header logo image


Page 21«..10..20212223..30..»

Archive for the ‘Genetic Engineering’ Category

Beyond Meat rolls out frozen breakfast sausage patties, addresses pricing in plant-based meat sector – FoodNavigator-USA.com

Wednesday, March 11th, 2020

While Beyond Meat debuted in the frozen aisle with beef crumbles and chicken strips (the latter have been dropped), the brand took off after launching refrigerated burgers and sausages designed to sit in the [animal] meat case, with sales in its fresh platform growing 275% in 2019 vs 11.8% growth in frozen.

If the refrigerated plant-based meat category is growing significantly faster, however, the frozen aisle is still the largest section in grocery for plant-based meat and still represents a sizeable opportunity, chief growth officer Chuck Muth told FoodNavigator-USA. Plus, our breakfast sausage patty cooks better from frozen.

The patties (MSRP $4.99 for six) contain 11g protein per serving, with 50% less total fat, 35% less saturated fat and sodium, 33% fewer calories, and 35% less sodium than the leading brand of pork sausage patties, with a base of pea protein and brown rice protein.

Asked about pricing in the plant-based meat segment following rival Impossible Foods move to cut prices to foodservice distributors by 15%, Muth said:

Impossible is quite a bit smaller than us; they are just starting to scale and as they are scaling, they are finding efficiencies and, I assume, bringing their price down accordingly. However their frontline pricing is still significantly higher than ours, so they still have a bit to go, and our pricing is more attractive.

He added:One of our goals is to reduce our pricing, so as we are able to develop more production efficiencies and [increase] capacity, and as we engineer products, we are very much focused on bringing our prices down.

Weve made it our stated goal that at least one of our items will be as cheap or cheaper than animal meat within the next four years or so, and thats the long term goal, to be priced competitively, not just with other plant based meats but with animal meats as well.

So is Beyond Meat sustaining or growing sales velocities in high-profile restaurant chains after the initial excitement or marketing budget wears off?

I think the encouraging thing for us is seeing product expansions in existing chains where we have partnerships, because theyre seeing good results coming in, said Muth, citing the example of Carls Jr and Hardees now offering Beyond Sausage breakfast burritos and egg and cheese biscuits as well as burgers.

He also noted that Dunkin which is rolling out Beyond Sausage sandwiches nationwide after a successful trial had attracted new guests and increased check sizes in part because plant-based products are premium items, but also because customers have proved more likely to pair them with higher-priced beverages such as lattes and cold brew. Its bringing in bigger register rings.

While some big names in QSR have not yet introduced plant-based entrees or breakfast options, they are all monitoring the space closely, he said.

Its more a timing issue than anything, plus they also want something thats unique to them since they are not going to be first to market, so they are thinking about what will differentiate them from the competition. But long term if they see their competitors being successful in this space they are going to have to take a very serious look.

Asked if Beyond Meat were in a position to be able to say yes to every account thats interested, or whether supply constraints were holding the company back, Muth said the firm was expanding in-house extrusion capabilities in the near future and adding more co-packers to its network in the US, Canada, Europe and Asia for downstream patty/sausage formation and packaging.

His comments came as CEO Ethan Brown told analysts last month that Beyond Meat began the year with around $700m in gross revenue capacity, with plans to scale to over a billion by the end of the year.

On the ingredient sourcing front, while Beyond Meat has recently expanded its pea protein sourcing capabilities,it is also exploring multiple other plant-based protein sources for sensory reasons (adding new flavors), nutritional reasons (to balance out amino acid profiles), and supply chain reasons (to diversify), said Muth, who noted that the Beyond Sausage uses a small amount of faba bean protein, while Beyond Beef and Beyond Burgers utilize mung bean and rice protein as well as peas.

As for the innovation pipeline, right now, Beyond Meat is focused on beef, poultry, and pork alternatives including plant-based bacon, said Muth. But down the road wed potentially look at other things.

Quizzed about the brands decision to go on the offensivethis year to tackle the narrative that plant-based meats are highly processed and unhealthy, he said:

We believe in the category and the space and were very positive, you wont hear us bad mouth other plant-based products or brands, but there are a lot of false narratives out there about whats in our products, so we think we have an obligation to talk about whats in our foods, so to understand that things like methyl cellulose [which isused in most plant-based meat products] are in many foods, things like ice cream and baked goods.

We want to make sure that consumers are well informed and to remind people that most foods we eat are processed.

Asked whether it was disingenuous to make a virtue of Beyond Meats all-natural non-GMO credentials [which distinguish it from rival Impossible Foods] given its commitment to science-based messaging and consumer education, he said:

Its not about what we believe, its what our consumers, our shoppers, believe, so were not saying theres anything bad about it [genetic engineering in food production].

Read more:
Beyond Meat rolls out frozen breakfast sausage patties, addresses pricing in plant-based meat sector - FoodNavigator-USA.com

Read More...

UNL team links wild wheat gene to drought tolerance in cultivated wheat – Grand Island Independent

Wednesday, March 11th, 2020

New research from the University of NebraskaLincoln has led to the discovery of a novel gene that improves drought adaptation in wheat a breakthrough that could contribute to increased world food security.

In new research published in Plant Biotechnology Journal, Harkamal Walia, associate professor and Heuermann Chair of Agronomy and Horticulture at Nebraska, and colleagues describe a novel form of a gene obtained from wild wheat that has the potential to improve drought tolerance in cultivated wheat. Introducing this gene into cultivated wheat improved the plant root structure so that it continued to grow in search of water under dry soil conditions.

Wheat is the most widely grown crop in the world and, together with rice, provides more than 50% of the caloric intake of humans globally. Like other crops, wheat is exposed to a wide range of environmental limitations, such as high temperature, disease pressure and drought.

The scavenging nature of wheat root systems during times of drought may have been lost when wild wheats were adopted for agriculture by early humans or as cultivated wheat was bred for improved responsiveness to irrigation and fertilizers during the mid-1900s. This improved responsiveness was key to feeding a booming world population during the 1960s.

As todays producers strive for more crop per drop to feed a world population that is again in the midst of a boom and is expected to grow from about 7.5 billion today to more than 9.6 billion by 2050, it is evident that future crops will need greater drought resilience. The discovery by Walia and his colleagues could represent an important new genetic resource, enabling breeders to recapture this natural survival trait in cultivated wheat. UNL has secured a patent on the discovery via NUtech Ventures, enabling future commercialization of this technology.

The potential impact of the discovery grew substantially when the team found that adding the wild root gene also resulted in plants with larger grains in the absence of drought. Walia and his team were not expecting this, as introducing tolerance to a stress can sometimes result in lost productivity when the stress is absent.

This particular trait may have the opposite effect, which is a benefit in both conditions, Walia said. We are now working to understand the reason behind this surprising finding.

The genetic engineering of wheat plants was performed at Nebraskas Center for Biotechnology.

Walia is one of many researchers worldwide helping to develop a catalog of genes that will contribute to creating more robust plants for the future. Drought response is a complicated trait, Walia said, which involves many genes contributing to survival and productivity when water is limited. He hopes that research in this area will continue to discover new genetic resources that plant breeders and geneticists can use to develop more drought-tolerant crops.

From a genetic improvement perspective, it takes a community to make a crop more adaptive, Walia said. This finding is one piece of a very large puzzle.

The research was spearheaded by doctoral students Dante Placido and Jaspreet Sandhu in the Department of Agronomy and Horticulture. The work was supported by the Institute of Agriculture and Natural Resources and the Robert B. Daugherty Water for Food Global Institute.

Continue reading here:
UNL team links wild wheat gene to drought tolerance in cultivated wheat - Grand Island Independent

Read More...

Cell Therapy Insights Report, 2018-2028: Markets, Technologies, Ethics, Regulations, Companies & Academic Institutions – Benzinga

Wednesday, March 11th, 2020

Dublin, March 10, 2020 (GLOBE NEWSWIRE) -- The "Cell Therapy - Technologies, Markets and Companies" report from Jain PharmaBiotech has been added to ResearchAndMarkets.com's offering.

The cell-based markets was analyzed for 2018, and projected to 2028. The markets are analyzed according to therapeutic categories, technologies and geographical areas. The largest expansion will be in diseases of the central nervous system, cancer and cardiovascular disorders. Skin and soft tissue repair as well as diabetes mellitus will be other major markets.

The number of companies involved in cell therapy has increased remarkably during the past few years. More than 500 companies have been identified to be involved in cell therapy and 309 of these are profiled in part II of the report along with tabulation of 302 alliances. Of these companies, 170 are involved in stem cells.

Profiles of 72 academic institutions in the US involved in cell therapy are also included in part II along with their commercial collaborations. The text is supplemented with 67 Tables and 25 Figures. The bibliography contains 1,200 selected references, which are cited in the text.

