elys interest in environmental issues since the earliest years of her practice.

Director of Griffith University Art Museum Angela Goddard, who curated the exhibition, said Ely was a fascinating artist whose practice blurred the lines between art and science.

I like her intuitive way of working and projecting ideas, and how she imagines the future and how we might adapt to it, she said.

Bonita is a major figure in contemporary art and her work has great currency, as evidenced by both installations having recently been shown in EuropePlastikus Progressus in Poland and We Live to be Surprised in the UKwe are fortunate to be able to see these works here in Australia.

Griffith University Art Museum acknowledges the generosity of exhibition partners Lock, Stock and Barrel, Shut the Gate Wines and Solver Paints.

The exhibition runs until 8 February 2020 at Griffith University Art Museum, South Bank.

Read more:
Exhibition explores a brave new world - Griffith News

Read More...

The religious polarization of India – indica News

Sunday, November 24th, 2019

Justice Markandey Katju-

Although the Constitution of India declares India to be a secular country, the ground reality is very different. In recent years, particularly after the Hindu right wing Bharatiya Janata Party ( BJP ) came to power in 2014, Indian society has been considerably polarized on religious lines.

Consider the following facts :

It is clear that in recent years polarization of Indian society on religious basis has witnessed an exponential upsurge. Earlier too there was communal feeling, but it was largely latent, erupting only on occasions. Now under BJP rule from 2014 it has become open, virulent. and continuous. What is the cause?

Some people say that it is because of reaction among Hindus who were earlier suppressed due to appeasement policy of Congress towards Muslims who were treated as a vote bank. Others say that Muslims are inherently fanatics and bigots, who often resort to terrorism, etc. But what is the truth?

The truth is that 99% of all people, whether Hindu, Muslim, Christian, Sikh, Jain, Parsi or Buddhist are good people. Most Muslims, like most Hindus, are peaceful, upright and law abiding. So it is absurd to say that all, or even most, Muslims are bigots and terrorists.

In fact there was no communal feeling before 1857, as I have explained in my article The Truth about Pakistan published in the Pakistani newspaper The Nation some years back. Before 1857 Hindus and Muslims lived harmoniously, Hindus used to participate in Eid and Muharram, and Muslims in Holi and Diwali.

Communalism was artificially created after suppressing the 1857 Mutiny ( in which Hindus and Muslims fought together against the British ) by the British rulers as part of their divide and rule policy ( see BN Pandes History in the service of Imperialism online ), and this was continued even after Independence, but now it has increased exponentially.

There are two reasons for the recent upsurge in communal polarization in India, one internal, and the other external. Let me explain

Internal causes of polarization

The Congress Party, by its Muslim appeasement policy (to get Muslim votes ) created a strong reaction among many Hindus, who though forming 80% of the Indian population, felt they were being ignored, and all the Congress cared for was the 15% Muslims. This naturally created a backlash, which helped the BJP to come to power in 2014. Of course, the scandalous corruption by most Congress leaders and Modis vikas slogan also helped.

However, now the Indian economy is tanking, with huge dip in GDP, manufacturing sector, IT, real estate etc. on the rapid decline, and record unemployment as admitted by National Sample Survey, a Govt of India organization ( 12 million Indian youth are entering the job market every year but jobs are shrinking ), child malnourishment ( every second Indian child is malnourished, according to Global Hunger Index and UNICEF ), 50% Indian women anaemic, farmers suicides ( already well over 300,000 ) continuing unabated, almost total lack of proper healthcare and good education for the masses, etc.

The present Govt of India has no inkling how to resolve these massive problems, so to divert public attention from them it has to have a scapegoat. This scapegoat is the Muslims, who, like the Jews in the Nazi era, are blamed for all social evils. Muslims are vilified as fanatics, anti-national and terrorists. The Indian media, which has largely been Modified, dutifully obliges by spreading communal hatred.

Propaganda is such a powerful thing that even good peoples minds can be poisoned. For instance, Germans are ordinarily very good people, but during the Nazi era almost the whole German nation went mad, their minds poisoned by Hitler and Goebbels. Similarly, by the communal propaganda and other wicked techniques of the BJP most Hindus have been made Muslim haters in recent years.

Some people deny that BJP is anti-minority, and they refer to Modis statement Sabka saath, sabka vishwas but everyone knows this is hypocrisy and empty rhetoric. BJPs entire politics is based on hatred of minorities, particularly Muslims. BJP is dominated by an organization called the RSS (Rastriya Swayamsevak Sangh ), which is rabidly anti minority ( see the book Bunch of Thoughts by the former RSS leader M.S.Golwalkar). Only by spreading and increasing religious hatred can the BJP thrive.

This world really consists of two worlds, the world of the developed, highly industrialized countries ( North America, Europe, Japan, Australia, New Zealand and China ), and the world of the underdeveloped countries ( which includes India ).

The national objective of India must be to transform and uplift itself into the ranks of the developed countries, for then only can it abolish poverty, unemployment and its other massive problems.

However, this transformation will be opposed tooth and nail by the developed countries, which have an unwritten rule that underdeveloped countries must not be allowed to join the ranks of the developed countries. Why this is so needs to be explained.

Cost of labor is a big chunk of the total cost of production. So if the cost of labor is less the cost of production is less, and one can sell his product at a cheaper price and eliminate his business rival by underselling him i.e. by selling the same quality goods at a cheaper price. There is competition in the market, and one businessman eliminates another not with guns, bombs or tanks but by underselling him.

For instance, after the 1949 Revolution, the Chinese leaders built up a massive industrial base in China. That massive industrial base, coupled with the cheap labor available in China, enabled the Chinese to undersell the whole world in consumer goods. Today the supermarkets of Western countries are packed with Chinese goods, which sell at less than half the price of goods made by Western manufacturers (because the Western labor is expensive). Consequently, many Western industries, which could not face the Chinese competition, had to close down.

Now coming to India, the situation in 1947, when India became independent, was that there were then very few industries and very few engineers. This was because of the policy of the British rulers who did not want India to become an industrialized nation, and wanted to keep it backward and feudal. However, after Independence there was a limited degree of industrialization in India, a heavy industrial base (steel plants etc.) were set up, engineering colleges like IITs were established, etc. The result is that today India is very different from the India of 1947. Today it has all that is required to become a highly industrialized nationa huge pool of technical talent (its IT engineers are largely manning Silicon Valley, and American Universities are full of Indian Professors in Engineering, Science and Mathematics) and immense natural resources.

But if India in fact becomes a highly industrialized country then with its cheap labor it will undersell the Western industrial products. Our labor is even cheaper than Chinese labor, so we will even undersell the Chinese if we get highly industrialized. So, if India gets highly industrialized who will buy the expensive products of the industries of the presently developed countries? Will they not have to close down causing massive unemployment?

India is presently the most developed of the underdeveloped countries, and with correct modern minded leadership it can become a highly developed country in 15-20 years (with modern minded leaders after the Meiji Restoration of 1868 Japan took only this much time to transform itself from a feudal to a highly developed country). But if it does, will it not greatly damage the industries of the developed countries with their expensive labor?

So developed countries will strongly oppose Indias joining the ranks of the developed countries. And how do they do that? By supporting and inciting religious and caste conflicts. In other words, by making Indians fight with each other. I strongly suspect their hidden hand behind the increased religious polarization of Indian society.

[Justice Markandey Katju is former Judge, Supreme Court of India, and former Chairman, Press Council of India. The views expressed are his own.

View original post here:
The religious polarization of India - indica News

Read More...

Top stories: The archaeology of slavery, superproductive corn, and how NOT to train your dog – Science Magazine

Monday, November 11th, 2019

(Left to right): M. CANTWELL/SCIENCE; OTICKI/SHUTTERSTOCK.COM; CHRISTOPHERBERNARD/ISTOCK.COM

By Eva FrederickNov. 8, 2019 , 4:20 PM

Caribbean excavation offers intimate look at the lives of enslaved Africans

To an outsider, the archaeological finds from Estate Little Princess in the U.S. Virgin Islandsfish and pig bones from centuries-old meals, buttons that fell off clothing, bits of coarse local potterymight not look like much. But to archaeologists, they are treasures that offer an intimate look into some of the most enigmatic lives in modern history: those of the enslaved Africans who once lived there.

New genetically modified corn produces up to 10% more than similar types

Genetic engineering proponents have long promised the technology will help meet the worlds growing demand for food. But despite the success of genetically modified pest -resistant crops, scientists havent had much success with boosting crop growth. Now, researchers have shown for the first time that they can increase corn yields up to 10% by changing a gene for plant growth.

Bad dog? Think twice before yelling, experts say

Few things are more adorableor destructivethan a new puppy. When they pee on rugs, chew furniture, and get aggressive with other pups, their stressed-out owners usually turn to dog training. Now, a novel study suggests programs that use even relatively mild punishments like yelling and leash-jerking can stress dogs out, making them more pessimistic than dogs that experience reward-based training.

What do you see when you look at these photosanimals or humanmade objects?

Live in the urban jungle long enough, and you might start to see thingsin particular, humanmade objects like cars and furniture. Thats what researchers found when they melded photos of artificial items with images of animals and asked 20 volunteers what they saw. The people, all of whom lived in cities, overwhelmingly noticed the manufactured objects as the animals faded into the background.

Colombian womans genes offer new clues to staving off Alzheimers

In 2016, a 73-year-old woman from Medelln, Colombia, flew to Boston so researchers could scan her brain, analyze her blood, and pore over her genome. She carried a genetic mutation that had caused many in her family to develop dementia in middle age. But for decades, she had avoided the disease. The researchers now report that another rare mutationthis one in the well-known Alzheimers disease risk gene APOEmay have protected her.

Read more here:
Top stories: The archaeology of slavery, superproductive corn, and how NOT to train your dog - Science Magazine

Read More...

Glowing with the flow – Harvard School of Engineering and Applied Sciences

Monday, November 11th, 2019

In the battle against heart disease, more than 400,000 coronary artery bypass grafting surgeries are performed in the U.S. each year.

While veins from a patients leg are often used in the surgical procedure, tissue-engineered vascular grafts (TEVG), which are grown outside the body using a patients endothelial cells, are proving to be an effective and increasingly popular technique.

The most common reasons for TEVG failure are conditions like blood clots, narrowing of the blood vessels, and atherosclerosis. But what if these grafts could be engineered to detect and even prevent those ailments from occurring?

A team of Harvard John A. Paulson School of Engineering and Applied Sciences students set out to answer that question for their project in this years International Genetically Engineered Machine Competition. The project, dubbed FlowGlo, seeks to use receptors that exist within the walls of human blood vessels to detect shear stress, a warning sign that a blood vessel may be narrowing.

Shear stress is important to detect because it is a marker of a lot of different cardiovascular diseases. When there is narrowing of a blood vessel due to a blood clot, shear stress jumps exponentially, maybe up to 10 times its normal level, said Teagan Stedman, S.B. 22, a bioengineering concentrator. Our idea is to link the activation of these receptors due to some level of shear stress to a modular response.

Shear stress is a function of viscosity and how rapidly different layers of fluid are flowing over each other through a blood vessel. Because the walls of the vessel must move and roll with the strain of blood flow, receptors naturally activate at different levels of shear stress.

For instance, when shear stress rises above 4 Pascals, channels open in one specific protein receptor, Piezo1, and calcium ions enter the cell, signaling the activation. The students engineered Piezo 1 and two other protein receptors to present different colored fluorescent proteins when that activation occurs.

Down the road, instead of using a fluorescent protein, you could possibly swap it out so the cells secrete some kind of clot busting protein to break up the clot and treat it on site, said Patrick Dickinson, A.B. 22, an applied math concentrator. Current clot-busting medication is delivered through an IV, and it is system-wide and much less targeted, so there are greater risks for side effects. We think this could be a more targeted treatment in the long run.

As part of their project, the team gathered feedback from Elena Aikawa, Professor of Medicine at the Harvard Medical School and Director of the Vascular Biology Program at Brigham and Womens Hospital, who studies tissue-engineered vascular grafts. They also conducted a survey to better understand public perception of genetic engineering ethics, since their technique would require engineered cells to be implanted in the human body.

As they gathered qualitative data, they worked long hours in the lab on intricate experiments. Since beginning the project this summer, the teammates overcame many challenges caused by the difficulty of cloning cells. Relying on the support of their mentor, Timothy Chang, a postdoctoral fellow in the lab of Pamela Silver at the Harvard Medical School, they brainstormed, troubleshot, and learned volumes about synthetic biology along the way.

I learned that biology is messy, Dickinson said. In a lab setting, there is a lot that is hard to predict. We certainly encountered a lot of frustration and stress along the way, but it was a good window into what research really is.

Now that the competition has concluded, the teams work will be included in the iGEM Registry of Standard Biological Parts, a repository of genetic parts that can be mixed and matched to build synthetic biology devices and systems.

For Rahel Imru, it is gratifying to know that future iGEM teams and research groups from around the world could someday build off the research she and her peers have done.

While the weeks leading up to the competition were a whirlwind, the experience was well worth the effort, said Imru, A.B. 21, a biomedical engineering concentrator.

This was my first lab experience, so I definitely learned a lot, she said. I look back and see how much weve grown. Maybe we didnt get all the data and results we wanted to by the end, but for the size of our team and the time that we had, seeing what we are able to accomplish is especially rewarding.

The rest is here:
Glowing with the flow - Harvard School of Engineering and Applied Sciences

Read More...

The world’s banana crops are under threat from a deadly fungus. Is gene editing the answer? – National Post

Monday, November 11th, 2019

We expect to have more than one variety of apple to choose from. Even at the most modestly stocked produce stand, youre likely to see mounds of Galas, McIntoshes and Honeycrisps. When it comes to the banana, though no matter where you shop theres only ever one: The Cavendish.