This report contains information on the following:

The report describes and evaluates cell therapy technologies and methods, which have already started to play an important role in the practice of medicine. Hematopoietic stem cell transplantation is replacing the old fashioned bone marrow transplants. Role of cells in drug discovery is also described. Cell therapy is bound to become a part of medical practice.

Stem cells are discussed in detail in one chapter. Some light is thrown on the current controversy of embryonic sources of stem cells and comparison with adult sources. Other sources of stem cells such as the placenta, cord blood and fat removed by liposuction are also discussed. Stem cells can also be genetically modified prior to transplantation.

Cell therapy technologies overlap with those of gene therapy, cancer vaccines, drug delivery, tissue engineering and regenerative medicine. Pharmaceutical applications of stem cells including those in drug discovery are also described. Various types of cells used, methods of preparation and culture, encapsulation and genetic engineering of cells are discussed. Sources of cells, both human and animal (xenotransplantation) are discussed. Methods of delivery of cell therapy range from injections to surgical implantation using special devices.

Cell therapy has applications in a large number of disorders. The most important are diseases of the nervous system and cancer which are the topics for separate chapters. Other applications include cardiac disorders (myocardial infarction and heart failure), diabetes mellitus, diseases of bones and joints, genetic disorders, and wounds of the skin and soft tissues.

Regulatory and ethical issues involving cell therapy are important and are discussed. Current political debate on the use of stem cells from embryonic sources (hESCs) is also presented. Safety is an essential consideration of any new therapy and regulations for cell therapy are those for biological preparations.

Key Topics Covered

Part I: Technologies, Ethics & RegulationsExecutive Summary 1. Introduction to Cell Therapy2. Cell Therapy Technologies3. Stem Cells4. Clinical Applications of Cell Therapy5. Cell Therapy for Cardiovascular Disorders6. Cell Therapy for Cancer7. Cell Therapy for Neurological Disorders8. Ethical, Legal and Political Aspects of Cell therapy9. Safety and Regulatory Aspects of Cell Therapy

Part II: Markets, Companies & Academic Institutions10. Markets and Future Prospects for Cell Therapy11. Companies Involved in Cell Therapy12. Academic Institutions13. References

For more information about this report visit https://www.researchandmarkets.com/r/bzimne

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

See the rest here:
Cell Therapy Insights Report, 2018-2028: Markets, Technologies, Ethics, Regulations, Companies & Academic Institutions - Benzinga

Read More...

Team Creates Shape-Changing Material That Pushes Biological Boundaries – University of Texas at Dallas

Wednesday, March 11th, 2020

Study lead author Laura Rivera Tarazona, a biomedical engineering doctoral student, worked with Dr. Taylor Ware (left) and Dr. Zachary Campbell on her research that incorporated plant DNA into yeast to give it light-responsive traits.

Combining the powers of the living and the inanimate, an interdisciplinary team from The University of Texas at Dallas has embedded genetically modified yeast into a synthetic gel to create a novel, shape-changing material designed to grow under specific biochemical or physical conditions.

This is definitely a case where the product is more than the sum of its parts, said Dr. Taylor Ware, assistant professor of bioengineering in the Erik Jonsson School of Engineering and Computer Science and corresponding author of a paper published in January in Science Advances, the American Association for the Advancement of Sciences open-access journal.

The idea to use the reproductive growth of cells to drive shape change within an inanimate container began with an old, reliable standby: bakers yeast, or Saccharomyces cerevisiae.

Yeast was the first eukaryotic organism to have its genome totally sequenced, Ware said. Wonderful tools exist already to modify it genetically. The cells have stiff cell walls, unlike mammalian cells, which make them better for pushing outward on the gel to change its shape.

By genetically modifying the yeast in different ways, the research team created composites that responded to various stimuli.

In proof-of-concept experiments, biomedical engineering doctoral student Laura Rivera Tarazona, lead author of the paper, incorporated plant DNA into yeast to give it light-responsive traits. When the resulting yeast-hydrogel composite was exposed to light, the entire object changed shape as the growing yeast pushed outward on the boundaries of the gel.

The research team also modified the yeast to respond to biochemical stimuli, including amino acids, which are building blocks of proteins.

This combination of animate with inanimate lends itself to interacting with the body in a particularly useful way using cellular mechanisms to drive shape change, Ware said. Given the flexibility of yeast, this composite could be designed to respond to any of countless conditions.

Dr. Zachary Campbell, assistant professor of biological sciences in the School of Natural Sciences and Mathematics and a co-author of the study, said the awesome power of yeast genetics made the project possible.

Weve had the ability to make yeast do amazing biological things for a long time, but its only in the past few years that we have had the ability to create strains where gene activity is precisely controlled by light, Campbell said.

Theres a beauty to taking something thats ordinarily so static and endowing it with this capability to transform into other things.

Dr. Zachary Campbell, assistant professor of biological sciences in the School of Natural Sciences and Mathematics

The researchers believe the shape-changing response has potential applications as a type of reporter both inside and outside the body.

Where I think this research eventually goes is indicating disease states via detection of proteins and other biomolecules, Ware said.

Ware said shape change could also be used to perform mechanical work to open a container or uncover an adhesive, for example.

Our results are in the very early stage, but the fact that were taking a series of molecular events and transducing them into something mechanical is already exciting in itself, Ware said.

Rivera Tarazona uses a microscope as one of the successful projects is displayed on the monitor in the background.

Campbell added that, although the physical transformations in the composite materials are very slow, capitalizing on genetic manipulations to drive minuscule devices could have additional applications, such as releasing drugs from a capsule in response to a precise biological trigger.

Theoretically, you could use these to detect anything you can detect in nature by combining an existing genetic circuit from another cell type with the yeast, he said. This allows access to a dazzling array of physiological cues.

Theres a beauty to taking something thats ordinarily so static and endowing it with this capability to transform into other things.

Other authors of the research included biomedical engineer Hyun Kim PhD19 and Vandita Bhat, a molecular biology doctoral student graduating this spring.

The work was supported by a grant (R01NS100788) from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, and is partially based on work supported by the National Science Foundation.

More:
Team Creates Shape-Changing Material That Pushes Biological Boundaries - University of Texas at Dallas

Read More...

Isaac Asimov, the candy store kid who dreamed up robots – Salon

Wednesday, March 11th, 2020

The year 2020 marks a milestone in the march of robots into popular culture: the 100th anniversary of the birth of science fiction writer Isaac Asimov. Asimov coined the word 'robotics', invented the much-quoted Three Laws governing robot behavior, and passed on many myths and misconceptions that affect the way we feel about robots today.

A compulsive writer and homebodypossibly, an agoraphobicAsimov hated to travel: ironically, for a writer who specialized in fantastic tales often set on distant worlds, he hadn't been in an airplane since being flown home from Hawaii by the US Army after being released from service just before a test blast of the atomic bomb on the Bikini Atoll. (Asimov once grimly observed that this stroke of luck probably saved his life by preventing him from getting leukemia, one of the side effects that afflicted many servicemen who were close to the blast.)

By 1956, Asimov had completed most of the stories that cemented his reputation as the grand master of science fiction, and set the ground rules for a new field of study called "robotics," a word he made up. Researchers like Marvin Minsky of MIT and William Shockley of Bell Labs had been doing pioneering work into Artificial Intelligence and Robotics since the early 1950s, but they were not well-known outside of the scientific and business communities. Asimov, on the other hand, was famous, his books so commercially successful that he quit his job as a tenured chemistry professor at Boston College to write full-time. Asimov's 1950 short story collection, I, Robot, put forward a vision of the robot as humanity's friend and protector, at a time when many humans were wondering if their own species could be trusted not to self-destruct.

Born in January 1920, or possibly October 1919the exact date was uncertain because birth records weren't kept in the little Russian village where he came fromAsimov emigrated to Brooklyn in 1922 with his parents. Making a go of life in America turned out to be tougher than they expected, until his father scraped together enough money to buy a candy store. That decision would have a seismic impact on Isaac's future, and on robotics research and the narratives we tell ourselves about human-robot relationships to this day.

As a kid, Isaac worked long hours in the store where he became interested in two attractions that pulled in customers: a slot machine that frequently needed to be dismantled for repairs; and pulp fiction magazines featuring death rays and alien worlds. Soon after the first rocket launches in the mid-1920s, scientists announced that space travel was feasible, opening the door to exciting tales of adventure in outer space. Atomic energythe source of the death rayswas also coming into public consciousness as a potential "super weapon." But both atomic bombs and space travel were still very much in the realm of fiction; few people actually believed they'd see either breakthrough within their lifetimes.