As far removed as we are from tropical growing regions, youd be forgiven for assuming the fruit we recognize as a cheap and reliable staple is the one true banana. In reality, however, there are over a thousand types, each exhibiting a different flavour profile, texture, shape, colour, ripening pattern and durability. And for the second time in recent history, the very existence of the sole breed we rely on which represents the single most exported fresh fruit on the planet is under threat.

Researchers, seeking a solution, are looking towards a new form of genetic modification. Could specific alterations of the genetic makeup of the Cavendish help stave off the disappearance of such a critical commodity?

In August, Colombia declared a state of emergency when scientists confirmed a banana-killing fungus had reached the Americas for the first time. Known by its common name, Panama disease, the strain of fungus Fusarium oxysporum cubense Tropical Race 4 (TR4) has been a known issue since the early 1990s, but until this year, it was largely contained to Asia. Immune to pesticides, the lethal soil-borne organism, for which there is no known cure, obliterates yields by choking banana trees of essential water and nutrients.

The Cavendishs predecessor as worlds presiding banana was the Gros Michel, a variety that dominated fruit stands in temperate regions until it was decimated by fungal strain Tropical Race 1 in the 1950s. That the extreme monoculture approach replicated with the Cavendish would result in a similar fate should have seemed inevitable.

Cavendish bananas are sterile and breeding them requires a cloning process that creates genetically identical plants. Because of their inherent lack of biodiversity, monocultures such as this banana are especially vulnerable to diseases and pests; when theres a weakness, such as little or no resistance against TR4, it can have sweeping and ruinous effects.

Given the bananas immense importance to producers and consumers, researchers have been attempting a variety of methods to create a resistance to the deadly fungus. According to Nature, James Dale, a biotechnologist at Queensland University of Technology in Brisbane, is currently field testing genetically modified bananas in Northern Australia with some success. Dale has added a gene from a wild banana into the Cavendish variety that makes it more resistant to the TR4.

However, even if scientists are able to breed a TR4-immune Cavendish, they wouldnt be permitted to grow or sell them in a significant portion of the world. In Europe, for example, GM crops are restricted. And in Canada, although GMOs have been on the market since the late 1990s, nearly 90 per cent of Canadians believe they should be subject to mandatory labelling.

As a result, researchers like Dale and Leena Tripathi, from the International Institute of Tropical Agriculture in Kenya, have begun experimenting with CRISPR technology. Where GMOs have a foreign gene inserted into the organism, CRISPR allows for the organisms genes to be edited. In the case of Dale, hes discovered a dormant gene in the Cavendish he hopes to activate.

The technique is perhaps best described by Jennifer Kuzma, co-director of the Genetic Engineering and Society Center at North Carolina State University. In an interview with Gastropod, she likened DNA to a book and CRISPR to a pen: You can go in and you can edit the letters in a word, or you can change different phrases, or you can edit whole paragraphs at very specific locations.

CRISPR and GMO are further differentiatedin terms of consumer perception. As a December 2018 study published in Global Food Security found, 47 per cent of Canadian respondents were willing to eat both GM and CRISPR foods, but participants across the board (in Australia, Belgium, Canada, France and the U.S.) were more apt to eat CRISPR than GM food.

Nevertheless, editing the genes of the banana is still in the early stages. Dale told Nature that itll be a couple of years before these get into the field for trials. Can the Cavendish banana wait that long?

In a recent interview with KCRW, Dan Koeppel, author of Banana: The Fate of the Fruit that Changed the World, said I think the time has come to stop looking at bananas as just one kind of fruit when there are thousands. Just as the range of apples at our fingertips is rich and getting richer, perhaps all the different varieties of bananas will prove ripe for discovery.

Follow this link:
The world's banana crops are under threat from a deadly fungus. Is gene editing the answer? - National Post

Read More...

Five Reasons Why Its Never Too Late To Start A Business – Forbes

Monday, November 11th, 2019

PeakPx

Mark Zuckerberg founded Facebook when he was 19 years old. By 25, his company was valued at over $5 billion. At 28, he took Facebook public. Now, at the age of 35, he is among the top 10 richest people in the world.

When we think of entrepreneurs, we tend to think of the Mark Zuckerbergs of the world youthful visionaries who disrupt traditional businesses with a new and better ways of doing things.

New research, however, challenges the view that youth is advantageous to entrepreneurial success. Perhaps a better entrepreneurial archetype is that of Herbert Boyer. Boyer founded Genentech at the age of 40 based on his breakthrough discoveries in genetic engineering. Or, consider the story of David Duffield. Duffield founded Workday, a financial and human capital management software company, in his 60s, after spending a career in application software. Now, Workday has a market capitalization of over $40 billion.

The data is increasingly showing that its never too late to start a business. Below are five research-backed reasons why entrepreneurial success may come quickest to those who wait.

1) The stereotype of the very young and very successful entrepreneur is exactly that a stereotype.

It turns out that the media may be the biggest culprit in perpetuating the belief that entrepreneurship is a young mans game. For example, the website TechCrunch gives annual awards to the most compelling startups, internet and technology innovations of the year. The average age of award recipients from 2008 to 2016 was 31. Inc. magazine and Entrepreneur magazine also publish lists of entrepreneurs to watch. In 2015, the average age of entrepreneurs who made this list was 29. Compare that to the average age of a typical startup founder (42) to see the discrepancy.

2) Not only are older entrepreneurs more common, they are more successful.

42 is the average founder age of all S-corporations, C-corporations, and Partnerships that registered in the United States between 2007 and 2014. Examining the performance of these companies reveals yet another trend: companies with older founders tend to outperform companies with younger founders. Looking at the top 1% of startups (in terms of company performance), the average founder age increases to 43. Looking at the top 0.1%, the founder age increases even more, to 45. Moreover, the average age of startup founders who achieved a successful exit (as defined by an acquisition or an IPO) is 47.

3) Entrepreneurs working in major entrepreneurial hubs are no younger than other entrepreneurs.

Another misconception is that startup founders practicing in the hottest entrepreneurial hubs think Silicon Valley and New York City are younger than in other areas of the country. Again, the data does not show this to be the case. The average age of entrepreneurs in California, Massachusetts, and Silicon Valley is also 42. And, in New York City, the average entrepreneurial age is only one year younger than average (41).

4) The average age of new entrepreneurs entering the market over the past decade has increased.

Given the rise of technology and technology-related entrepreneurship, one might guess that the average entrepreneurial age has fallen in recent decades. Again, the data suggest the opposite. The average founder age has risen from 41.8 in 2007 to 42.5 in 2014.

5) Certain fields attract entrepreneurs that are older than average.

Not surprisingly, there is truth to the idea that technology is a young mans game. However, the age spread is not as wide as one might think. For instance, startup founders operating in the software publishing industry are, on average, 40 years old (two years younger than the overall average). That said, there are other fields that attract older entrepreneurs. For example, the average age of founders in the pipeline transportation of natural gas, basic chemical manufacturing, and paint, coating, and adhesive manufacturing industries are 51, 48, and 48, respectively. Startup founders operating in oil and gas extraction and engine, turbine, and power transmission equipment manufacturing are also significantly older than other types of entrepreneurs.

Conclusion. The novelist George Eliot famously said, Its never too late to be what you might have been. This is sage advice for all aspects of life, but it might be especially relevant in the case of entrepreneurship.

Link:
Five Reasons Why Its Never Too Late To Start A Business - Forbes

Read More...

Unraveling the mystery of Luther Burbank’s famous plums – Sonoma West

Monday, November 11th, 2019

A local scientist is sequencing the genomes of Burbanks plums to verify their history and create a genetic roadmap for future plant breeders

Luther Burbank is still a well-known name around Sonoma County it graces the regions largest arts center and a couple of public gardens. Burbank was Americas most famous horticulturalist (that is, someone who specializes in growing fruit, vegetables and flowers). Since he lived in a time when most Americans still made their living from agriculture, his discoveries seemed as vital and important as those of his contemporaries Thomas Edison and Henry Ford, both of whom visited him here in Sonoma County.

Luther Burbank died in 1926, and over the ensuing 93 years, his reputation has faded considerably, but the plants he created live on. An essay in the Journal of Heredity in 2006 estimated that Burbank introduced between 800 and 1,000 new plants to the American horticultural universe, including the Russet-Burbank potato (still the most common potato in America), Shasta Daisies, the Elberta peach and the luscious Santa Rosa plum.

With only a high school education and no scientific training, Burbank was a self-taught genius and a relentless experimenter, who, it turns out, took extremely poor notes. Still, Burbank filled a collection of notebooks with his large, ungainly scrawl, describing in the briefest of terms his plant breeding experiments. Many of these descriptions are accompanied by hatchmarks the meaning of which is still a mystery today and fruit prints, which he made by cutting a fruit in half and pressing it onto the page.

Because Burbank was secretive about his plant breeding methods and iffy with his notetaking the origins of some of his most famous crosses are still mysterious.

THE PLUM DETECTIVE Rachel Spaeth is the garden curator at Luther Burbank Home & Gardens in Santa Rosa. A fourth-year Ph.D. candidate at UC Davis, she is attempting to establish the identity and ancestry of Luther Burbank plum varieties through genetic sequencing. She is holding one of Burbanks fruit prints.

Enter Rachel Spaeth, the garden curator at Luther Burbank Home & Gardens in Santa Rosa and a fourth-year Ph.D. candidate at UC Davis, working in the horticulture and agronomy graduate group.

Spaeth said she is looking at all of the genetic diversity that we can find in Luther Burbank plums, working to unravel their identity and ancestry.

We kind of know what he said they (his hybrid crosses) were, and genetically, I should be able to tell that, she said.

When talking to laymen, Spaeth likes to begin with this clarification: When somebody says the word plum, its a generic term and its kind of a misnomer, because plum actually refers to between 17 and 40 different species of organisms, Spaeth said, depending on which kind of taxonomist youre asking.

Spaeth is looking at 60 living plums within 10 of those species. She is using plant material from living Burbank plum trees to sequence the genomes of Burbanks plum varieties and she ultimately hopes to make use of the roughly century-old DNA in Burbanks fruit prints to confirm these identifications.

Spaeth said her goals are to verify Burbanks claims about his crosses and to establish a genetic collection of characteristics, based on Burbanks discoveries, for plant breeders in the future.

One of the major goals is to just verify his claims, she said, noting that Burbanks breeding claims were often disbelieved. Luther would say that these were the parents of something, but especially with his plum-apricot crosses, people didnt really believe that he crossbred a plum with an apricot until 50 years after his death, when somebody else was able to reproduce a plum-apricot crop.

NOTEWORTHY With only a high school education and no scientific training, Burbank was a self-taught genius and a relentless experimenter, who, it turns out, took extremely poor notes.

Long before genetic engineering was even dreamt of, Burbank took a swashbuckling approach toward plant breeding blithely crossing species boundaries to create fertile hybrids, something youre not supposed to be able to do.

Luther was unique in that he would frequently cross different species, especially ones that people didnt think were possible, Spaeth said. But if he saw that the flower morphology was similar or they had overlapping bloom periods, or if the fruit looked really similar, then he would deduce that, OK, maybe I can cross these and hed just try it sometimes repetitively if he really wanted it to work, and sometimes he would get really good results.

Spaeth said the Santa Rosa plum is probably the prime example of this.

Its a cross between a European plum and the Japanese plum. And in creating that hybridized cross, he created a plum that was partially self-fertile, but then also could be used to pollinize both European and Japanese plums. So the Santa Rosa plum became the universal pollinizer a role she said it still plays today. Even if its not grown commercially for fresh market, theyll always have a couple in the orchard just to make sure that they get a good fruit set on everything else.

The other thing is its really intermediate in bloom time, she said. So whenever youre looking at plant patents for plums, almost all of them will tell you it flowers two weeks before Santa Rosa or two weeks after Santa Rosa. So really its kind of like the gold standard.

Before heading out to the orchards to gather plant material, Spaeth needed to get a comprehensive list of all the plums introduced by Burbank. She used two different source books, W.L. Howards Luther Burbanks Plant Contributions (1945), a near comprehensive guide to everything Burbank introduced, and U.P. Hedricks Plums of New York (1911), a 750-page tome, filled with beautiful watercolor illustrations of plums.

Spaeth hit gold immediately.

When I looked through the Hedrick book, I used an online PDF and searched for the keyword Burbank, and I was able to discover six plums that Howard didnt find, just because of the modern tools that we have available to us. So that was really exciting, she said.

Then using that list as her starting point, she began gathering plant material leaves and fruit from plum trees at three different sites: Luther Burbank Home and Gardens in Santa Rosa (where theres a small orchard with 34 varieties of plums grafted onto five trees); the Burbank Experiment Farm in Sebastopol (where some of the plum trees are so old they were planted by Burbank himself); and the USDAs Wolfskill Experimental Orchards in Winters.

If we find a cultivar thats in all three places when we sequence the genome, it should all be identical, Spaeth said. And then we can say this is exactly that plum. Then that becomes the voucher.

To make a definitive identification, You have to corroborate material from three different sources, she said. Two different sources is OK; three is better. So if we have a sample from all three, and it comes back that one of them is different, then we have to do a little bit more legwork with phenotyping: so it would be like really looking at fruit quality, flowering time and all of that information to try to match it to the historic data that we have.

BURBANK The Burbank plum was produced from a plum pit sent to Burbank by a Japanese agent in 1883. It was named in honor of Burbank, who introduced it to the United States.

Fruit prints then and now

Ultimately, she would like to do genetic testing on Burbanks original fruit prints, which will require scraping some of the dried fruit matter off. Some of Burbanks fruit prints are located at Luther Burbank Home & Gardens, but many more are located in the Library of Congress.

To figure out the smallest amount of materials she can take to get a good sample, Spaeth has been making her own fruit prints and practicing on those.

The goal is to use my prints to see how little material possible you need to be able to get DNA. Were using techniques that people would use in forensic archaeology, adding different compounds or increasing the amount of time that your reaction has to take place so that you can get good data out of it, said Spaeth, who sometimes jokes that she feels like the Indiana Jones of the plant world.

When shes confident in her sampling method, shell request permission to take samples from Burbanks fruit prints in the Library of Congress.

Creating a genetic list of ingredients, a l Burbank

The ultimate goal of Spaeths genetic research is to pinpoint which sections of a plums genetic code create certain characteristics. This is done through quantitative trait locus (QTL) analysis, which is a statistical method that links phenotypic data (measurements of traits such as color, shape, disease resistance, etc.) with genotypic data in order to explain the genetic basis of a specific trait.

The cool thing about Luthers plums is that they have a huge range of not only genetic diversity, but phenotypic diversity. So youre looking at every color under the rainbow of plums, every size, every shape, whether its free stone or cling stone, Spaeth said.

All of those characteristics get scored. And then we compare all of those characteristics to the genome, she said. Youre looking for QTL markers.

In other words, youre looking for the recipe that makes the pointy bottom plum versus the recipe that makes a smooth bottom. And then once you know that recipe, people can use that information in future breeding experiments.

According to Spaeth, the ability to create such a recipe really emphasizes the importance of historic collections, such as those at Luther Burbank Home & Gardens and the Luther Burbank Experiment Farm.

Because we wouldnt have this resource, if we didnt have people that were curating and cataloging these sorts of things, she said.

Bringing the past into the future

Knowing the recipe for a phenotypic trait allows researchers to target specific regions of the genome for genetic engineering as well as traditional breeding.

From a genetic engineering perspective, knowing the recipe for the gene you want allows you to target and edit specific sequences, Spaeth said. This is highly useful if you want to do something like move a disease-resistance gene from cherry into plum without having to shuffle and sort the two genomes through traditional methods.

What would Burbank think of modern genetic engineering?

"It is unfair to impart our 21st century mindset on someone who lived most of his life without electricity or cars, Spaeth said. However, if I had to venture a guess, I would say that Luther would be open to using all of the tools in the kit to further advance his breeding lines.

By cracking the genetic code of Burbanks hybrids and by creating a genetic database of their component parts, Spaeth is giving Luther Burbank a new place in the modern world so that future generations of scientists and plant lovers can benefit once more from his prodigious creativity.

View post:
Unraveling the mystery of Luther Burbank's famous plums - Sonoma West

Read More...

How misguided regulation has kept a GMO ‘superfood’ off the market: Q&A with Golden Rice author Ed Regis – Genetic Literacy Project

Monday, November 11th, 2019

For us in the West, the ferocious debate over genetic engineering isnt a matter of life and death. We argue about the safety of Impossible Burgers and the potential risks associated with new breeding techniques like CRISPR gene editing, but nobody will go hungry or die of malnutrition pending the outcome of these arguments. Sadly, the same isnt true in the developing world.

The tragic tale of global vitamin A deficiency (VAD) and the life-saving (but still unavailable) solution known as Golden Rice has been told millions of times, 246 million according to Google. But to briefly recap: roughly 250 million people, mostly preschool children in southeast Asia, are vitamin A deficient. Between 250,000 and 500,000 of them go blind every yearand half die within 12 months of losing their sight. Genetically engineered Golden Rice, fortified with the vitamin A precursor beta carotene, could alleviate much of this suffering without otherwise harming human health or the environment, according to a mountain of studies.

So why are so many people still dying of a preventable condition?

Thats the rather frustrating part of the story science writer Ed Regis examines in his new book Golden Rice: The Imperiled Birth of a GMO Superfood. In just over 200 pages, Regis gives a crash course on genetic engineering and explains the messy history of Golden Rice, disabusing the reader of many popular myths along the way. Environmental activist group Greenpeace, for example, is often identified in the press as the primary obstacle to releasing Golden Rice. Despite all its lobbying, however, the NGO has had a relatively minor impact on the crops development.

Instead of pointing the finger at Greenpeace, Regis says the blame lies mostly with overly cautious governments, many of which regulate GMOs as if they were biological weapons. Hoping to avoid the unintended (and so far undiscovered) consequences of growing genetically engineered crops, regulators unintentionally rob people of their eyesight and often their lives.

In a Q&A session with Genetic Literacy Project editor Cameron English, Regis offers a birds eye view of the ongoing controversy and highlights some lesser-known but still significant aspects of the Golden Rice story.

Cameron English: Golden Rice seems simple conceptually. As you point out, scientists just had to direct the plants existing biochemical machinery to synthesize beta carotene in the rice grain, as it does in the rest of the plant. Why did this prove so challenging to achieve in the lab?

For one thing, it had never been done beforerewriting a plants genes to make it express a trait that it normally did not have. Nobody was sure that it was even possible. There were different ways of accomplishing that goal, and there were a lot of technical difficulties in doing the actual hands-on lab work, and getting everything lined up correctly at the genetic level so that beta carotene would appear in the rice grain. There were incredible numbers of false starts, dead ends, and unforeseen technical problems to overcome, and it took years of trial and error for the inventors to get it all working properly. It was just a hard problem, both scientifically, in theory, and technologically, in practice.

CE: You write that Golden Rice could make VAD a thing of the past in developing Asian countries. Why is this biotech crop a better solution than alternative proposals, like distributing vitamin supplements?

Supplement programs have been tried, and of course they do some good, but the problem is that such programs require a substantial and permanent infrastructure. They require a supply chain, personnel to distribute the stuff, record keeping, and the like, plus sufficient and continuous funding to keep it all going across time. Also, there is no way to guarantee that supplements will reach every last person who needs them.

Golden Rice, by contrast, requires none of that. The seeds will be given at no cost to small landowner farmers, and the rice will be no more expensive to consumers than plain and ordinary white rice. Plus, theres the principle that Plants reproduce, pills dont. Once Golden Rice is introduced, its a system that just goes of itself. The product replaces what people already eat on a daily basis with something that could save their sight and lives in the process.

CE: Tell us the story about night blindness you recount from Catherine Prices book. Does that anecdote underscore the problem that Golden Rice could solve?

We in the rich, developed Western countries know practically nothing about [VAD]. We have virtually no experience of it because we get the micronutrients we need from ordinary foods and vitamin supplements. One of the first symptoms of vitamin A deficiency is night blindness, which means pretty much what it says. But to convey this as an actual, lived experience I quote from Catherine Prices excellent book, Vitamania, in which she describes what happens to vitamin A deficient children in poor, developing countries.

While they lead an active life during the day, they gradually withdraw and stop playing as twilight approaches. With the fall of night, they basically just sit in place and wait for help, because they have lost their sight in darkness, and their life grinds to a halt. In countries such as the Philippines, where people eat rice as a staple, at every meal, Golden Rice could prevent this from happening, and even reverse the symptoms in children already affected by VAD.

CE: You point out that Greenpeace struggled with a moral dilemma before forcefully coming out against Golden Rice. Tells about that situation.

In 2001, the year after the Golden Rice protype was announced in Science, a Greenpeace official by the name of Benedikt Haerlin visited Ingo Potrykus, the co-inventor, at his home in Switzerland. Haerlin discussed whether or not to make the provitamin A rice an exception to Greenpeaces otherwise absolute and rigid opposition to any and all genetically engineered foods. He had initially acknowledged that there was a moral difference between GMOs that were merely agriculturally superiorin being pesticide- or herbicide-resistant, for exampleand a GMO that was so nutritionally beneficial that it actually had the potential to save peoples lives and sight.

But apparently that distinction made no difference because in the end both Haerlin himself and Greenpeace as an organization soon took the view that Golden Rice had to be opposed, even stopped, no matter what its possible health benefits might be.

CE: Greenpeace also claimed that poverty and insufficiently diverse diet were the root causes of vitamin A deficiency. Therefore, they said, developing biofortified crops was misguided. That sounds like a reasonable argument, so whats wrong with Greenpeaces analysis here?

This is like arguing that until we find a cure for cancer we should not treat patients by means of surgery, chemotherapy or radiation therapy. This is totally illogical on the face of it. And the same is true of the argument that since poverty is the cause of the problem that therefore the only solution is to eradicate it. Everyones in favor of eradicating poverty, but there are things we can do in the interim while advancing that far-off and utopian goal, which arguably will take some time to accomplish. Biofortified Golden Rice, along with supplementation and a more diverse diet, can help prevent vitamin A deficiency. If a solution, or a set of solutions, is available, lets implement them while also striving to reduce poverty. Both can be done together, you dont have to choose between one and the other.

CE: Many people believe that Greenpeace and other anti-GMO groups are the main roadblock to getting Golden Rice into the hands of farmers. But you write that the activists dont deserve that much credit. What else has kept Golden Rice off the market?

Greenpeaces long history of anti-GMO rhetoric, diatribes, street demonstrations, protests, dressing up in monster crop costumes, and all the rest of it actually did nothing to halt research and development of Golden Rice. There are two reasons why it took 20 years to bring Golden Rice to the point where it won approval for release in four countries: Australia, New Zealand, the United States and Canada. The first is that it takes a long time to breed increasingly higher concentrations of beta carotene (or any other valuable trait) into new strains of rice (or any other plant). Plant breeding is not like a chemistry experiment that you can repeat immediately as many times as you want. Rather, plant growth is an inherently slow and glacial process that cant be [sped] up meaningfully except under certain special laboratory conditions that are expensive and hard to foster and sustain.

The second reason is the retarding force of government regulations on GMO crop development. Those regulations, which cover plant breeding, experimentation, and field trials, among other things, are so oppressively burdensome and costly that they make compliance inordinately time-consuming and expensive.

CE: Whats the Cartagena Protocol and how has it affected the development of Golden Rice?

The Cartagena Protocol was an international agreement, sponsored and developed by the United Nations, which aimed to ensure the safe handling, transport and use of living modified organisms (LMOs) resulting from modern biotechnology that may have adverse effects on biological diversity, taking into account also risks to human health.

On the face of it, this precautionary approach is plausible, even innocuous. In actual practice, the protocol amounts to a sweeping set of guidelines, requirements, and procedures pertaining to GMOs that were legally binding on the nations that were parties to the agreement, coupled with a set of mechanisms to enforce and ensure compliance. These oppressive and stifling rules and regulations soon turned into a nightmare for GMO developers, and did more than anything else to slow down the progress of Golden Rice.

Ingo Potrykus, the co-inventor of Golden Rice, has estimated that adherence to government regulations on GMOs resulting from the Cartagena Protocol and the precautionary principle, caused a delay of up to ten years in the development of the final product. That is a tragedy, caused by the very governments that are supposed to protect our health, but in this case did the opposite.

CE: Once a prototype of Golden Rice was developed, the prestigious science journal Nature refused to publish the study documenting the successful experiment. Why do you think Nature reacted that way, and what does it tell us about the cultural climate during the period when Golden Rice was first developed?

Well, I cant speak for the Nature editors, so in this case youre asking the wrong person. In my book, I quote what Ingo Potrykus had to say about the matter, which was:

The Nature editor did not even consider it worth showing the manuscript to a referee, and sent it back immediately. Even supportive letters from famous European scientists did not help. From other publications in Nature at that time we got the impression that Nature was more interested in cases which would rather question instead of support the value of genetic engineering technology.

And I will leave it at that.

CE: The classic objection to GMOs, including Golden Rice, is that theyre unnatural. Would you summarize your response to that claim in the book?

In the book I show that in fact most of the foods that we eat are unnatural in the sense that they are products of years of artificial selection, often using techniques other than conventional crossbreeding.

In particular I cite the example of Rio Red grapefruit, which is sold all over America and is not considered a GMO, despite the fact that its genes have been scrambled over the years by artificial means including radiation mutation breeding, in the form of thermal neutron (thN) bombardment, which was done at the Brookhaven National Laboratory. This highly mutant and genetically modified grapefruit variety is on file at the Joint FAO/IAEA Mutant Variety Database, at the headquarters of the International Atomic Energy Agency (IAEA), in Vienna, Austria. You can hardly get more unnatural than Rio Red grapefruit.

By contrast, there is a plant whose roots in the ground are potatoes, but whose above ground fruit are tomatoes. This is the so-called TomTato, and was created by exclusively conventional means, i.e., grafting, which goes back thousands of years. But which of the two is more unnaturalthe Rio Red grapefruit or the freakish TomTato? And why does it matter?

CE: There are a lot of transgenic crops being developed, so why did Golden Rice become such a lightening rod for controversy in the GMO debate?

Because if it gets approved, works, and ends up saving lives and sight, it will lead to greater acceptance of GMO foods in general, which is the very last thing that GMO opponents want. That cannot be said of any other GMO.

CE: Bangladesh appears poised to release Golden Rice before the end of 2019. Are you hopeful that farmers will soon have access to it, or do you foresee more political and regulatory obstacles getting in the way?

In the words of Jack Reacher (the hero of Lee Childs crime novels), Hope for the best, prepare for the worst. Seeing what has happened to Golden Rice over the course of 20 years, nothing would surprise me going forward. I would sort of be more surprised if Bangladesh approved it and it was grown and people ate it than if it were banned outright in the countries where its needed most. That is the most infuriating part of the whole story.

Ed Regisis a science writer whose work has appeared inScientific American,Harpers,Wired,Nature,Discover, and theNew York Times,among other publications. He is the author of ten books, includingWhat Is Life? Investigating the Nature of Life in the Age of Synthetic Biology.

Cameron J. English is the GLPs senior agricultural genetics and special projects editor. He co-hosts the Biotech Facts and Fallacies podcast. Follow him on Twitter @camjenglish

More here:
How misguided regulation has kept a GMO 'superfood' off the market: Q&A with Golden Rice author Ed Regis - Genetic Literacy Project

Read More...