Advertisement:

The genre of the stories in the pulps wasn't new. Fantastical tales inspired by science and technology went back to the publication of Mary Shelley's Frankenstein in 1818, which speculated about the use of a revolutionary new energy source, electricity, to reanimate life. Jules Verne, H. P. Lovecraft, H. G. Welles, and Edgar Rice Burroughs all wrote novels touching on everything from time travel, to atomic-powered vehicles, to what we now call genetic engineering. But the actual term, "science fiction," wasn't coined by any of them: that distinction goes to Hugo Gernsbeck, editor of the technical journal, Modern Electrics, whose name would eventually be given to the HUGO, the annual award for the best science fiction writing.13

Gernsbeck's interest in the genre started with a field that was still fairly new in his time: electrical engineering. Even in 1911, the nature of electricity was not fully understood, and random electrocutions were not uncommon; electricians weren't just tradesmen, but daredevils, taking their lives in their hands every time they wired a house or lit up a city street.14 Gernsbeck, perhaps gripped by the same restless derring-do as his readers, wasn't satisfied with writing articles about induction coils. In 1911, he penned a short story set in the twenty-third century and serialized it over several issues of Modern Electrics, a decision that must have baffled some of the electricians who made up his subscribers. At first, Gernsbeck called his mash-up of science and fiction "scientifiction," mercifully changing that mouthful to "science fiction." He went on to publish a string of popular magazines, including Science Wonder Stories, Wonder Stories, Science, and Astounding. (Gernsbeck's rich imagination didn't stretch far enough to come up with more original titles.)

Asimov's father stocked Gernsbeck's magazines in the candy store because they sold like hotcakes, but he considered them out-and-out junk. Young Isaac was forbidden to waste time reading about things that didn't exist and never would, like space travel and atomic weapons.

Despite (or possibly because of) his father's objections, Isaac began secretly reading every pulp science fiction magazine that appeared in the store, handling each one so carefully that Asimov Senior never knew they had been opened. Isaac finally managed to convince his father that one of Gernsbeck's magazines, Science Wonder Stories, had educational valueafter all, the word "science" was in the title, wasn't it?15

Isaac sold his first short story when he was still an eighteen-year-old high school student, naively showing up at the offices of Amazing Stories to personally deliver it to the editor, John W. Campbell. Campbell rejected the story (eventually published by a rival Gernsbeck publication, Astounding) but encouraged Isaac to send him more. Over time, Campbell published a slew of stories that established Isaac, while still a university student, as a handsomely paid writer of science fiction.

When you read those early stories today, Asimov's weaknesses as a writer are painfully glaring. With almost no experience of the world outside of his school, the candy store, and his Brooklyn neighborhood and no exposure to contemporary writers of his time like Hemingway or FitzgeraldIsaac fell back on the flat, stereotypical characters and clichd plots of pulp fiction. Isaac did have one big thing going for him, though: a science education.

By the early 1940s, Asimov was a graduate student in chemistry at Columbia University, as well as a member of the many science fiction fan clubs springing up all over Brooklyn whose members' obsession with the minutiae of fantastical worlds would be familiar to any ComicCon fan in a Klingon costume today. Asimov wrote stories that appealed to this newly emerging geeky readership, staying close enough to the boundaries of science to be plausible, while still instinctively understanding how to create wondrous fictional worlds.

The working relationship between Asimov and his editor, Campbell, turned into a highly profitable one for both publisher and author. But as Asimov improved his writing and tackled more complex themes, he ran into a roadblock: Campbell insisted that he would only publish human- centered stories. Aliens could appear as stock villains but humans always had to come out on top. Campbell didn't just believe that people were superior to aliens, but that some peoplewhite Anglo-Saxons were superior to everyone else. Still a relatively young writer and unwilling to walk away from his lucrative gig with Campbell, Asimov looked for ways to work around his editor's prejudices. The answer: write about robots. Asimov's mechanical beings were created by humans, in their own image; as sidekicks, helpers, proxies, and, eventually, replacements. Endowed with what Asimov dubbed "positronic brains," his imaginary robots were even more cleverly constructed than the slot machine in the candy store.

Never a hands-on guy himself, Asimov was nonetheless interested in how mechanisms worked. Whenever the store's one-armed bandit had to be serviced, Isaac would watch the repairman open the machine and expose its secrets. The slot machine helped him imagine the mechanical beings in his stories.

Although Asimov can be credited with kick-starting a generation's love affair with robots, he was far from their inventor. (Even I, Robot borrowed its title from a 1939 comic book of the same name written by a pair of brothers who called themselves Eando Binder, the name eventually bestowed on the beer-swilling, cigar-smoking robot star of the TV show, Futurama.) But in writing his very first robot story, Asimov was both jumping on a new obsession of the 1920s, and mining old, deep myths going back to ancient Jewish tales of the golem, which was a man made of mud and magically brought to life, as well as stories as diverse as Pygmalion, Pinocchio, and engineering wonders like the eighteenth century, chess-playing Mechanical Turk, and other automatons.

Robots have an ancient history and a surprisingly whimsical one. Automatons have been frog marching, spinet playing, and minuet dancing their way out of the human imagination for hundreds, if not thousands, of years, but it wasn't until the machine age of the early twentieth century that robots appeared as thinking, reasoning substitute humans. The word robotCzech for "mechanical worker"wasn't coined in a patent office or on a technical blueprint, but as the title of a fantastical play by Karel Capek, Rossum's Universal Robots, which was first performed in 1920, the reputed year of Isaac Asimov's birth. In adopting robots as his main characters, and the challenges and ethics of human life in a robotic world as one of his central themes, Asimov found his voice as a writer. His robots are more sympathetic and three-dimensional than his human characters. In exploring the dynamics of human-robot partnershipsas Asimov would do particularly well in detective/robot "buddy" stories, such as his 1954 novel Caves of Steel he invented a subgenre within the broader world of science fiction.

Asimov's humanoid robots were governed by the Three Laws of Robotics. More whimsical than scientific, they established ground rules for an imaginary world where humans and mechanical beings coexisted. Eventually, the Three Laws were quoted by researchers in two academic fields that were still unnamed in the 1940s: artificial intelligence and robotics.

First published by Astounding magazine in 1942 as part of Asimov's fourth robot story "Runaround", the Three Laws stated that:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.

A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.

A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

According to Asimov's biographer Michael Wilson in Isaac Asimov: A Life of the Grand Master of Science Fiction (New York, Carrol & Graff, 2005), "Asimov was flattered that he had established a set of pseudoscientific laws. Despite the fact that in the early 1940s the science of robotics was a purely fictional thing, he somehow knew that one day they would provide the foundation for a real set of laws."

The Three Laws would continue to appear not only in the world of robot-driven books and filmslike Aliens (1986), where the laws are synopsized by the synthetic human Bishop when trying to reassure the robot-phobic heroine Ellen Ripleybut by some real-world roboticists and AI researchers, who are now considering how to develop a moral code for machines that may one day have to make independent, life-or-death decisions.

Read more from the original source:
Isaac Asimov, the candy store kid who dreamed up robots - Salon

Read More...

Genetic engineering company says they have created a coronavirus vaccine – 9News.com KUSA

Tuesday, February 25th, 2020

HOUSTON A Houston-based genetic engineering company said it has a vaccine aimed at the deadly coronavirus outbreak, according to a report by the Houston Business Journal.

The genetic engineering firm, Greffex Inc. has one of its laboratories based in Aurora, Colorado.

RELATED: Coronavirus death toll hits 2,100 in mainland China

RELATED: Colorado man living in China posts brutally honest Instagram videos of coronavirus self-quarantine

John Price, president and CEO of Greffex Inc., told KHOU, our sister station in Houston, that Greffex's scientists completed the coronavirus vaccine this week.

The trick in making a vaccine is can you scale the vaccine that youve made to be able to make a certain number of doses, can you test the vaccine quickly and efficiently and then can you get it into patients and thats where we have an edge as well on the other companies that are out there," said Price. "And that has to do with speed and essential uniformity of how we make vaccines, so that drops the cost down.

Price said the vaccine will now move into a testing phase with the Food and Drug Administration.

The Houston Business Journal reported, in September 2019 Greffex received an $18.9 million contract from the National Institute of Health's National Institute for Allergy and Infectious Diseases to develop new treatments for infectious threats.

If the vaccine gets government approval, Price said his company plans to give it away for free to nations hit hard by the coronavirus outbreak.

SUGGESTED VIDEOS | Local stories from 9NEWS

More here:
Genetic engineering company says they have created a coronavirus vaccine - 9News.com KUSA

Read More...

Global Gene Therapy Market Projected to Grow with a CAGR of 34.8% During the Forecast Period, 2019-2026 – ResearchAndMarkets.com – Yahoo Finance

Tuesday, February 25th, 2020

The "Gene Therapy Market by Vector Type, Gene Type and Application: Global Opportunity Analysis and Industry Forecast, 2019-2026" report has been added to ResearchAndMarkets.com's offering.