A Brave New World: Tech Ethics Course Encourages Students to Mull the Implications of New Technologies – Harbus Online

Monday, November 11th, 2019

Ryo Takahashi, CEO

Ryo Takahashi (MBA 20) speaks with Professor Michael Sandel.

Bracing for a Brave New World

Scenes of genetic selection in Gattaca (1997), the telescreen surveillance state depicted in Orwells 1984 (1948), and the apprehension of criminals before they commit a crime as depicted in Minority Report (2002) may seem like distant dystopian science fiction.

Until recently. The rate of progress in technology has surpassed not only our ability to regulate its uses, but also our ability to engage in meaningful discourse on how technology ought to be used.

Recent advances in human trials for gene-editing technologies such as CRISPR, the deployment of emotion recognition in surveillance systems, and innovations in predictive policing technology all suggest that we are getting progressively closer to the use of such technologies, once the work of dystopian fiction, without adequately thinking through the potential consequences.

Growing interest over the promises and perils of technology has led to Professors Douglas Melton and Michael Sandel to offer Tech Ethics, a university-wide course being taught this year at HBSs Klarman Hall.

This is a new version of a course that Doug Melton and I have taught on and off over the past 10 years or so, said Professor Sandel.

The course was originally called Ethics and Biotechnology. The original focus of the course was on the ethics of stem cell research, genetic engineering, and the ethical implications of the genetic and biotech revolution.

Since then, the course has evolved and we have added topics related to AI, robots, algorithms, and big data, given the growing importance of those areas.

When we were debating questions of stem cell research and parents genetically creating designer babies, these were fascinating but somewhat distant from students personal experience. But when we talk about the ethics of the internet, or of the behaviors of technology companies, these are very immediate questions, because these are technologies that students interact with every hour of every day. This has heightened interest in the course.

Inviting debate on ethical issues

To date, the course has focused on topics as far-ranging as gene editing and genetic enhancement, algorithmic fairness and discrimination, the role of big data and social media, and genetically altered athletes and animals. Issues such as fairness, paternalism, freedom, and agency of the individual have oftentimes been at the core of many debates.

Sandel urges students who enroll in the course to come ready to think through and explore issues, as opposed to coming in with fixed opinions.

As democratic citizens, we have to be asking these questions today. If we dont think through the ethical implications of new technologies, we will be at their mercy. Technology is a tool. But its something we can use responsibly only if we reflect on how the tools should be used.

How can the tools be made to advance the common good, rather than to acquire a momentum of their own that winds up undermining democratic elections, or transforming the relations of parents to children, or leading to global warming if we dont think through our relation to nature? asks Sandel.

A course for all students

Each week, the course draws students from Harvards various schools, ranging from undergraduates to students pursuing professional degrees, including from Harvard Business School and Harvard Law School.

When I saw the course, I knew immediately that I want to take it, said Alex Mao (MBA 20).

I enrolled in Tech Ethics because I want to hear what other people think. On some issues I have a firm opinion whereas on others Im eager to hear others perspectives. We need to think about the implications of these technologies since its moving so quickly.

Previous versions of the course were for undergraduates, said Sandel.

Over time, it became clear to us that tech ethics is a subject that has become central to the various professionsof business, law, medicine, public health, government and public policy, the divinity school, etc.

Thats why we decided to make the course open to all students across the university, he said.

Klarman Hall seemed like the perfect venue for such an endeavor.

In a conversation with President Bacow about our ambition to launch a university-wide course, he strongly encouraged us to do it across the river, in this gorgeous new auditorium at HBS. He felt it would symbolize the idea of drawing together students from across the University into a shared, One Harvard academic community.

I was unsure whether undergrads would travel across the river for a course. We didnt know until the first day of class, when more than 1,000 students packed Klarman Hall, he said.

Given whats at stake, the long march may well be worth it.

Ryo Takahashi (MBA 20), originally from Japan, is a management consultant and writer. Prior to Harvard Business School, he worked as a Project Manager at the World Economic Forum (WEF) and was a Senior Associate at McKinsey & Company. Prior to these roles he worked at the Economist and the Japan Times. His writing has appeared in Time magazine, the Economist, the Japan Times, and the World Economic Forum, among other outlets. He received his B.A. in Economics (with Distinction) from The University of Tokyo and was also a Rotary Scholar to the London School of Economics.

Follow this link:
A Brave New World: Tech Ethics Course Encourages Students to Mull the Implications of New Technologies - Harbus Online

Read More...

Gene editing could help save the planet if scientists can avoid the typos – Grist

Sunday, October 13th, 2019

For the last few years, writers and scientists have marveled at the potential for gene editing to allow farmers to grow more food on less land and allow more of the earth to grow carbon-sucking forests and savannas.

The main advantage of gene editing is precision. Its right there in the name: Instead of dealing with the randomness of breeding, or the rough power-tool work implied by the term genetic engineering, the editing suggests that scientists could now change the letters of genetic code with the same ease that a writer corrects typos.

But in late July, FDA scientists found a chunk of bacterial DNA in gene-edited calves, prompting people to wonder if this precision tool wasnt as precise as advertised. That hopeful vision of a gene-edited future verdant with pesticide-free, carbon-sequestering crops flickered.

On Monday, the scientists studying these gene-edited cattle published a paper in the journal Nature Biotechnology explaining what happened. Essentially, this new paper tells us that gene editing precisely tweaked specific letters of DNA, exactly what it was supposed to do. But scientists also used older, cruder tools, and one of those caused the genetic typo. Even so, the end result might be that gene-editing slides into the muck of controversy over GMOs.

To be clear, the cows at the center of this study have nothing to do with creating more productive, pest-resistant foods. The scientists had edited their genes in stem cells, which grew into calves without horns. Farmers usually remove the horns to prevent cattle from injuring each other goring is a real danger.

When I visited the University of California Davis in 2015, I saw a pair of these black-and-white bull calves standing and chewing in an outdoor pen, like ordinary but adorable bovines. Unlike other calves, however, they wouldnt have to suffer through a painful dehorning operation, in which a veterinarian burns out their horn buds.

Some cows are naturally hornless: Angus and Hereford breeds, for instance. But those are beef cattle. For dairy you want Holsteins or Jerseys, and these champion milk producers are more carefully bred than the winners of the Westminster dog show. If you started crossing muscled Herefords with black-and-white Holsteins, it would take decades of breeding to move the hornless trait into the dairy line then weed out all the beefy traits.

What if you just plucked a single gene and moved it into dairy cows? With gene editing, you could tweak dairy cows without messing up their finely tuned milk-producing DNA so that they would no longer have to endure dehorning. The Minnesota-based company Recombinetics tried this using a technique called TALENS (you might have heard of CRISPR this is just a different version of the same thing).

To run with the editing metaphor, Recombinetics basically took out the DNA that laid out instructions for HORN and replaced it with 202 letters of DNA that said HORNLESS. But first, they attached it to a bacterial plasmid think of it as a sub-cellular copy machine that would reproduce this strand over and over again (HORNLESS, HORNLESS, HORNLESS!). Then they injected all those copies into a cow cell that gave one of those copies a much better chance of bumping into the one spot in the DNA that read HORN. This is where things went wrong. Instead of just replacing HORN with HORNLESS, the plasmid also folded into the cells DNA so that it read something like HORNLESS-COPYMACHINE-HORNLESS. That genetic information went into an egg, which went into a cows uterus, and, in 2015, grew into a hornless calf. No one noticed until years later.

The calves I saw at Davis were there to be studied by Alison Van Eenennaam, an animal geneticist. Funded by a U.S. Department of Agriculture program to assess the risks of biotech, her team first verified that the hornless trait was being passed down through generations of cattle. Basically, we found that Mendel knew his shit, said Van Eenennaam (thats Gregor Mendel, the scientist from the 1800s who described how traits are inherited).

With this new paper, Van Eenennaams team showed that the bacterial plasmid had also been passed down to some of the calves, again following the rules of genetics 101. It doesnt seem to be causing a problem its fairly normal for DNA from germs and viruses to work its way into genomes (the human genome is about 8 percent virus DNA), and critters can usually just roll with it. But because these cattle had DNA from a bacteria, it meant they were genetically modified organisms, or GMOs in the eyes of government regulators. That, in turn, meant they would have to undergo years of testing. A giant corporation like Bayer could afford that, but not a small startup like Recombinetics. The FDA is now treating gene-edited animals like new drugs, requiring multiple rounds of safety testing, which effectively puts an end to the quest to make hornless dairy cows. Longtime opponents of biotechnology think that would be a good thing. Friends of the Earth recently released a report with Janet Cotter, who runs the consultancy Logos Environmental, condemning gene edited animals.

The scientific evidence shows that gene editing, particularly in animals, is far from precise. Cotter said in a statement. Instead, it can produce unintended changes to genetic material and disrupt genetic processes. Such effects could have far reaching consequences for food safety, so these applications will require a rigorous assessment if they are to be used in agriculture.

It would be easy enough to screen out plasmids before putting gene-edited eggs into a cows womb. Thats a routine procedure, said Van Eenennaam. But she worries that wont quell fears that gene editing is sloppier than expected. Treating gene-edited animals like drugs is not proportionate with the risk, Van Eenennaam said, and would prevent breakthroughs that might help us meet the challenge of climate change, whether its cows that dont belch methane, or corals that can survive heat., Van Eenennaam said.

The debate has pretty much blocked the technology in animals through my whole career. I was hoping gene-editing would be different, she said. I have students who are excited about gene editing for disease-resistance but now I feel like its Ground Hog Day. Here we go again.

As a nonprofit news outlet, we rely on reader support to help fund our award-winning journalism. Were one of the few news outlets dedicated exclusively to people-focused environmental coverage, and we believe our content should remain free and accessible to all. If you dig our mission and agree news should never sit behind a paywall, donate today to help support our work. Chip in what you can.

See the original post here:
Gene editing could help save the planet if scientists can avoid the typos - Grist

Read More...

Marvel’s ‘Powers of X’ Ends With Surprising Revelation – Hollywood Reporter

Sunday, October 13th, 2019

Death was conquered, via an elaborate cloning technique, and everything looked as if things were finally turning around for Charles Xaviers friends and foes.

And then Powers of X explicitly states that things will always turn out badly for mutants.

Its much worse than that. We always lose, Moira MacTaggart tells Xavier midway through the series, and she should know; by this point in the narrative, she has lived and died nine different times, trying alternative ways to maintain the survival of the mutant race without success. (As the final issue of Powers of X reveals, Moira has lived for a thousand years in one timeline and it still ended with the mutantkind being outstripped by a humanity augmented by its own invention.

Mutants are an evolutionary response to an environment. You are naturally occurring. The next step in human evolution, a character from 1,000 years in the future explains in the issue. But what happens when humanity stops being beholden to its environment? When man controls the building blocks of biology and technology Evolution is no match for genetic engineering. What good was one mutant adapting to its environment when we could make ten super men?

Turning the franchises long-running theme on its head, the core conflict of the X-Men property isnt homo superior (mutant) versus homo sapien (man), but homo superior versus homo novissima (post-human, or genetically engineered human) a battle that, its suggested, mutantkind will lose no matter what.

Armed with this knowledge, Moira has manipulated events throughout the franchise and certain people to try and equip mutantkind as best she can in the upcoming conflict, leading to a united Xavier and Magneto announcing that she has honed them into perfect tools for an imperfect age that would change things moving forward.

The new era of X-Men comics, therefore, is one in which the majority of characters believe that theyre living in a golden age of mutantkind, but theyre actually part of the latest in a series of conflicts for survival that they are, perhaps, destined to lose. How this thread will continue through the multiple Dawn of X spinoff titles remains to be seen, but with Powers of X author Jonathan Hickman writing the ongoing X-Men series launching in the wake of this reveal, one thing is for certain: This isnt an idea that is going to go away anytime soon.

Powers of X No. 6 is available now in comic book stores and digitally.

View original post here:
Marvel's 'Powers of X' Ends With Surprising Revelation - Hollywood Reporter

Read More...

From Elon Musk to Jeff Bezos, these 30 personalities defined the 2010s – CNET

Sunday, October 13th, 2019

This story is part of The 2010s: A Decade in Review, a series on the memes, people, products, movies and so much more that have influenced the 2010s.

The first decade of the 21st century introduced us to sweeping mobile and social revolutions largely driven by names like Jobs, Zuckerberg and Bezos. In the second decade that's now closing, things got a little more complicated. During those years, a new collection of faces have joined the earlier tech titans to continue moving us into the future. Here's CNET's list of the top technology innovators and all-around unavoidable personalities of the 2010s.

A person wears a Guy Fawkes mask, which today is a trademark and symbol for the online hacktivist group Anonymous. From 2012.

More a decentralized collective than a personality, Anonymous was the name claimed by the loose affiliation of hackers who brought "hacktivism" into the mainstream. During the first half of the decade, Anonymous launched attacks against targets like ISIS, the governments of the US and Tunisia, and corporations such as Sony and PayPal. The group's tactics included distributed denial-of-service attacks that overwhelm a target's website and knock it offline and compromising private databases to access and later leak confidential information, such as the personal details of members of the Ku Klux Klan.

In 2019, the group's prominence has faded somewhat -- last year it said it would debunk the QAnon conspiracy theory -- but concerns about hacking remain in the forefront, in part because one large collective of unknown activists put it there.

Julian Assange of WikiLeaks during a livestreamed press conference in 2017.