The global gene therapy market was valued at $393.35 million in 2018, and is estimated to reach $6,205.85 million by 2026, registering a CAGR of 34.8% from 2019 to 2026.

Gene therapy is a technique that involves the delivery of nucleic acid polymers into a patient's cells as a drug to treat diseases. It fixes a genetic problem at its source. The process involves modifying the protein either to change the genetic expression or to correct a mutation. The emergence of this technology meets the rise in needs for better diagnostics and targeted therapy tools. For instance, genetic engineering can be used to modify physical appearance, metabolism, physical capabilities, and mental abilities such as memory and intelligence. In addition, it is also used for infertility treatment. Gene therapy offers a ray of hope for patients, who either have no treatment options or show no benefits with drugs currently available. The ongoing success has strongly supported upcoming researches and has carved ways for enhancement of gene therapy.

Recently, a new technique has been developed, where new genes are introduced into the body to help fight against cancer cells. Gene therapies are regarded as a potential revolution in the health sciences and pharmaceutical fields. The number of clinical trials investigating gene therapies is on an increase, despite the limited number of products that have successfully reached the market. In addition, benefits of gene therapy over conventional cancer therapies and increase in government support fuel the growth of the gene therapy market.

The gene therapy market is a widely expanding field in the pharmaceutical industry with new opportunities. This has piqued the interests of venture capitalists to explore this market and its commercial potential. Major factors that drive the growth of this market include high demands for DNA vaccines to treat genetic diseases, targeted drug delivery, and high incidence of genetic disorders. However, the stringent regulatory approval process for gene therapy and the high costs of gene therapy drugs are expected to hinder the growth of the market. On the contrary, increase in the pipeline developments for gene therapy market are expected to provide lucrative opportunity during the forecast period.

Key MARKET BENEFITS FOR STAKEHOLDERS

Key Findings of the Gene Therapy Market:

Key Topics Covered:

Chapter 1: Introduction

1.1. Report Description

1.2. Key Benefits

1.3. Key Market Segments

1.4. Research Methodology

Chapter 2: Executive Summary

2.1. CXO Perspective

Chapter 3: Market Overview

3.1. Market Definition And Scope

3.2. Key Findings

3.3. Top Player Positioning, 2018

3.4. Porter's Five Forces Analysis

3.5. Market Dynamics

Chapter 4: Gene Therapy Market, By Vector Type

4.1. Overview

4.2. Viral Vectors

4.3. Non-Viral Techniques

Chapter 5: Gene Therapy Market, By Gene Type

5.1. Overview

5.2. Antigen

5.3. Cytokine

5.4. Tumor Suppressor

5.5. Suicide Gene

5.6. Deficiency

5.7. Growth Factors

5.8. Receptors

5.9. Others

Chapter 6: Gene Therapy Market, By Application

6.1. Overview

6.2. Oncological Disorders

6.3. Rare Diseases

6.4. Cardiovascular Diseases

6.5. Neurological Disorders

6.6. Infectious Diseases

6.7. Other Diseases

Chapter 7: Gene Therapy Market, By Region

7.1. Overview

7.2. North America

7.3. Europe

7.4. Asia-Pacific

7.5. LAMEA

Chapter 8: Company Profile

8.1. Adaptimmune Therapeutics Plc.

8.2. Anchiano Therapeutics Ltd.

8.3. Achieve Life Sciences, Inc.

8.4. Adverum Biotechnologies, Inc.

8.5. Abeona Therapeutics Inc.

8.6. Applied Genetic Technologies Corporation

8.7. Arbutus Biopharma Corporation

8.8. Audentes Therapeutics Inc.

8.9. Avexis Inc.

8.10. Bluebird Bio, Inc.

8.11. Celgene Corporation

8.12. Crispr Therapeutics Ag

8.13. Editas Medicine, Inc.

8.14. Gilead Sciences, Inc.

8.15. Glaxosmithkline Plc

8.16. Intellia Therapeutics Inc.

8.17. Merck & Co., Inc.

8.18. Novartis Ag

8.19. Regenxbio, Inc.

8.20. Spark Therapeutics, Inc.

8.21. Sangamo Therapeutics, Inc.

8.22. Uniqure N. V.

8.23. Voyager Therapeutics, Inc.

For more information about this report visit https://www.researchandmarkets.com/r/yt2y68

View source version on businesswire.com: https://www.businesswire.com/news/home/20200225005742/en/

Contacts

ResearchAndMarkets.comLaura Wood, Senior Press Managerpress@researchandmarkets.com For E.S.T. Office Hours Call 1-917-300-0470For U.S./CAN Toll Free Call 1-800-526-8630For GMT Office Hours Call +353-1-416-8900

Read the original here:
Global Gene Therapy Market Projected to Grow with a CAGR of 34.8% During the Forecast Period, 2019-2026 - ResearchAndMarkets.com - Yahoo Finance

Read More...

Pet food makers look to tap the alternative meat market – Marketplace

Tuesday, February 25th, 2020

New pet food companies are springing up to meet what they say is growing demand for plant-based, sustainable alternatives to Fancy Feast and Kibbles N Bits.

By making products from fermented fungus and experimenting with lab-grown food from animal cells and microbes, alternative pet food makers are hoping to carve out a share of the $30 billion U.S. pet food market.

And multibillion-dollar pet food companies, like Mars Petcare and Nestl-owned Purina, are starting to take notice.

Our mission is almost the exact same as Impossible Foods, which is [to] reduce or eliminate factory farming, which has this giant environmental footprint, said Josh Errett, CFO of Because Animals, one of the companies developing new pet foods. I mean, calling it a footprint is too nice, its an environmental disaster.

The other mission is to make a profit. These companies are catering to pet owners who value their ecological footprint and have the income to pay for an alternative product that tends to be more expensive than a can of Pedigree.

Pulling away from factory farming

A UCLA study from 2017 by Professor Gregory Okin estimated that dog and cat food accounts for the release of millions of tons of the greenhouse gases methane and CO2 and constitutes about 25%30% of the environmental impacts from animal production in terms of the use of land, water, fossil fuel, phosphate and biocides.

Like plant-based market leaders Impossible Foods and Beyond Meat, alternative pet food companies say their product will reduce the amount of land and energy used for conventional meat production.

Industrial animal farming, or concentrated animal feed operations, produce large amounts of byproducts and off-cuts like organs and bone meal which are not usually used in human food, but are re-purposed for pet food production.

The goal is to cut factory farming out of the supply chain completely without a market for the unused parts, the meat industry would collapse due to lost revenue, Errett said.

But many large pet food companies defend their use of animal byproducts.

One might argue that this is actually a super sustainable source, because were using materials that most of us wouldnt consume and would be wasted, said Richard Butterwick, global nutrition advisor at the Waltham Petcare Science Institute, a research center for Mars Petcare.

Because Animals along with another company, Wild Earth are using cellular technology to culture real meat from animal cells biopsied from living creatures. The cells are encouraged to proliferate and reproduce in a bioreactor, creating muscle protein without the need to slaughter animals. This process is also being used by more than 30 companies worldwide to develop clean or lab-grown meat for human consumption.

Next year, both Because Animals and Wild Earth hope to release their first cell-grown cat foods, made of cultured mouse meat.

Were getting back to what the cats system was built to digest, Errett said. You dont have to add taurine or anything back, you can make an ancestral diet.

A cat owner himself, Errett wanted to address the ultra-processed nature of a lot of the conventional cat food, or as he calls it biological waste. Cats are obligate carnivores, meaning they need to eat meat to get the 11 essential amino acids they require or they could have serious health problems like blindness or even death.

By culturing animal meat in a lab, these companies can genetically control what nutrients present in the food. They can also eliminate potentially dangerous substances that have made their way into some conventional pet foods. Some popular pet foods companies have had to recall their products in recent years due to toxic levels of Vitamin D and even the euthanasia drug sodium pentobarbital.

Will pet owners buy lab-grown mouse meat for their cats?

Beyond Meat increased its revenues by 250% between 2018 and 2019; consumers are taking an interest in the health and environmental benefits promoted by plant-based foods. Pet owners are showing that they will pay more for luxury and premium pet foods.

Wild Earth is making dog food from cultured fungi proteins and, according to CEO Ryan Bethencourt, revenue is growing steadily even though production is still relatively small.

This plant-based type of cultured pet food, already on the market, is much more expensive than the conventional options. A 18-pound bag of Wild Earth dog food sells for $49 on its website; whereas the website Chewy sells a 18.5-pound bag of Purina Dog Chow for $11.99.

Bethencourt said the potential for cultured protein could be 10% of the total pet food market within the next 10 years. He is using the success of plant-based proteins for humans as evidence for the market potential of alternative pet foods.

Research backs his point; according to one study from 2019, it is clear that an association exists between the diet a pet owner has chosen to follow and the diet they choose to feed their pet.