The founder of online portal WikiLeaks, Assange had a mission to reveal the secrets of the powerful. It made him an instant hero to many and a wanted man to others (in May the US government charged him with violating the Espionage Act). WikiLeaks started the decade by publishing documents obtained by whistleblower Chelsea Manning between 2010 and 2011, and it supported NSA whistleblower Edward Snowden after he sought refuge in Russia in 2013. To avoid extradition to Sweden on charges of rape -- the charges were dropped in 2017, but the case has since been reopened -- Assange took refuge in the Ecuadorian embassy in London, where he remained for seven years.

Despite its founder being stuck in the same building for much of the decade, WikiLeaks still managed to play a role in the 2016 US presidential election by publishing leaked emails that were detrimental to Hillary Clinton and the next year releasing thousands of documents showing how the CIA can hack into phones. The Assange saga is far from over, though. In 2019 he was booted from the embassy by the Ecuadorian government and arrested by London police. He remains in British custody and could be extradited to the US.

Now playing: Watch this: Step inside Julian Assange's office

3:25

GM CEO Mary Barra says the self-driving technology can help relieve driver stress.

The General Motors CEO became the first woman to lead a major carmaker when she took over in 2014 and has been consistently ranked among the world's most powerful women over the past decade by Forbes and Fortune.

Her tenure has been marked by GM's push to keep up and even eclipse Tesla's efforts to bring electric and driverless cars into the mainstream. The Chevy Volt EV actually brought a sub-$40,000 EV to market ahead of Tesla's Model 3, and GM has also invested in ride-sharing technology to help ensure it stays relevant in the future.

Under Barra, GM is also one of just two global businesses to completely do away with its gender pay gap, according to a study by Equileap.

Bezos speaking at an Amazon press event in 2018.

Even after losing a quarter of his Amazon shares in his divorce settlementin April, Bezos remains the world's richest person, worth more than $107 billion as of this month, according to Forbes. Throughout the decade, he spread his money around,buying the Washington Post in 2013 and growing his company phenomenally. Amazon is now a vast empire that's not only become the world's warehouse, but that also encompasses the Amazon Web Services cloud computing platform, game streaming platform Twitch, a fleet of freight aircraft, music streaming,branded convenience stores, the Kindle e-reader, the Whole Foods Market grocery chain and a space startup meant to give Elon Musk and SpaceX some competition. Its Prime subscription service delivers goods in hours, and serves up a huge gallery of movies, TV programs and audiobooks.

Amazon also makes plenty of products of its own, including its Alexa-powered home assistants and Ring security system, both of which have forced the company torespond to privacy concerns over its increasing expansion into homes. And the company continues to face criticism over working conditions and pay for its employees.

Now playing: Watch this: Jeff Bezos reveals plans for the moon and beyond

3:33

danah boyd

She may not be a household name, but danah boyd (who prefers to spell her name with lowercase) has become a leading thinker and researcher on the effects of technology on society and our children. In her 2014 book It's Complicated, she argued that social media provides an important space for youth to express themselves and to engage with each other and with society.

She's also a principal researcher for Microsoft and has broadened her research to focus on the relationship between social inequality and technology through her research institute Data and Society. In awarding her its 2019 Pioneer award, the Electronic Frontier Foundation called boyd a "trailblazing technology scholar."

Richard Branson at a Virgin Mobile event.

The billionaire magnate is willing to try just about anything, it seems. Branson's Virgin brand has dabbled in everything from media to hotels to health care, and in the last decade it has also made some far-out bets. In recent years, Branson has invested in Elon Musk's futuristic hyperloop transport technology and is working on Virgin Orbit, which could launch satellites using a combination of rockets and a high-altitude launcher plane. In the coming months, Virgin Galactic mayfinally begin launching tourists (including Branson himself) into orbit using a similar approach from the New Mexico desert.

By 2040, there will be 1 million more young women of color with coding skills if Kimberly Bryant meets her ambitious goal. The electrical engineer and Vanderbilt grad founded Black Girls Code in 2011 with the goal of reaching 1 million girls by midcentury. That could transform places like Silicon Valley, where only 2% of women working in tech are people of color, according to a 2018 report from the Kapor Center. Bryant's work has been widely recognized -- by the White House, the Smithsonian and others -- helping to bring in funding for the mission and increasing the chances that the next Steve Jobs is a woman of color.

Mark Cuban at CNET's Next Big Thing panel at CES 2013

During the 2010s, Cuban became much more than just one of the billionaires from the original dot-com boom of the late 1990s. He completed his crossover to become a major figure in the worlds of sports, entertainment and even politics.

Cuban's riches can be traced to successful exits from old, old-school internet properties like Broadcast.com, but he's since leveraged those early moves into a career as an NBA franchise owner, a TV personality (most notably on Shark Tank) and an investor in dozens of companies including Dropbox, Magnolia Pictures and Alyssa's Cookies. He was even floated as a potential presidential candidate in 2016 and 2020, but says he won't run without his family's permission.

Tim Cook at WWDC 2019.

It was a difficult job to take the mantle after Steve Jobs died in 2011, but Cook has maintained Apple's dominance over the past several years. Cook may not be the showman of his predecessor, but the brand is as far-reaching as ever. The iPhone still rules the mobile roost alongside Android, and under his guidance the company has launched forays into areas like the Apple Watch, content production, Apple Arcade and even finance with the Apple Card.

While it might be a stretch to call Cook a gay icon (he came out in a 2014 essay), he's certainly one of the most powerful LGBTQ people in the world, and his worldview has informed his drive to make Apple more ethical, diverse and values-driven, according to author Leander Kahney.

A pre-beard Dorsey.

Assuming the role of Twitter's CEO in 2015, Dorsey's been the face of one of the most highly trafficked and often toxic online platforms. Over the past decade, Twitter helped give rise to revolution in the Middle East, including the ouster of Egyptian President Hosni Mubarak, and also gave us the platform that @RealDonaldTrump has used more effectively than any other American politician to rally support and spin news events. Twitter has also enabled floods of hate speech, fake news and misinformation. Though the company has tried to combat them with new rules and technology, it's only subject to more criticism when the regulations are unevenly enforced.

As he tries to guide Twitter's central role in reshaping global media, Dorsey's also CEO of payments company Square, giving him an outsized influence in how information and money move around the world now and in the coming years.

Jennifer Doudna

One of the key innovations of the 2010s goes by the unwieldy name CRISPR/Cas9, and Doudna is a pioneer in its use to edit DNA. This new tool holds the potential to revolutionize biology, medicine, agriculture and other fields.

Doudna's lab at the University of California, Berkeley has also spun off a for-profit venture to commercialize CRISPR applications, and Doudna has become a leader in the ongoing ethical discussions around the future of genetic engineering.

Susan Fowler at the Women Transforming Technology conference

The #MeToo movement swept through the tech world and other industries beginning in 2017, thanks in large part to Fowler's personal blog chronicling sexual harassment and abuse within Uber, where she worked as a software engineer. The fallout resulted in a shakeup of Uber's power structure and the demotion of founder and CEO Travis Kalanick. Fowler's memoir, Whisteblower, is due out in 2020, and she has a new role writing for the New York Times opinion section.

This power couple has taken the money that Bill made producing the software suites we all love to complain about and turned it into a philanthropic empire. The $50 billion Bill and Melinda Gates Foundation has poured millions into global health and development efforts, as well as education in the US. Bill says the foundation played a major role in a drastic reduction of the child mortality rate, saving over 100 million lives. Bill has also stayed relevant through the reading lists he releases regularly, and Melinda debuted as an author herself with a book about empowering women around the world.

Elizabeth Holmes in a still from The Inventor: Out for Blood in Silicon Valley.

Like Pixelon's Michael Fenne (real name: David Kim Stanley) almost two decades earlier, Holmes serves as a cautionary tale for what can go wrong when the hype becomes unmoored from reality in tech.

In the span of a few years, Holmes took Theranos and a never-quite-ready-for-primetime blood-testing technology from a subject of interest to one of investment, investigation and now, potentially Holmes' own incarceration as she faces charges of criminal fraud.

The decade began with Jobs' introduction of the iPad in January 2010, nearly two years before he died in October 2011. Apple, whose iPhone helped change the way we live, has continued to be one of the most iconic and valuable brands in the history of capitalism. His legacy has been a topic of near constant discussion since his passing, including treatments in multiple Hollywood movies and major books from the likes of Walter Isaacson and Jobs' daughter Lisa Nicole Brennan-Jobs.

John Legere

T-Mobile's CEO could be the most interesting person in the wireless industry. Over the past decade, he's masterfully played the role of underdog fighting against telecom giants like AT&T and Verizon. Nearly everything the exec does seems calculated to turn heads, whether it's lacing a press conference with profanity, launching barbs at the competition on social media or dressing in the company's trademark magenta. But Legere also produced results, greatly increasing T-Mobile's customer base over the years, revamping the carrier's customer service and bucking industry trends by keeping unlimited data plans. Despite it all, Legere's future going into 2020 is uncertain, with talk he might be replaced should a pending merger with rival Sprint finally go through.

Travis Kalanick exits federal court after taking the stand during the Waymo v. Uber trial over allegedly stolen driverless car trade secrets.

The Uber founder embodies the success-at-all-costs mentality that has driven many other Silicon Valley success stories. He led a ride-sharing revolution that quickly spread around the world and made Uber the prototypical startup "unicorn." But allegations of sexual harassment (brought by whistleblower and engineer Susan Fowler) and Kalanick's own abrasive leadership style would soon see him pushed out as the company's leader in June 2017, although he still retains a seat on the board.

Tesla CEO Elon Musk

Musk wants to save the planet with electric cars and solar panels, take us to Mars, connect our brains to computers and shoot us around the world in pressurized tubes at near the speed of sound with his hyperloop-creating Boring Company. Most of this visionary's big visions are still in progress, but his credibility comes from simultaneously disrupting both the automotive and commercial space industries over the past decade with the success of Tesla and SpaceX. The world tends to watch his every move, which he often gleefully shares on social media. Musk's tweets have brought him trouble, especially when they move Tesla's stock price and invite lawsuits and the ire of the SEC or appear to smear a diver trying to rescue a Thai soccer team trapped in a cave.

Microsoft CEO Satya Nadella speaks at a company event.

This Indian immigrant with a degree in electrical engineering turned out to be the right man for the job of making Microsoft cool again. Or at least making it cooler. Since becoming CEO in 2014, Nadella has helped increase Microsoft's bottom line and make it a trillion-dollar company. He's overseen a transformation that has done away with the company's cutthroat reputation, both toward competitors and internally, though in 2014 he apologized after making controversial comments about women's pay in an interview. Nadella has also advanced forward-looking acquisitions in artificial intelligence, gaming and brand names like Github, LinkedIn and Mojang, creator of Minecraft.

Very few people seem to know who Nakamoto really is. The presumed pseudonym is attached to the person or persons responsible for the development of bitcoin, which launched a cryptocurrency revolution that started slowly in 2009 but picked up steam over the decade that followed.

A once-worthless digital currency, bitcoin has been valued at up to $20,000 per coin. It inspired the development of countless other cryptos and an entirely new industry around its underlying technology, blockchain. Although some have claimed to be the real Nakamoto and others have been falsely outed as the actual Satoshi, his true identity remains unclear.

Google CEO Sundar Pichai

Google has gone from "Don't be evil" to increasingly having to convince consumers and regulators that it isn't. When the company transformed into Alphabet in 2015 and the Google name was attached to its internet-focused subsidiary (including Android, YouTube and search), Pichai became the new face of Google as CEO. During his first four years, the Googleplex has continued to dominate everything from search to mobile operating systems to online cat videos, while making big moves with new hardware like Google Home and a fleet of Pixel devices. It hasn't been all sunshine, though. Pichai has also had to navigate the proliferation of hate speech and disinformation on YouTube, deal with walkouts over sexual harassment allegations directed at Google executives and confront criticism over a possible censored search service in China. That's to say nothing of the James Damore saga over the company's diversity policies. Still, Pichai and Google seem likely to remain on top for the foreseeable future.

Zoe Quinn.

Years before #MeToo, Gamergate gave us all a preview of the widespread bad behavior and abuse by people in positions of power that would soon be exposed across a number of industries. Quinn, along with fellow game developer Brianna Wu and culture critic Anita Sarkeesian, was among the first to be harassed and threatened by mobs of online trolls that would eventually coalesce around the #gamergate hashtag. It was an early warning sign of how bad things would become online.

Quinn, who uses they/them pronouns, turned their experience and insights into the 2017 book Crash Override: How Gamergate (Nearly) Destroyed My Life, and How We Can Win the Fight Against Online Hate. They have continued to be vocal about instances of abuse within the gaming industry while also churning out new comics (for both Marvel and DC) and collaborating on indie games.

IBM CEO Gini Rometty

CEO of IBM is another job title that doesn't seem as cool as it was 50 years ago. But since taking over in 2012, Rometty has moved the company from dinosaur status to focusing on the future. IBM today is invested deeply in nascent technologies like artificial intelligence, blockchain and quantum computing.

Sheryl Sandberg in 2015.

Sandberg was the fresh face Facebook often needed when Mark Zuckerberg spent too much time in the spotlight. While she deserves some credit for building Facebook up to the global force it is today, her 2013 business and leadership memoir Lean In made her a household name. Facebook and Sandberg have since received a healthy dose of criticism for the platform's myriad scandals, ranging from privacy concerns to the spread of misinformation, but they continue to stand their ground.

Former Instagram executive Adam Mosseri, flanked by Mike Krieger on the left and Kevin Systrom on the right.

As social media scandals increasingly give platforms like Facebook and Twitter a bad rep, Instagram seems to remain an almost-pristine place for all our best moments, no matter if they're earnest or fake AF, a la Fyre Festival. The disastrous music festival was promoted using Instagram and harnessed the power of its many "influencers" and the FOMO it engenders perhaps better than any other platform. Systrom and Krieger co-founded the photo-sharing site in 2010 and the service was snapped up by Facebook in 2012 for $1 billion. Systrom stayed on as CEO through 2018, growing the service to almost a billion registered users. While the platform has faced criticism over censorship in several countries and other practices like "shadowbanning" (in which posts are hidden from the view of others without it being apparent to the user), Instagram has remained relatively scandal-free compared to its parent company in recent years.