Culturing microbes into pet food

Another alternative pet food company, Bond Pet Foods, is taking a slightly different approach to cultured pet food. Bond is experimenting with genetically engineering microbes, like yeast.

Theres a lot more that isnt known about growing mice cells to create meat. Theres just a lot more technical challenges that they have to figure out how to ramp up and replicate that kind of meat production, said Rich Kelleman, CEO of Bond Pet Foods.

Bond is using the same approach to genetic engineering used to synthetically produce rennet for cheese production or insulin for diabetics.

What were doing is isolating a skeletal muscle protein so the building blocks of meat and inserting the DNA from that into a microbe, and then using the machinery of the microbe to produce identical animal proteins that you get on a farm and field, drying it down and then using that in a broader recipe to provide high quality nutrition, Kelleman said.

The major pet food companies are also looking for environmentally friendly, alternative proteins that could be inexpensive to scale up as a replacement for conventionally raised meat.

One area were currently exploring is looking at insects as a potential protein source, said Richard Butterwick at the Waltham Institute. They are potentially much more sustainable than traditional mammalian sources of protein and potentially very nutritious, as well.

Venture capital funds are eyeing the potential of cultured alternatives

Last year, Bond completed a $1.2 million seed round of funding and won a $10,000 innovation award from Purina.

Because Animals won this years innovation award and Wild Earth received a $200,000 investment from Mars Petcare during its 2018 investment round. So far, Wild Earth has raised over $16 million from various venture capital funds to pay for its continued growth.

These are relatively small amounts on the scale of the industry, but there is a sense of momentum.

All the big pet food manufacturers are looking at their supply chain and they see challenges with the growth of the pet food market and the population overall, more people means more pets, Kelleman said. Theyre looking for ways that they could mitigate the risk.

Richard Butterwick said that the main concern is that a pets nutritional needs are understood by their owners. He said consumer trends and the humanization of pets should not compromise pet needs, just because there is a trend towards more sustainable eating for humans.

A 2015 study in the Journal of Animal Science looked at the changing attitudes of pet owners choice in food for their companions. The study said it was paramount that sustainability be weighed against animals nutritional demands.

That means conscientious pet owners need to be wary of compromising a pets health just because eating kogi fungus, cricket treats, or lab-grown meats is trending for humans.

Related Stories

If youre a member of your local public radio station, we thank you because your support helps those stations keep programs like Marketplace on the air. But for Marketplace to continue to grow, we need additional investment from those who care most about what we do: superfans like you.

Your donation as little as $5 helps us create more content that matters to you and your community, and to reach more people where they are whether thats radio, podcasts or online.

When you contribute directly to Marketplace, you become a partner in that mission: someone who understands that when we all get smarter, everybody wins.

View original post here:
Pet food makers look to tap the alternative meat market - Marketplace

Read More...

University of Birmingham signs up for strategic research vision in India – University of Birmingham

Tuesday, February 25th, 2020

University of Birmingham Vice-Chancellor Professor Sir David Eastwood with representatives of partner organisations at the signing ceremony in Delhi.

Experts at the University of Birmingham will work with partners in India across education, healthcare, genetic engineering and sports science.

Vice-Chancellor Professor Sir David Eastwood signed a range of Memoranda of Understanding (MoU) with the Universitys partners at a special signing ceremony in Delhi.

The agreements form a key part of the Universitys strategic vision to continue building meaningful education and research partnerships in India.

Professor Sir David Eastwood signed MoUs with:

The University of Birminghams collaborative research output with India partners has almost doubled over the last five years. We currently have over 40 joint research projects of outstanding quality, commented Professor Sir David Eastwood.

We are a global university with a civic heart and a long, illustrious relationship with India. Signing these exciting new agreements with partners in areas such as health, transport and environment gives us a great opportunity to further contribute to Indian society as we continue to forge meaningful research and education partnerships in India.

The University and ICGEB plan to work together on multidisciplinary research including immunity and infection, as well as projects tackling human diseases, compound screening for identifying autophagy modulators, and exchanges of students and staffs across relevant projects.

Working in partnership with CIPLA, University experts will develop healthcare Continuous Professional Development (CPD) programmes.

Researchers at PDPU and Birmingham will continue working on the joint India-H2O project, which is developing, designing and demonstrating high-recovery, low-cost water treatment systems for saline groundwater, as well as domestic and industrial wastewaters. The partners will also identify new research opportunities.

The agreement with Technofin will see the partners working together on a bid to provide rail research and consultancy to the Dedicated Freight Corridor Corporation of India Ltd., to support the establishment of a Heavy Haul Research Institute. They will also develop other infrastructure-related research.

Manipal engineering students will be able to join Birmingham courses in Civil Engineering, Computer Science and Engineering, Electrical and Electronics Engineering, Mechanical Engineering and Mechatronics Engineering - after completing two years of study in India, graduating with degrees from both universities.

University experts will work with Inspire Institute of Sport to develop bespoke distance-learning and blended CPD programmes for the development of the Institutes staff, as well as developing scholarships for postgraduate study in sports science. The MoU is an outcome of the India-UK Sports Alliance set up by the UK Governments Department for International Trade to drive collaboration in sports between the two countries.

Crispin Simon, Her Majestys Trade Commissioner for South Asia, UKs Department of International Trade and British Deputy High Commissioner, Mumbai and West of India, said: I am delighted that the University of Birmingham is strengthening its presence in India across education, healthcare, genetic engineering and sports science. The UK government has played an instrumental role in establishing their partnership with Inspire Institute of Sport, and we will continue to support their work in India.

I am also glad that Professor Tim Cable from the University of Birmingham has made significant contributions to the Indian-UK Sports Alliance organised by the UK government, to bring together influential individuals in both countries to help drive collaboration. I look forward to his continued participation.

See the article here:
University of Birmingham signs up for strategic research vision in India - University of Birmingham

Read More...

Viewpoint: We can sustainably feed 10 billion people. Here’s how CRISPR and GMO crops can help – Genetic Literacy Project

Tuesday, February 25th, 2020

Agriculture is responsible for the production of a quarter of the total human-generated greenhouse gases. Growing food also uses about 70 percent of the water available to us. Moreover, agriculture (especially meat production) is the single most significant driver of deforestation and biodiversity loss. Food production is detrimental to the health of the planetbut it doesnt end there. Once the food reaches plates, poor-quality diets cause malnutrition, claiming more lives than tobacco, drug and alcohol combined.

Search for malnutrition online and you will see pictures of frail and sick children. But along with stunting, wasting, vitamin and mineral deficiency, malnutrition also includes overweight, obesity and other diet-related illnesses. Yes, 1 in 9 people around the world go to sleep hungry, but nearly 2 billion adults are also overweight or obese. As such, more than one-third of the world population suffers from at least one form of malnutrition.

With the climate and biodiversity crises, and the global public-health crisis in the form of malnutrition, we must find a healthy and environmentally sustainable diet to feed the growing population. In 2019, the EAT-Lancet Commission brought together leading experts in nutrition, health, sustainability and policy to recommend ways to transform the global food system to achieve a healthy and sustainable diet.

The EAT-Lancet report recommends that planetary health diets to feed 10 billion people by 2050 requires cutting down meat consumption by half and eating twice as much as fruits, vegetables, beans and nuts. Despite recognizing the need to make healthy food affordable for the poor, the EAT-Lancet Commission didnt review the cost and affordability of the ideal diet. Therefore, in a recent global study, scientists reviewed prices for nearly 750 food items to calculate the value of healthy and sustainable diets in 159 countries.

The research, published in Lancet Global Health, shows that many people in low and lower-middle-income countries are too poor to afford EAT-Lancets ideal diet. EAT-Lancet says that we would need to eat twice as much as many fruits and vegetables, and get more protein and fats from plant-source foods. However, the new study found that fruits, vegetables, beans and nuts are the most expensive items of the ideal diet accounting for half of its total price.

Shifting foodsystems

A key challenge of the 21st-century is to change our food system to produce a healthy diet that is both economically and environmentally sustainable. As EAT-Lancets ideal diet isnt affordable for much of the worlds low-income population, authorities must make several parallel interventions to tackle global food inequality.

Lower food prices and higher earnings would give poor people more purchasing power. We must also find cheaper, nutritious food alternatives that are affordable and accessible to people living in low-income areas. I believe that biotechnology has the power to lower the cost of locally and globally grown food, making the ideal diet economically viable to those that need it the most.

One problem is the lack of available, affordable options, which partly stems from decreasing agrobiodiversity. Just three crops (rice, wheat and corn) provide over half of the plant-derived calories worldwide. Shifting calories away from the starchy staple foods towards more nutritious fruits, vegetables and other protein-sourced food remains a significant challenge in meeting EAT-Lancet targets. Grand challenges require great technological solutions, and genetic engineering technology is among the most powerful tools at our disposal.