Peter Thiel in 2014.

Like Musk, Thiel made his first big pile of money from the sale of PayPal, which he co-founded, to eBay in 2002. The hits continued when he became Facebook's first outside investor in 2004 and went on to make early investments in Airbnb, LinkedIn, Yelp, Spotify and SpaceX, just to name a few.

Over the past decade, though, he's become better known for his political and social stances, particularly his growing disdain for Silicon Valley and his fervent support of President Trump. He also backed a lawsuit filed in 2012 over wrestler Hulk Hogan's sex tape that ultimately bankrupted gossip site Gawker, allegedly over a grudge he held against the site for a 2007 article outing him as gay. Thiel's Libertarian views have also inspired projects like the Seasteading Institute, which aims to create a society at sea, beyond the reach of any government.

Desktops are still alive and kicking, according to HP CEO Meg Whitman.

The former CEO behind the early growth of eBay is always doing something interesting. After losing a bid for governor of California in 2010, Whitman spent the first half of the decade leading and splitting up Hewlett-Packard into two businesses. After leaving HP in 2017, she turned her energies to new efforts focused on younger consumers than the typical HP customer. She's now CEO of upcoming short-form video service Quibi and an investor and board member at Los Angeles esports startup Immortals.

Mark Zuckerberg discusses Oculus at an event last month.

The decade opened with Jesse Eisenberg playing Zuck in the 2010 film The Social Network, and in recent years the Facebook founder probably would have been happy to have an actor continue to play him as CEO. As we've debated the power of Facebook and how much it knows about us, Zuckerberg has confronted multiple scandals and sat for hours of grilling by Congress over the proliferation of fake news on his platform. Through it all, Facebook has arguably been at the center of everything during the past 10 years, whether it's influencing the Brexit vote and the 2016 presidential election or the revelations that data research firm Cambridge Analytica had harvested the data of millions of Facebook users without their consent. Now presidential candidates talk of breaking up the social networking behemoth even as Zuckerberg hopes to move forward into the brave new world of VR with the help of companies like Oculus that it has swallowed over the past decade.

Originally published Oct. 10, 5 a.m. PT.

$699

CNET may get a commission from retail offers.

Original post:
From Elon Musk to Jeff Bezos, these 30 personalities defined the 2010s - CNET

Read More...

NSF funds research on nitrogen fixation – Washington University in St. Louis Newsroom

Sunday, October 13th, 2019

The word agriculture conjures up an array of images: endless fields of corn stalks, amber waves of grain, the deserts of Africa Africa? While thoughts of the African landscape may tend to invoke a dry and empty countryside, scientists at Washington University in St. Louis are working to develop self-sustaining plants that could eventually turn the Sahara into a sea of green.

Himadri B. Pakrasi, the Glassberg Greensfelder Distinguished University Professor in the department of biology in Arts & Sciences and director of the International Center for Energy, Environment and Sustainability (InCEES), and Costas D. Maranas, professor of chemical engineering at Penn State, were recently awarded a $1.2-million grant from the National Science Foundation for their collaborative study of systems biology. Specifically, the Pakrasi and Maranas labs hope to decode the inner workings of cyanobacteria for the ultimate purpose of producing nitrogen-fixing crop plants.

For more than a century, farmers around the world have relied heavily on chemical fertilizers to help grow their plants and crops. Fertilizers contain nitrogen, an essential building block for all life forms to grow, and an element that is abundant in the earths atmosphere. However, creating man-made fertilizers is an energy intensive process that contributes to greenhouse gases and leads to run-off issues that severely damage the environment. A solution to this problem is to engineer plants to absorb nitrogen from the atmosphere and convert it into fertilizer, a process known as nitrogen fixation, so that the plants would become self-sufficient.

If you have engineered seeds that you give to an African farmer, that farmer can then plant the seeds, which gives rise to a field of crops that would not need chemically synthesized fertilizer to grow, Pakrasi said. This has huge agricultural implications not just for the affluent, Western world,but to the areas hardest hit by climate change.

Easier said than done. Nitrogen fixation cannot take place in the cells of most photosynthetic organisms plants that convert sunlight into energy because when plants are undergoing photosynthesis, a byproduct is oxygen. And oxygen is like a poison when it mixes with nitrogenease, the enzyme that enables nitrogen fixation. However, there is an organism that can accommodate both photosynthesis and nitrogen fixation in the same cell: cyanobacteria.

Just like human beings, cyanobacteria have a robust circadian rhythm a 24-hour biological cycle during which they photosynthesize in the day and fix nitrogen at night. Scientists have long studied these bluish-green creatures, but do not have a detailed understanding of how circadian rhythms allow cyanobacteria to adjust its metabolism for both nitrogen fixation and photosynthesis to take place in the same cell. With advances in genetic modification tools, it is now possible to probe deeper into the details of this process.

There are still missing parts of the cyanobacterial puzzle, Pakrasi said. The only way to identify what those missing parts are is to actually go into the cyanobacterium and tease apart the machinery. And thats what this grant will allow us to do.

In other words, the Pakrasi lab will perform a series of genetic modifications to the cyanobacteria and generate new data. The Maranas lab will then take the data and develop a predictive model for the inner working of the cyanobacterium. This iterative process will take some time, but the research is imperative to combating the climate changes facing the planet, Pakrasi said.

Its kind of like building an electric pickup truck, Pakrasi said. How do you go from a gasoline fueled car to a Tesla pickup truck? The basic technology for making a gas fueled car is already known, but were moving to a new paradigm of production in the form of a Tesla truck. Once we figure it out, we can deploy the new technology to our partners all over the world.

Read more:
NSF funds research on nitrogen fixation - Washington University in St. Louis Newsroom

Read More...

Genetic Engineering and Diseases Gene Drive & Malaria …

Friday, October 4th, 2019

We have the choice to attack one of our oldest enemies with genetic engineering. But should we do it?

Support us on Patreon so we can make more videos (and get cool stuff in return): https://www.patreon.com/Kurzgesagt?ty=h

Steady: https://steadyhq.com/de/kurzgesagtMerchandise: https://shop.kurzgesagt.org Newsletter: http://eepurl.com/cRUQxzFacebook: http://bit.ly/1NB6U5OTwitter: http://bit.ly/2DDeT83Instagram: http://bit.ly/2DEN7r3Discord: https://discord.gg/cB7ycdv

The Voice of Kurzgesagt: Steve Taylor: http://voice-pool.com/en/english/Get the music of the video here: soundcloud: http://bit.ly/2cJQIskbandcamp: http://bit.ly/2dj4np0http://www.epic-mountain.com

Big thanks to James Gurney and Roya Haghighat-Khah for their help and advice with this video!

THANKS A LOT TO OUR LOVELY PATRONS FOR SUPPORTING US:

Lucien Delbert, Mike C, Ricardo Chavarria, Juha Wellman, Zachary Jordan, Patrick Chang, Adrian Mihali, Nicodemos Nicodemou, Lacey Larson, Austin Earnest, Andre Wee, Koroslak, Alex Brady, Roberto Cano, Andreas Stokholm, Plamen Ivanov, E Smith, Kieran Hunter-East, Christopher Trinh, Tony Kwok, Adam Rabenstein, Andrew Whitehurst, Alena Vlachova, Mackenzie Broadbent, Andreas Hertle, Martin Petersen, Kasturi Raghavan, Gregory Griffin, KiaTheDead, Aaron Stevens, Jimmy C, Benedikt Jaletzke, Jonathan Bowler, Zdravko aek, Wouter Stokhof, Zealotus, Long Vu, Fatman13, Jeremy Dumet, Miles Spoor, Mirton I, Al Fl, Jonathan Carter, Stanislaw Wasowicz, Marek Turcani, Francisco Santos, Justin Choi, Dagoberto Chapa, Chip Salzenberg, TinFung, Bob Bergeron, Peer, Justin Elstrott, Rachid Malik, Octavio Astillo, Romain Isnel, Rich Sekmistrz, Kuosora, Mozart Petter, Justin Jeffries, Nicola Licheri, Bahram Malaekeh, Florent Petterschmitt, David Mark, Gaby Germanos, Shweta Bharadwai, Lux Stamm, Marc Johann, Joe, Nefaur Khandker, Anders Madsen, Sarah Yoshi, monoxide, Brandon Meador, Dovydas Bartkevicius, Tyler Vigen, Michael Niella, Gordon Timilty, Slava Dzyba, Bagel Krippen Chandra, KodinCage, Miikka Harjuntausta, Magid Elgady, Vince Houmes, Irae Carvalho, Josh Talbot, Mr.Z, Pawel Urbanek, Russ Clarke, Lucas Tostes, Oscar Chamaria, Zachary Langdon, Steve Bollenbaugh, Xiaogiang Zheng, Peter LoPinto, Jenny Nordenborg, Evan Faas, Greg Fowler, Cicmil Mladen, Canut Durgun, Malovich, Cedric, Dave Anderson, Jones, Elliot, Denis Dube, David Allen, Dawson Reid, Jake Zwirdowski, Denis Leu

SOURCES AND FURTHER READING:

Harvard FAQs on gene drive:http://bit.ly/1TYNIAo

Research paper on using CRISPR for malaria gene drive:http://bit.ly/2cGXNqp

Nature article on engineered mosquitos:http://go.nature.com/1Ij39yS

STAT new article on using gene drive against Zika:http://bit.ly/2ctw24X

Tech review article on using gene drive against malaria:http://bit.ly/1V0Qpr7

Smithsonian on deadliness of mosquitos:http://bit.ly/1sqQ1D7

Science article about the risks of the technology:http://bit.ly/2dgtpCt

New Yorker on Pros and Cons:http://bit.ly/1PTKGlt

Gates note on death rate through mosquitos:http://bit.ly/1UdvIqI

Status quo on field trial in the U.S.:http://bit.ly/2b16ufu

Evolution working against gene drive technology:http://theatln.tc/2cmMjau

Research paper on evolution of resistance against gene drive:http://bit.ly/2cGWPKO

Science news on possible safety feature for gene drive:http://bit.ly/29I0Z26

Help us caption & translate this video!

http://www.youtube.com/timedtext_cs_p...

Read more:
Genetic Engineering and Diseases Gene Drive & Malaria ...

Read More...

Category:Genetic engineering – Wikimedia Commons

Wednesday, October 2nd, 2019

ingeniera gentica (es); (kk-kz); Kejuruteraan genetik (ms); (kk-cn); (bg); genetik mhendislii (tr); (zh-hk); Genteknik (sv); (uk); Genetika inenerligi (tk); (zh-hant); (zh-cn); Genetik injeneriya (uz); (kk); Gentekniko (eo); genetick inenrstv (cs); Genetiki inenjering (bs); (bn); gnie gntique (fr); Genetiko inenjerstvo (hr); K thut di truyn (vi); (kk-arab); Genetka njenerligi (kk-latn); genetiese manipulasie (af); (sr); Engenharia gentica (pt-br); (zh-sg); Gentechnik (lb); genmodifisering (nn); genslyd (nb); Rkayasa genetik (su); (kk-cyrl); (zh-hans); (lzh); (ckb); genetic engineering (en); (ar); Teknologiezh c'henetek (br); (zh-tw); (pa); (yue); Genetka njenerligi (kk-tr); Genetik mhndisliyi (az); Genetiki inenjering (sr-el); ingeniaritza genetiko (eu); (he); Inxeniera xentica (ast); Enginyeria gentica (ca); Gentechnik (de-ch); Jinetik injinierin (jam); (gan-hans); Inxhinieria gjenetike (sq); (hy); (zh); Gensplejsning (da); (ka); (ja); genetische technologie (nl); (be); (ky); (gan-hant); (si); Technologia genetica (la); rekayasa genetika (id); (hi); (wuu); Angenharie gentica (mwl); Endazyariya bmayk (ku-latn); Genetic engineering (en-ca); (th); (ta); ingegneria genetica (it); (mn); Innealtireacht ghiniteach (ga); Rekonbinezon jenetik (ht); geenitehnoloogia (et); genetic engineering (en-gb); Geenitekniikka (fi); (ur); (gan); Endazyariya bmayk (ku); Ncignira gintica (scn); engenharia gentica (pt); (fa); gnu inenierija (lv); genetic ingineerin (sco); Gen ininerija (lt); Genetsko inenirstvo (sl); Inhenyeriyang henetiko (tl); Inginerie genetic (ro); (ru); Inhenyerya henetika (war); inynieria genetyczna (pl); (ml); Genetiki inenjering (sh); (ba); Gentechnik (de); (sr-ec); Genetyske technology (fy); Enxeara xentica (gl); (ko); (el); (ku-arab) tecnologa de la manipulacin y transferencia de ADN (es); ensemble des outils de manipulation du gnome (fr); direkte manipulering av genomet til ein organisme ved hjelp av bioteknologi (nn); (he); directe modificatie van het genoom van een organisme (nl); , (ba); Methoden und Verfahren der Biotechnologie (de); biotekniikan haara (fi); direct manipulation of an organism's genome using biotechnology (en); zintne par gnu prmainanu un prstdanu (lv); settore delle biotecnologie che si occupa della manipolazione dei geni (it) Tecnologa del ADN recombinante, Modificacion genetica, Ingeniera gnica, Biogentica, Manipulacin gentica, Biotecnologa gentica, Tecnologia del ADN recombinante (es); (ky); ingenieritza genetikoa (eu); (ru); (ba); Gentechnisch, Rekombinante DNA-Technologie, Gentechnologisch, Genmodifikation, Gentechnologie, Genmanipulation, Graue Gentechnik (de); Inxhinieringu gjenetik (sq); , , , , , , , , (zh); Genmanipulation, Gensplejset (da); Gen mhendislii, Genetik manplasyon, Gen mhendislii gelimeleri, Genetik mhendislik, Genetik modifikasyon, Gen ekleme, DNA klonlamas (tr); , , , , , , DNA, (ja); Gentekniken (sv); (uk); Geenimuuntelu, Geenimanipulointi, Geenimanipulaatio, Geeniteknologia, Geenimuokkaus (fi); , (kk); Genetika inenierio (eo); genetick manipulace, genov inenrstv, genetick modifikace (cs); (ta); Tecnologia DNA ricombinante, Manipolazione genetica (it); manipulation gntique, ingnierie gntique, ingnierie du gnome (fr); Genetski inenjering (hr); Ingigniria ginetica, Ngignira gintica (scn); Modificao gentica, Modificao celular, Modificao da celula, engenharia genetica (pt); Geneticko inzenjerstvo, , (sr); , , (ko); Rekayasa gen, Rekayasa genetik, Rekayasa biologi (id); genspleising, genslyd, genteknikk (nn); Genetic engineering (ml); GGO, Frankenstein-voedsel, GMO, genmodificatie, genetische modificatie, gentechnologie, gmo's, transgeen, genetische verbetering, genentechnologie, genetisch gemodificeerd organisme, gentech, genetische manipulatie, ggo's (nl); Manipulacin xentica, Enxeera xentica (gl); geenitehnika, geenimanipulatsioon (et); Genetic engineering (gan); K thut di truyn (vi); genetic modification, genetic manipulation (en); , , , , , Genetic engineering, , , , , (ar); Genetic engineering, (ur); Genmanipulering, Genmanipulasjon, Genetisk modifisering, Genspleising, Genmodifisering (nb)

Here is the original post:
Category:Genetic engineering - Wikimedia Commons

Read More...