Power of biotechnology

Biotechnology can improve agrobiodiversity and provide more locally-grown food options for people in low-income areas. One way to do this would be to make inedible plants into a good source of nutrition and calories. Take cottonseed, for example, which has the potential to be a cheaper alternative to nuts. Cottonseeds are highly nutritious, containing oils and proteins in abundance, but many low-income cotton farmers cant eat cottonseeds because they produce toxins called gossypol.

Now, scientists have engineered cotton plants to remove the toxin, making cottonseeds safe for us to eat. And recently, the U.S. Food and Drug Administration approved genetically modified (GM) cottonseed for human consumption. Biotech cottonseed can act as an excellent alternative dietary source in low-income regions, where people struggle to meet the costs of the ideal diet recommended by EAT-Lancet.

Genetic engineering can also enable widespread cultivation of local plants. The groundcherry plant in its native form has a wild, sprawling growth habit which causes its fruits to drop to the ground while still small. Difficulties in cultivating the wildcherry mean its an orphan plant. However, scientists used genetic engineering to improve wildcherrys undesirable traits, including the plants weedy shape, flower production and fruit size. Now there are hopes for large-scale cultivation of genetically engineered groundcherry, which is native to Central and South America.

Millions of children and adults around the world suffer from micronutrient deficiencies, and biotechnology can also help fortify current crops to improve their vitamin and micronutrient contents. For example, scientists have recently developed biofortified cassava, which has higher zinc and iron contents than regular cassava. The biofortified cassava may one day prevent illnesses related to iron and zinc deficiencies.

Golden Rice is perhaps the prime example of a biofortified cropconventional rice that is genetically engineered to produce the vitamin A precursor beta-carotene. Golden Rice, acting as a source of vitamin A, can address vitamin A deficiency that blinds and kills hundreds of thousands of children every year. After a rigorous biosafety assessment in the Philippines, the Department of Agriculture-Bureau of Plant Industry found Golden Rice to be safe as conventional rice. Golden Rice regulation application is under review in Bangladesh, as well. This biofortified crop can provide much-needed micronutrients, taking the everyday staple food further to meet peoples dietary requirements in the poorest regions of the world.

Economic benefits

Improved agrobiodiversity and availability of local food varieties, enabled by biotechnology, will bring down the cost of the ideal diet, reducing food inequality. But GM technology also has the power to lift people out of poverty and increase the spending power of the low-income communities in developing regions.

Higher farm productivity, especially in low-income areas, can lower food prices. A meta-analysis of studies published after 1995 found that adopting GM technology has widespread benefits, including economic gains for farmers that grow GM crops. The meta-analysis found that GM technology increases crop yields by 21 percent. Some GM crops are engineered to be more resistant to pest damage, which helps achieve higher yields, for example.

The meta-study also found that GM crops require 37 percent less pesticide, which reduces pesticide costs by 39 percent and helps spare the environment. Even though GM seeds are more expensive than non-GM seeds, savings in pest control and pesticide use mean that farmers adopting GM crops enjoy 68 percent more profit. Therefore, GM crops can increase farmers spending power, which is excellent news for the quarter of the worlds working population employed in agriculture . More importantly, the yield and profit from GM crops are higher in developing countries than in developed countries.

If adopted widely, genetic engineering technology will bring us closer to meeting the EAT-Lancet dietary targets, which will help us protect the environment, public health, and reduce inequality.

Rupesh Paudyal holds a PhD in plant science and covers agriculture and the environment as a freelance writer. Visit his website and follow him on Twitter @TalkPlant

See more here:
Viewpoint: We can sustainably feed 10 billion people. Here's how CRISPR and GMO crops can help - Genetic Literacy Project

Read More...

More Cell and Gene Therapy Facilities in the Hundreds are Needed – Genetic Engineering & Biotechnology News

Tuesday, February 25th, 2020

The bioindustry will require more cell and gene therapy plants, says an expert, who says the facilities of the future must be automated, scalable, and flexible.

The number of cell and gene therapies entering clinical development has increased significantly in recent years. According to the Alliance for Regenerative Medicines (ARM) there are 1,066 such therapies in trials at present1, which is a 32% increase on the number of studies in 2014. But the surge in clinical activity has not been matched by an increase in production capacity says Darren Dasburg, a cell and gene therapy-focused consultant.

Hundreds of facilities will be needed to manufacture the treatments that are in play now, he said, adding that if you factor in the plants needed to make viral vectors that could exceed a thousand facilities.

The good news, Dasburg says, is that these facilities are more like labs than traditional large biopharmaceutical plants.

Viral vector capacity is critical to the cell and gene therapy sector. Vectors are hollow viruses used to insert genetic material into cells, both cells used in protein expression and cells used therapeutically. Various organisations have voiced concerns about industry capacity to make vectors. In 2018, for example, the Alliance for Advanced Biomedical Engineering said the scarcity of viral vectors could hamper expansion2. Since then the situation has improved, but it has not been resolved3. While viral vector production capacity in the contract services sector has increased, the expansion is still falling short of demand.

Partly this is because of the complexity of making the vectors, according to Dasburg.

Most viral vectors are produced using adherent manufacturing technologies which are expensive to operate, he explains. A vial of just 20 million cells can cost $2030K because it is so challenging to make.

To bring down costs, vector capacity still needs to increase, continues Dasburg, who predicted that biopharma will continue to rely on CDMOs for the foreseeable future.

Cell and gene therapy manufacturing is still a young industry. Biopharma is still figuring out what the ideal production facility should look like.

Building for flexibility and multipurpose manufacturing is important, Dasburg says, noting that explaining CDMOs and IP holders need to understand they are attacking rare genetic diseases and ailments where the therapy might be a third-line treatment. The numbers are often quite lower, and the treatments can be one and done. All meaning the companies of the future will be attacking many more areas of need.

In terms of technology, all cell and gene therapy facilities should feature sufficient isolator capacity, Dasburg says. Isolators are probably the number one investment to make. Too many people are trying to work five people in full dress in a small room attempting to manufacture in a hands-on traditional way when isolation and automation could help immensely.

Dasburg pointed to benchtop platforms capable of processing a single CAR-T patients treatment as an example of an innovative approach being used. These can be arranged in an array within a single ballroom-like facility providing 100% containment going from leukapheresis bag to treatment bag without any human intervention.

References1. alliancerm.org/wp-content/uploads/2020/02/CBX-Meeting-7-Feb-2020-FINAL.pdf2. aabme.asme.org/posts/virus-shortage-for-cell-therapies-creates-engineering-opportunity3. http://www.genengnews.com/insights/gene-therapy-dollar-is-waiting-on-viral-vector-dime/

Link:
More Cell and Gene Therapy Facilities in the Hundreds are Needed - Genetic Engineering & Biotechnology News

Read More...

Texas coronavirus cases climb to three in San Antonio – The Texas Tribune

Tuesday, February 25th, 2020

Two more cases of the new strain of coronavirus have been confirmed at the San Antonio military base where some evacuees from a cruise ship were quarantined Monday, the Centers of Disease Control and Prevention said at a press conference Friday. This brings the number of confirmed Texas cases of the strain named COVID-19 to three.

The two evacuees were among 329 Americans repatriated against the CDC's recommendation after disembarking from the Diamond Princess off of Japan. Another 16 cruise ship evacuees quarantined in California and Nebraska have also been confirmed to have coronavirus.

"[The passengers] are considered at high risk for infection, and we do expect to see additional confirmed cases of COVID-19 among the passengers," said Nancy Messonnier, director of the National Center for Immunization and Respiratory Diseases, during the press conference.

There are also several Americans hospitalized in Japan who are "seriously ill," she said.

The first Texas case was confirmed Feb. 13 when one of 91 Americans evacuated from the Hubei province of China, the epicenter of the outbreak, was hospitalized. The remaining 90 Americans were released from the San Antonio base Thursday because they showed no symptoms after a 14-day quarantine.

The World Health Organization declared COVID-19 a public health emergency by last month. According to the latest CDC report, there are over 75,000 confirmed cases worldwide, and the death toll has surpassed 2,000. But outside of China, there have been only three fatalities, and none in the U.S.

The total number of confirmed U.S. cases is 34. However, the CDC makes a distinction between cases among repatriated Americans and all other U.S. cases, as the former aren't an accurate representation of how the virus is spreading within the country, according to Messonnier.

"We don't yet have a vaccine for this novel virus, nor do we have a medicine to treat it specifically," Messonnier said.

The goal now is to slow the introduction of the virus into the U.S. to buy time to prepare the community for more cases and possibly sustained spread, she added.

Two elderly Japanese passengers aboard the Diamond Princess died after testing positive for the virus, Japan's health minister said Thursday.

Researchers at the University of Texas at Austin are working on a vaccine, and a Houston-based genetic engineering company announced this week it finished developing one. However, the Food and Drug Administration has not yet approved a vaccine.

Disclosure: The University of Texas at Austin has been a financial supporter of The Texas Tribune, a nonprofit, nonpartisan news organization that is funded in part by donations from members, foundations and corporate sponsors. Financial supporters play no role in the Tribune's journalism. Find a complete list of them here.

Link:
Texas coronavirus cases climb to three in San Antonio - The Texas Tribune

Read More...

Confused About Obesity, Supplements and Organic Food? Here’s A Handbook For Busting Nutrition Myths – American Council on Science and Health

Tuesday, February 25th, 2020

The internet can be a confusing place. A five-minute Google search for nutrition advice is perhaps the best illustration of this fact. Allow me to demonstrate with a classic example. Do GMO crops cause cancer?

Most GMOs are designed to be sprayed with Monsantos Roundup herbicide Glyphosate, the active ingredient in Roundup, is classified as a class 2A carcinogen by the International Agency for Research on Cancer ...

Or this:

Science has been studying cancer for a long time, and it has come to a few conclusions. One of which is that there are precious few ways to prevent cancer, and avoiding GMOs is not one of them.

The first statement was written by an anti-biotechnology activist with a history of fabricating fears about genetic engineering, the second by a biochemist with 30 years of research experience. Nonetheless, the average consumer or athlete may not know whom to believe at first glance. Faced with this contradictory but seemingly authoritative commentary, what do you do if you really want to know if GMOs boost your cancer risk?

The solution is simple, if not always easy to apply: turn to the experts and think critically about everything you read. To make that task a bit easier in practice, nutrition scientist David Lightsey has produced a helpful handbook to guide curious consumers through the morass dietary nonsense they'll inevitably encounter online: The Myths About Nutrition Science (TMNS).

A food and nutrition science advisor to QuackWatch, Lightsey has spent 31 years separating evidence-based information from plain old nonsense. His book, at just over 200 pages, will arm readers with a basic understanding of many perennially important nutritional issueseverything from obesity and supplements to GMO crops and pesticidesand a useful immunization against the junk science peddled online, what Lightsey calls the quagmire of misinformation which is so pervasive in this area.

This book would have been enormously helpful to me as a budding science journalist a decade ago, but anybody looking for sound nutrition information will get something out of TMNS.

The useless media and health news

Arguably the best part of TMNS is its takedown of mainstream health reporting. Citing the now classic 2005 study by physician John Ioannidis, Lightsey begins by pointing out that the bulk of medical research published today is simply incorrect. Eager to publish flashy results in top-tier science journals and desperate for grants (the lifeblood of any working scientist), many academics have resorted to cutting corners to get the results they know will attract attention, and thus more research funding.

If bona fide experts get so much wrong, Lightsey asks, can a journalist with little or no science background accurately assess what he or she is reporting on? The answer is usually no, unfortunately. Reporters don't have to be crippled by scientific illiteracy; a dedicated journalist can correct their knowledge deficit by doing some homework before writing a story. The real problem is, few of them do.

Instead, reporters more or less copy their stories from press releases universities distribute to promote research conducted by their faculty. Lightsey cites a 2015 study, for instance, which found that just over 85% of 312 medical news stories were derived from a press release or some other secondary source.

This is sloppy reporting, pure and simple. But science by press release has more lasting consequences: it exaggerates a study's results and fails to contextualize them among the much larger body of research on the topic in question. This is one of the primary reasons ACSH has caught just about every mainstream media network irresponsibly reporting, for example, that 95% of baby food is contaminated with heavy metals.

Misinformation is everywhere

This is a recurring theme throughout Lightsey's book. Whether it's a mainstream reporter, a supplement salesman at the gym or a celebrity athlete, nobody's entitled to our trust when it comes to nutrition. That's not because these sources of information are inherently unreliable, although they often do peddle nonsense. The real reason is that informed consumers should make decisions that comport with the available evidence, and not based on the conclusions of a single study or the recommendations of Tom Bradyno matter how many Super Bowls he's won.

Returning to our opening point above, Lightsey pithily sums things up:

Nutrition 'science' has become so contradictory that one must learn to take every new 'study' which declares to enlighten us about some purported nutritional health threat or benefit with a large grain of salt.

Excerpt from:
Confused About Obesity, Supplements and Organic Food? Here's A Handbook For Busting Nutrition Myths - American Council on Science and Health

Read More...

Healthy-ish French Fries Are Now a Thing Thanks to Genetic Redesigning – Observer

Tuesday, February 25th, 2020

With Calyxt making fried foods healthier, maybe celebs will actually eat them instead of just posing with them. Rich Polk/Getty Images for The Weinstein Company

Eat up, America. Your favorite standby comfort foodthose slightly greasy, salted-just-right French fries that have thrown many a dieter off the straight and narroware now healthy. Or at least healthier than they ever have been, thanks to food-tech disruptor Calyxt (pronounced Kay-Lix with an aspirated t at the end) and its breakout vegetable oil, which is designed with less saturated fat and more healthy oleic acid than typical unmodified frying oils.

I first stumbled across Calyxts healthy frying oil at the most unlikely of places: the Minnesota State Fair,a 320-acre mecca of unhealthy eating, butter sculptures, live farm animal births and other assorted curiosities.

SEE ALSO: How Blue Apron Became a Massive $2 Billion Disaster

Any good Minnesotan worth his weight in walleye, even those of us like me who have lived all over the world, will always make a point to come back to our native Land of 10,000 Lakes in late August, in part so we can take in one of the states few months of non-sub-zero temperatures, but also because the second half of August is precisely when we can visit the two-week affair known among locals as the The Great Minnesota Get-Together. Its the largest of its kind in the country, and last years attendance drew in over two million visitors, meaning over a third of all Minnesotans took a day out of their lives to join in on the perennial celebration.

At last years gathering, word was spreading quickly that the Ball Park Caf, a long-time state fair staple, known for its famous beer selection, burgers and garlic fries, had switched to Calyxts healthier vegetable oil for all of its frying needs. Given that the fair happened to fall just as I was several weeks into one of my many concerted efforts to finally get back in shape, I was intrigued.

I was expecting the fries I ordered to taste somehow artificial or rubbery, as do many healthy versions of other foods, but the flavor and consistency of the Calyxt-fried Freedom Fries was exactly as one might expect from a normal bath of hot oilcrispy and yummy. Decadence never tasted so good.

Several weeks after the fair, I looked up the company behind this healthy oil and scheduled a meeting with Calyxts communications head, Trina Lundblad and company CEO Jim Blome. We decided to meet at their offices, a sleek, ultra-modern building in a Minneapolis suburb, overlooking a large swath of prairie grass and pristine crop rows.

The Calyxt headquarters have a definite Silicon Valley feel. Were not an ag company; were a tech company that is applying its IP to the ag sector, said company spokeswoman and communications head Trina Lundblad. Courtesy of Calyxt

For the next several hours that I spent touring the Calyxt headquarters, I came to realize that I was not just visiting, contrary to my expectations going in, another food-based CPG company simply riding the wave of a popular new frying oil with a healthy twistI was at ground zero of the tech revolution in agriculture, where genome editing is revolutionizing the nutritional attributes of the foods we, as humans, will need to continue as a species in the years and centuries to come.

If that sounds like a big deal, its because it is.

Calyxt describes its oil, the product of an improved soybean plant, as having the heart-healthy fat profile of olive oil without the distinctively earthy aftertaste that is fine for spaghetti, but less so for waffles or fried chicken. By using a breakthrough gene-editing technology, Calyxt is engineering an entirely new set of processes for improving the genetic profile for many staples of the nutritional supply chain without introducing transgenic, foreign properties into the mix; Calyxts technology stands out in that it is simply accelerating and improving upon what nature would have probably gotten around to eventually on its own, only several millennia later.

Importantly, the process used by Calyxt, which relies on DNA-cutting enzymes that thankfully go by the abbreviation TALEN (transcription activator-like effector nuclease), sidesteps much of the public and regulatory outcry often associated with traditional GMOs (genetically modified organisms), in which an organisms genetic makeup has been modified in a laboratory using transgenic technology that combines, in a sort of Frankenstein-esque way, plant, animal, bacterial and virus genes that do not occur in nature or through traditional crossbreeding methods.

Calyx, which is a publicly-traded company on the NASDAQ, is improving upon the farm to table fever, by starting upstream.

Way upstream.

Calyxts unique engineering process begins in the high-tech labs on the top floor of the companys headquarters, where a team of scientists reconfigure gene molecules on large computer monitor screens before instructing robotically controlled laboratory pipettes to do their thing. Later, embryonic plant cells are transferred to petri dishes that deliver the customized TALENs, which are then bathed in stimulating hormones and left to grow until they become big enough to see if the edits made upstream in the top floor lab were successful.

Plants that meet the designer teams original specs get pampered in high-tech temperature-regulated nurseries before later graduating to a greenhouse or to the small outdoors plot trials that abut the Calyxt headquarters. From the top performing plants, Calyxt begins developing seed banks that will eventually be sold to farmers.

But that is only the beginning. Its here, at this leg of the business, where Calyxt is positioning itself for long-term, paradigm shifting growth at the crossroads of technology and agriculture.

Jim Blome, the CEO of Calyxt, grew up in a family farm in central Iowa. Today, he leads a company that is playing a major role in defining the future of food on a global scale. Courtesy of Calyxt

Unlike most biotech companies that play in the broader competitive landscape of gene-editing, Calyxt is unique in that it is vertically integrating, contracting with farmers across the Midwest to grow its gene-edited, high oleic soybeans. Earlier this month, the company achieved an important milestone, having successively contracted 100,000 soybean acres with U.S. farmers, more than doubling the size of its planted acres from the previous year. Calyxt CEO Jim Blome lauded the achievement stating that 100,000 contracted acres will support market demand for our high oleic soybean oil.

Calyxts scientists design gene-editing molecules on computer screens, then use robots to build them using a set of DNA-cutting enzymes called TALENs, which are later transferred to petri dishes for analysis. Courtesy of Calyxt

After the growing season, just a few weeks after the Minnesota State Fair wraps up, Calyxt exercises its contracts to buy back the beans from the farmers at a premium to market prices and crushes them to make its healthy, french fry-friendly oil, which it is currently shipping across the country to food services companies and restaurant chains.

Farmers love the higher-than-market commodities prices Calyxt agrees to pay them. The food services sector loves the healthy aspects of the Calyxt end-product, which also has a reuse rate far more efficient than other oils on the market. And Calyxt loves sitting in the middle of both the supply and distribution chains.

I have spent my life in agriculture, and there is nothing as revolutionary happening around genome editing as what we are doing at Calyxt, added Blome, who previously served as the president and CEO of the North American Crop Science division of Bayer, the German multinational pharmaceutical and life sciences juggernaut. We are developing a foundation for the future of global agriculture through precision plant breeding and advanced analytical tools to solve complex challenges with system-based approaches. Tillable land is growing increasingly scarce, populations are growing and the earth is warming, and frankly, we arent ready for what this will mean even five or 10 years down the road.

What we are doing at Calyxt is harnessing the technology that will enable the entire global nutritional and industrial supply chain to adapt to these seismic changes underfoot. And were doing it in a responsible, ethical manner, that brings new opportunities to U.S. farmers, added Blome.

The Calyxt chief isnt simply talking about healthier frying oils, there is a much, much bigger play in the offing: Calyxts technology can be harnessed to address some of the most pressing concerns across all of food and nutritionfrom removing the allergens from nuts and peanuts, to designing better cereal plants, such as wheat, that not only deliver better yields but also address common allergies and afflictions like gluten intolerance. Tubers, tree fruits, CBD productsthe list of potential applications for Calyxt genome-editing is nearly endless.

Where high-tech meets agriculture. Calyxt researchers and plant scientists use state-of-the-art aeroponics growing facilities to iterate on plant-based genome editing. Courtesy of Calyxt

Chris Neugent, a veteran food marketer and former CEO of Post Consumer Brands, the maker of everything from Oreo Os to Grape-Nuts, sits on the board of Calyxt, bringing mission-critical consumer marketing and story-telling gravitas to a company known best for its high-tech bioengineering.

If the Calyxt story was a book, then you could say we are still in the first chapter, probably still on page one. Our work with smarter, healthier soybean oilsas groundbreaking as it isis still proof of concept. As we scale our business and begin adding more products, the market will begin to see us not as the healthier french fry guys but as a company that is revolutionizing next-generation nutrition in agriculture, observed Neugent. We are literally laying track for the biggest agricultural revolution since the transformation of human societies from hunting and gathering to farming. Its that big.

This Second Agricultural Revolution Neugent is alluding to envisages a not-so-far-off future in which Calyxt is redesigning crops to better withstand the massive changes underfoot caused by global warming, over-population and other seismic shifts affecting the future of food.

A young soybean plant flowers inside the Calyxt high-tech laboratory facilty. Courtesy of Calyxt

Like any industry that is shaking up the status quo, Calyxt is beginning to encounter its share of crosscurrents. So far, at least, U.S. regulators seem to be of the opinion that as long as Calyxt is making genetic alterations that could have conceivably occurred naturally, as opposed to other transgenic techniques used in GMOs, no special regulation is needed.

Other incumbent seed engineering companies have dabbled in the high oleic soybean space, but for the most part, they have come at the challenge through a more conventional gene-editing approach, which mixes in organisms that do not naturally conjoin outside of a laboratory, necessitating additional layers of regulatory safeguards.

Calyxt is using high-tech genome editing to serve up healthier versions of the same delicious plant-based foods that we have eaten for decades. Courtesy of Calyxt

For now, Calyxts approach doesnt require any additional oversight or specific product labeling, nor do company executives feel that any will be required at any point in the foreseeable future. The 2018 USDA-released GMO labeling requirements defines bioengineered foods as those containing detectable genetic material that has been modified through lab techniques that cannot be created through conventional breeding or found in nature. As a result, Calyxt is not subject to any additional regulatory or labeling requirements, which is allowing the company to forge ahead on multiple fronts. The company is already engaged in early experimentation with genome edited wheat plants, and it has scores of other applications in development.

For now, Calyxt is a still a small company, but one poised to make a big impact on the global food market.

However, for most of usat least those of us that just like to be able eat French fries from time to time and not feel too bad about it the next dayCalyxt is performing an equally important service on par with helping prepare global food sourcing for the impacts of climate change; they are giving us peace of mind the next time we hit the state fair, or anywhere else where Calyxt-fried French fries are being served.

See original here:
Healthy-ish French Fries Are Now a Thing Thanks to Genetic Redesigning - Observer

Read More...

Protein Expression Market size, leaders, segment analysis and future scope scrutinized in the new analysis – WhaTech Technology and Markets News

Tuesday, February 25th, 2020

North America has been the largest market for protein expression, with the U.S. as the larger contributor to the regional market as compared to Canada.

The protein expression market valued at $1.4 billion in 2016, and during the forecast period, it is expected to grow at an 11.7% CAGR, generating revenue of $3.0 billion by 2023. The key drivers of the market are technological advancements, growing life sciences sector, and increasing chronic disease prevalence, funding for protein-based research, and geriatric population.

Protein expression is a collective term for ways in which proteins are synthesized, modified, and regulated in living organisms.

Download sample copy of this report at@bit.ly/38YmQAq

A prominent trend in the protein expression marketis the increasing research and development (R&D) activities on recombinant proteins. The technologies that are used to produce recombinant proteins, such as gene cloning and genetic engineering, have revolutionized the life sciences sector and enabled the production of biopharmaceuticals at an industrial scale.

Their production on such a large scale has led to their application in disease diagnosis and treatment. Many pharmaceutical companies are focusing on the production of recombinant proteins and their expression systems to support the drug discovery process and develop biotherapeutics.

The protein expression market is segmented by region, system, end user, product and services, and application.

Based on system, the categories are algal-based, prokaryotic, cell-free, mammalian cell, yeast, and insect cell expression systems. In 2016, prokaryotic expression systems registered the largest share as they are comparatively cheaper than other expression systems, such as insect cell and mammalian systems.

In addition, the shorter protein synthesis time of the prokaryotic expression system, as the bacteria multiply and grow rapidly in these systems, giving a higher yield, promotes their adoption.

Pre-AccessInquiry at@bit.ly/2SVOV5E

North America, Middle East & Africa, Europe, Latin America, and Asia-Pacific (APAC) are the subdivisions of the region segment of the protein expression market. In 2016, the market was dominated by North America, followed by Europe.

Even though during the forecast period, the market is expected to be led by North America, the fastest growing market would be APAC. This may be attributed to the increasing geriatric population, rising R&D funds, improving per capita income, and rising prevalence of chronic diseases in the region.

Therefore, the market for protein expression is set to experience remarkable growth during the forecast period owing to an increase in drug discovery and development and growing prevalence of several types of diseases.

This email address is being protected from spambots. You need JavaScript enabled to view it.

Read more here:
Protein Expression Market size, leaders, segment analysis and future scope scrutinized in the new analysis - WhaTech Technology and Markets News

Read More...

Coronavirus was not genetically engineered. Instead it is the first Infodemic – TechStartups.com

Tuesday, February 25th, 2020

The spread of coronavirus seems to be slowing down in China as the country continues to put proper measure in place to slowdown the spread