10 Reasons to Oppose Genetic Engineering – NW RAGE

Wednesday, October 2nd, 2019

10 Reasons to Oppose Genetic Engineering

2. Health risksGenetic engineering can make foods that were once safe to eat a threat to people with allergies. Because this process is unpredictable, new substances can develop in engineered foods. The FDA knows this and does some testing, but there are no guarantees.

Besides the new allergies, inserting genes into plants and animals can cause existing genes to react in unknown ways, including reduced nutritional values and changes in organism quality.

4. Biodiversity in dangerEngineering specific traits into select species threatens the planets biodiversity by upsetting the natural balance. Engineered organisms spread uncontained into the wild. They also spread their genes into the gene pool. Once engineered organisms are released, there will be no recalls, and as they continue to upset nature, it may be impossible to undo the damage.

5. Genetic engineering is about corporate control of agricultureThe reason to engineer and patent a seed is to make money off of a captive market. Although some family farmers in the US are using this technology, they are not the driving force behind its creation. Genetically engineered crops further lock farmers into a cycle of dependence on quick fix techno schemes with royalty fees and debts to the bank.

6. Organic Agriculture is at RiskGenetically engineered plants do not recognize buffer zones and containment fields. They will drift and they will be carried wherever fate will have it. Contamination of conventional and organic crops isn't a matter of if, its a matter of when. These new creations have proven impossible to contain outside of a lab.

So who will be liable when this contamination occurs? Not the Biotech companies. Currently there are few if any laws assigning liability to life's new architects. The laws that do exist are concerned with intellectual property rights. It seems the court want to be certain you pay for every GE seed that grows, whether you planted it or not.

8. Increase in insecticide and herbicide useWhen plants are engineered to resist insecticides, farmers spray more insecticide on the plants. Couple that with pests building up insecticide resistance because of the larger usage and you have a company selling more chemicals, an environment more polluted, and a farmer more dependent.

9. Monopolization of food productionThe spread of genetic engineering coincides with widening legal possibilities to patent plants and their genes. Patents on food bear the intrinsic danger that a few transnational corporations obtain exclusive control over the whole chain of food production, from the gene to the dish. Initial conflicts over patent rights in Northern America show how, in the future, farmers may lose some of the rights concerning their crops. Patents on life are not compatible with the concept of intellectual property rights. They confer rights which go far beyond what the "inventor" has really accomplished.

Source: Basic outline and text adapted and borrowed from The Church's Statement on Genetic Engineering 2003.

Original post:
10 Reasons to Oppose Genetic Engineering - NW RAGE

Read More...

Regulation of genetic engineering – Wikipedia

Wednesday, October 2nd, 2019

The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation (Russia, Norway, Israel) or have provisions for cultivation, but no GM products are yet produced (Japan, South Korea). Most countries that do not allow for GMO cultivation do permit research.[1]One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries.[2] Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%.[3] In Canada and the USA labeling of GM food is voluntary,[4] while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.[5]

There is a scientific consensus[6][7][8][9] that currently available food derived from GM crops poses no greater risk to human health than conventional food,[10][11][12][13][14] but that each GM food needs to be tested on a case-by-case basis before introduction.[15][16][17] Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe.[18][19][20][21] The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.[22][23][24][25]

There is no evidence to support the idea that the consumption of approved GM food has a detrimental effect on human health.[26][27][28] Some scientists and advocacy groups, such as Greenpeace and World Wildlife Fund, have however called for additional and more rigorous testing for GM food.[27]

The development of a regulatory framework concerning genetic engineering began in 1975, at Asilomar, California. The first use of Recombinant DNA (rDNA) technology had just been successfully accomplished by Stanley Cohen and Herbert Boyer two years previously and the scientific community recognized that as well as benefits this technology could also pose some risks.[29] The Asilomar meeting recommended a set of guidelines regarding the cautious use of recombinant technology and any products resulting from that technology.[30] The Asilomar recommendations were voluntary, but in 1976 the US National Institute of Health (NIH) formed a rDNA advisory committee.[31] This was followed by other regulatory offices (the United States Department of Agriculture (USDA), Environmental Protection Agency (EPA) and Food and Drug Administration (FDA)), effectively making all rDNA research tightly regulated in the USA.[32]

In 1982 the Organisation for Economic Co-operation and Development (OECD) released a report into the potential hazards of releasing genetically modified organisms (GMOs) into the environment as the first transgenic plants were being developed.[33] As the technology improved and genetically organisms moved from model organisms to potential commercial products the USA established a committee at the Office of Science and Technology (OSTP) to develop mechanisms to regulate the developing technology.[32] In 1986 the OSTP assigned regulatory approval of genetically modified plants in the US to the USDA, FDA and EPA.[34]

The basic concepts for the safety assessment of foods derived from GMOs have been developed in close collaboration under the auspices of the OECD, the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A first joint FAO/WHO consultation in 1990 resulted in the publication of the report Strategies for Assessing the Safety of Foods Produced by Biotechnology in 1991.[35] Building on that, an international consensus was reached by the OECDs Group of National Experts on Safety in Biotechnology, for assessing biotechnology in general, including field testing GM crops.[36] That Group met again in Bergen, Norway in 1992 and reached consensus on principles for evaluating the safety of GM food; its report, The safety evaluation of foods derived by modern technology concepts and principles was published in 1993.[37] That report recommends conducting the safety assessment of a GM food on a case-by-case basis through comparison to an existing food with a long history of safe use. This basic concept has been refined in subsequent workshops and consultations organized by the OECD, WHO, and FAO, and the OECD in particular has taken the lead in acquiring data and developing standards for conventional foods to be used in assessing substantial equivalence.[38][39]

The Cartagena Protocol on Biosafety was adopted on 29 January 2000 and entered into force on 11 September 2003.[40] It is an international treaty that governs the transfer, handling, and use of genetically modified (GM) organisms. It is focused on movement of GMOs between countries and has been called a de facto trade agreement.[41] One hundred and fifty-seven countries are members of the Protocol and many use it as a reference point for their own regulations.[42] Also in 2003 the Codex Alimentarius Commission of the FAO/WHO adopted a set of "Principles and Guidelines on foods derived from biotechnology" to help countries coordinate and standardize regulation of GM food to help ensure public safety and facilitate international trade.[43] and updated its guidelines for import and export of food in 2004,[44]

The European Union first introduced laws requiring GMO's to be labelled in 1997.[45] In 2013, Connecticut became the first state to enact a labeling law in the USA, although it would not take effect until other states followed suit.[46]

Institutions that conduct certain types of scientific research must obtain permission from government authorities and ethical committees before they conduct any experiments. Universities and research institutes generally have a special committee that is responsible for approving any experiments that involve genetic engineering. Many experiments also need permission from a national regulatory group or legislation. All staff must be trained in the use of GMOs and in some laboratories a biological control safety officer is appointed. All laboratories must gain approval from their regulatory agency to work with GMOs and all experiments must be documented.[47] As of 2008 there have been no major accidents with GMOs in the lab.[48]

The legislation covering GMOS was initially covered by adapting existing regulations in place for chemicals or other purposes, with many countries later developing specific policies aimed at genetic engineering.[49] These are often derived from regulations and guidelines in place for the non-GMO version of the organism, although they are more severe. In many countries now the regulations are diverging, even though many of the risks and procedures are similar. Sometimes even different agencies are responsible, notably in the Netherlands where the Ministry of the Environment covers GMOs and the Ministry of Social Affairs covers the human pathogens they are derived from.[48]

There is a near universal system for assessing the relative risks associated with GMOs and other agents to laboratory staff and the community. They are then assigned to one of four risk categories based on their virulence, the severity of disease, the mode of transmission, and the availability of preventive measures or treatments. There are some differences in how these categories are defined, such as the World Health Organisation (WHO) including dangers to animals and the environment in their assessments. When there are varying levels of virulence the regulators base their classification on the highest. Accordingly there are four biosafety levels that a laboratory can fall into, ranging from level 1 (which is suitable for working with agents not associated with disease) to level 4 (working with life threatening agents). Different countries use different nomenclature to describe the levels and can have different requirements for what can be done at each level.[48]

In Europe the use of living GMOs are regulated by the European Directive on the contained use of genetically modified microorganisms (GMMs).[47] The regulations require risk assessments before use of any contained GMOs is started and assurances that the correct controls are in place. It provides the minimal standards for using GMMs, with individual countries allowed to enforce stronger controls.[50] In the UK the Genetically Modified Organisms (Contained Use) Regulations 2014 provides the framework researchers must follow when using GMOs. Other legislation may be applicable depending on what research is carried out. For workplace safety these include the Health and Safety at Work Act 1974, the Management of Health and Safety at Work Regulations 1999, the Carriage of Dangerous Goods legislation and the Control of Substances Hazardous to Health Regulations 2002. Environmental risks are covered by Section 108(1) of the Environmental Protection Act 1990 and The Genetically Modified Organisms (Risk assessment) (Records and Exemptions) Regulations 1996.[51]

In the USA the National Institute of Health (NIH) classifies GMOs into four risk groups. Risk group one is not associated with any diseases, risk group 2 is associated with diseases that are not serious, risk group 3 is associated with serious diseases where treatments are available and risk group 4 is for serious diseases with no known treatments.[47] In 1992 the Occupational Safety and Health Administration determined that its current legislation already adequately covers the safety of laboratory workers using GMOs.[49]

Australia has an exempt dealing for genetically modified organisms that only pose a low risk. These include systems using standard laboratory strains as the hosts, recombinant DNA that does not code for a vertebrate toxin or is not derived from a micro-organism that can cause disease in humans. Exempt dealings usually do not require approval from the national regulator. GMOs that pose a low risk if certain management practices are complied with are classified as notifiable low risk dealings. The final classification is for any uses of GMOs that do not meet the previous criteria. These are known as licensed dealings and include cloning any genes that code for vertebrate toxins or using hosts that are capable of causing disease in humans. Licensed dealings require the approval of the national regulator.[52]

Work with exempt GMOs do not need to be carried out in certified laboratories. All others must be contained in a Physical Containment level 1 (PC1) or Physical Containment level 2 (PC2) laboratories. Laboratory work with GMOs classified as low risk, which include knockout mice, are carried out in PC1 lab. This is the case for modifications that do not confer an advantage to the animal or doesn't secrete any infectious agents. If a laboratory strain that is used isn't covered by exempt dealings or the inserted DNA could code for a pathogenic gene, it must be carried out in a PC2 laboratory.[52]

The approaches taken by governments to assess and manage the risks associated with the use of genetic engineering technology and the development and release of GMOs vary from country to country, with some of the most marked differences occurring between the United States and Europe. The United States takes on a less hands-on approach to the regulation of GMOs than in Europe, with the FDA and USDA only looking over pesticide and plant health facets of GMOs.[53] Despite the overall global increase in the production in GMOs, the European Union has still stalled GMOs fully integrating into its food supply.[54] This has definitely affected various countries, including the United States, when trading with the EU.[54][55]

European Union enacted regulatory laws in 2003 that provided possibly the most stringent GMO regulations in the world.[5] All GMOs, along with irradiated food, are considered "new food" and subject to extensive, case-by-case, science-based food evaluation by the European Food Safety Authority (EFSA). The criteria for authorization fall in four broad categories: "safety," "freedom of choice," "labelling," and "traceability."[56]

The European Parliament's Committee on the Environmental, Public Health, and Consumer Protection pushed forward and adopted a "safety first" principle regarding the case of GMOs, calling for any negative health consequences from GMOs to be held liable.

However, although the European Union has had relatively strict regulations regarding the genetically modified food, Europe is now allowing newer versions of modified maize and other agricultural produce. Also, the level of GMO acceptance in the European Union varies across its countries with Spain and Portugal being more permissive of GMOs than France and the Nordic population.[57] One notable exception however is Sweden. In this country, the government has declared that the GMO definition (according to Directive 2001/18/EC[58]) stipulates that foreign DNA needs to be present in an organism for it to qualify as a genetically modified organisms. Organisms that thus have the foreign DNA removed (for example via selective breeding[59]) do not qualify as GMO's, even if gene editing has thus been used to make the organism.[60]

In Europe the EFSA reports to the European Commission who then draft a proposal for granting or refusing the authorisation. This proposal is submitted to the Section on GM Food and Feed of the Standing Committee on the Food Chain and Animal Health and if accepted it will be adopted by the EC or passed on to the Council of Agricultural Ministers. Once in the Council it has three months to reach a qualified majority for or against the proposal, if no majority is reached the proposal is passed back to the EC who will then adopt the proposal.[5] However, even after authorization, individual EU member states can ban individual varieties under a 'safeguard clause' if there are "justifiable reasons" that the variety may cause harm to humans or the environment. The member state must then supply sufficient evidence that this is the case.[61] The Commission is obliged to investigate these cases and either overturn the original registrations or request the country to withdraw its temporary restriction.

The U.S. regulatory policy is governed by the Coordinated Framework for Regulation of Biotechnology[62] The policy has three tenets: "(1) U.S. policy would focus on the product of genetic modification (GM) techniques, not the process itself, (2) only regulation grounded in verifiable scientific risks would be tolerated, and (3) GM products are on a continuum with existing products and, therefore, existing statutes are sufficient to review the products."[63]

For a genetically modified organism to be approved for release in the U.S., it must be assessed under the Plant Protection Act by the Animal and Plant Health Inspection Service (APHIS) agency within the USDA and may also be assessed by the FDA and the EPA, depending on the intended use of the organism. The USDA evaluate the plants potential to become weeds, the FDA reviews plants that could enter or alter the food supply,[64] and the EPA regulates genetically modified plants with pesticide properties, as well as agrochemical residues.[65]

The level of regulation in other countries lies in between Europe and the United States.

Common Market for Eastern and Southern Africa (COMASA) is responsible for assessing the safety of GMOs in most of Africa, although the final decision lies with each individual country.[66]

India and China are the two largest producers of genetically modified products in Asia.[67] The Office of Agricultural Genetic Engineering Biosafety Administration (OAGEBA) is responsible for regulation in China,[68] while in India it is the Institutional Biosafety Committee (IBSC), Review Committee on Genetic Manipulation (RCGM) and Genetic Engineering Approval Committee (GEAC).[69]

Brazil and Argentina are the 2nd and 3rd largest producers of GM food.[70] In Argentine assessment of GM products for release is provided by the National Agricultural Biotechnology Advisory Committee (environmental impact), the National Service of Health and Agrifood Quality (food safety) and the National Agribusiness Direction (effect on trade), with the final decision made by the Secretariat of Agriculture, Livestock, Fishery and Food.[71] In Brazil the National Biosafety Technical Commission is responsible for assessing environmental and food safety and prepares guidelines for transport, importation and field experiments involving GM products, while the Council of Ministers evaluates the commercial and economical issues with release.[71]

Health Canada and the Canadian Food Inspection Agency[72] are responsible for evaluating the safety and nutritional value of genetically modified foods released in Canada.[73]

License applications for the release of all genetically modified organisms in Australia is overseen by the Office of the Gene Technology Regulator, while regulation is provided by the Therapeutic Goods Administration for GM medicines or Food Standards Australia New Zealand for GM food. The individual state governments can then assess the impact of release on markets and trade and apply further legislation to control approved genetically modified products.[74][75]

One of the key issues concerning regulators is whether GM products should be labeled. Labeling can be mandatory up to a threshold GM content level (which varies between countries) or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%.[3] In Canada and the United States labeling of GM food is voluntary,[4] while in Europe all food (including processed food) or feed which contains greater than 0.9% of approved GMOs must be labelled.[5] In the US state of Oregon., voters rejected Measure 27, which would have required labeling of all genetically modified foods.[80] Japan, Malaysia, New Zealand, and Australia require labeling so consumers can exercise choice between foods that have genetically modified, conventional or organic origins.[81]

The Cartagena Protocol sets the requirements for the international trade of GMO's between countries that are signatories to it. Any shipments contain genetically modified organisms that are intended to be used as feed, food or for processing must be identified and a list of the transgenic events be available.

"Substantial equivalence" is a starting point for the safety assessment for GM foods that is widely used by national and international agenciesincluding the Canadian Food Inspection Agency, Japan's Ministry of Health and Welfare and the U.S. Food and Drug Administration, the United Nations Food and Agriculture Organization, the World Health Organization and the OECD.[82]

A quote from FAO, one of the agencies that developed the concept, is useful for defining it: "Substantial equivalence embodies the concept that if a new food or food component is found to be substantially equivalent to an existing food or food component, it can be treated in the same manner with respect to safety (i.e., the food or food component can be concluded to be as safe as the conventional food or food component)".[83] The concept of substantial equivalence also recognises the fact that existing foods often contain toxic components (usually called antinutrients) and are still able to be consumed safelyin practice there is some tolerable chemical risk taken with all foods, so a comparative method for assessing safety needs to be adopted. For instance, potatoes and tomatoes can contain toxic levels of respectively, solanine and alpha-tomatine alkaloids.[84][85]

To decide if a modified product is substantially equivalent, the product is tested by the manufacturer for unexpected changes in a limited set of components such as toxins, nutrients, or allergens that are present in the unmodified food. The manufacturer's data is then assessed by a regulatory agency, such as the U.S. Food and Drug Administration. That data, along with data on the genetic modification itself and resulting proteins (or lack of protein), is submitted to regulators. If regulators determine that the submitted data show no significant difference between the modified and unmodified products, then the regulators will generally not require further food safety testing. However, if the product has no natural equivalent, or shows significant differences from the unmodified food, or for other reasons that regulators may have (for instance, if a gene produces a protein that had not been a food component before), the regulators may require that further safety testing be carried out.[37]

A 2003 review in Trends in Biotechnology identified seven main parts of a standard safety test:[86]

There has been discussion about applying new biochemical concepts and methods in evaluating substantial equivalence, such as metabolic profiling and protein profiling. These concepts refer, respectively, to the complete measured biochemical spectrum (total fingerprint) of compounds (metabolites) or of proteins present in a food or crop. The goal would be to compare overall the biochemical profile of a new food to an existing food to see if the new food's profile falls within the range of natural variation already exhibited by the profile of existing foods or crops. However, these techniques are not considered sufficiently evaluated, and standards have not yet been developed, to apply them.[87]

Transgenic animals have genetically modified DNA. Animals are different from plants in a variety of waysbiology, life cycles, or potential environmental impacts.[88] GM plants and animals were being developed around the same time, but due to the complexity of their biology and inefficiency with laboratory equipment use, their appearance in the market was delayed.[89]

There are six categories that genetically engineered (GE) animals are approved for:[90]

The literature about Biodiversity and the GE food/feed consumption has sometimes resulted in animated debate regarding the suitability of the experimental designs, the choice of the statistical methods or the public accessibility of data. Such debate, even if positive and part of the natural process of review by the scientific community, has frequently been distorted by the media and often used politically and inappropriately in anti-GE crops campaigns.

Domingo, Jos L.; Bordonaba, Jordi Gin (2011). "A literature review on the safety assessment of genetically modified plants" (PDF). Environment International. 37 (4): 734742. doi:10.1016/j.envint.2011.01.003. PMID21296423. In spite of this, the number of studies specifically focused on safety assessment of GM plants is still limited. However, it is important to remark that for the first time, a certain equilibrium in the number of research groups suggesting, on the basis of their studies, that a number of varieties of GM products (mainly maize and soybeans) are as safe and nutritious as the respective conventional non-GM plant, and those raising still serious concerns, was observed. Moreover, it is worth mentioning that most of the studies demonstrating that GM foods are as nutritional and safe as those obtained by conventional breeding, have been performed by biotechnology companies or associates, which are also responsible of commercializing these GM plants. Anyhow, this represents a notable advance in comparison with the lack of studies published in recent years in scientific journals by those companies.

Krimsky, Sheldon (2015). "An Illusory Consensus behind GMO Health Assessment" (PDF). Science, Technology, & Human Values. 40 (6): 132. doi:10.1177/0162243915598381. I began this article with the testimonials from respected scientists that there is literally no scientific controversy over the health effects of GMOs. My investigation into the scientific literature tells another story.

And contrast:

Panchin, Alexander Y.; Tuzhikov, Alexander I. (January 14, 2016). "Published GMO studies find no evidence of harm when corrected for multiple comparisons". Critical Reviews in Biotechnology. 37 (2): 15. doi:10.3109/07388551.2015.1130684. ISSN0738-8551. PMID26767435. Here, we show that a number of articles some of which have strongly and negatively influenced the public opinion on GM crops and even provoked political actions, such as GMO embargo, share common flaws in the statistical evaluation of the data. Having accounted for these flaws, we conclude that the data presented in these articles does not provide any substantial evidence of GMO harm.

The presented articles suggesting possible harm of GMOs received high public attention. However, despite their claims, they actually weaken the evidence for the harm and lack of substantial equivalency of studied GMOs. We emphasize that with over 1783 published articles on GMOs over the last 10 years it is expected that some of them should have reported undesired differences between GMOs and conventional crops even if no such differences exist in reality.

and

Yang, Y.T.; Chen, B. (2016). "Governing GMOs in the USA: science, law and public health". Journal of the Science of Food and Agriculture. 96 (6): 185155. doi:10.1002/jsfa.7523. PMID26536836. It is therefore not surprising that efforts to require labeling and to ban GMOs have been a growing political issue in the USA (citing Domingo and Bordonaba, 2011).

Overall, a broad scientific consensus holds that currently marketed GM food poses no greater risk than conventional food... Major national and international science and medical associations have stated that no adverse human health effects related to GMO food have been reported or substantiated in peer-reviewed literature to date.

Despite various concerns, today, the American Association for the Advancement of Science, the World Health Organization, and many independent international science organizations agree that GMOs are just as safe as other foods. Compared with conventional breeding techniques, genetic engineering is far more precise and, in most cases, less likely to create an unexpected outcome.

Pinholster, Ginger (October 25, 2012). "AAAS Board of Directors: Legally Mandating GM Food Labels Could "Mislead and Falsely Alarm Consumers"". American Association for the Advancement of Science. Retrieved February 8, 2016.

"REPORT 2 OF THE COUNCIL ON SCIENCE AND PUBLIC HEALTH (A-12): Labeling of Bioengineered Foods" (PDF). American Medical Association. 2012. Archived from the original (PDF) on 7 September 2012. Retrieved March 21, 2017. Bioengineered foods have been consumed for close to 20 years, and during that time, no overt consequences on human health have been reported and/or substantiated in the peer-reviewed literature.

GM foods currently available on the international market have passed safety assessments and are not likely to present risks for human health. In addition, no effects on human health have been shown as a result of the consumption of such foods by the general population in the countries where they have been approved. Continuous application of safety assessments based on the Codex Alimentarius principles and, where appropriate, adequate post market monitoring, should form the basis for ensuring the safety of GM foods.

"Genetically modified foods and health: a second interim statement" (PDF). British Medical Association. March 2004. Retrieved March 21, 2016. In our view, the potential for GM foods to cause harmful health effects is very small and many of the concerns expressed apply with equal vigour to conventionally derived foods. However, safety concerns cannot, as yet, be dismissed completely on the basis of information currently available.

When seeking to optimise the balance between benefits and risks, it is prudent to err on the side of caution and, above all, learn from accumulating knowledge and experience. Any new technology such as genetic modification must be examined for possible benefits and risks to human health and the environment. As with all novel foods, safety assessments in relation to GM foods must be made on a case-by-case basis.

Members of the GM jury project were briefed on various aspects of genetic modification by a diverse group of acknowledged experts in the relevant subjects. The GM jury reached the conclusion that the sale of GM foods currently available should be halted and the moratorium on commercial growth of GM crops should be continued. These conclusions were based on the precautionary principle and lack of evidence of any benefit. The Jury expressed concern over the impact of GM crops on farming, the environment, food safety and other potential health effects.

The Royal Society review (2002) concluded that the risks to human health associated with the use of specific viral DNA sequences in GM plants are negligible, and while calling for caution in the introduction of potential allergens into food crops, stressed the absence of evidence that commercially available GM foods cause clinical allergic manifestations. The BMA shares the view that that there is no robust evidence to prove that GM foods are unsafe but we endorse the call for further research and surveillance to provide convincing evidence of safety and benefit.

Originally posted here:
Regulation of genetic engineering - Wikipedia

Read More...

Genetic Engineering | Talking Glossary of Genetic Terms …

Saturday, September 14th, 2019

Genetic engineering is a term that was first introduced into our language in the 1970s to describe the emerging field of recombinant DNA technology and some of the things that were going on. As most people who read textbooks and things know, recombinant DNA technology started with pretty simple things--cloning very small pieces of DNA and growing them in bacteria--and has evolved to an enormous field where whole genomes can be cloned and moved from cell to cell, to cell using variations of techniques that all would come under genetic engineering as a very broad definition. To me, genetic engineering, broadly defined, means that you are taking pieces of DNA and combining them with other pieces of DNA. [This] doesn't really happen in nature, but is something that you engineer in your own laboratory and test tubes. And then taking what you have engineered and propagating that in any number of different organisms that range from bacterial cells to yeast cells, to plants and animals. So while there isn't a precise definition of genetic engineering, I think it more defines an entire field of recombinant DNA technology, genomics, and genetics in the 2000s.

Link:
Genetic Engineering | Talking Glossary of Genetic Terms ...

Read More...

Page 27«..1020..26272829..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick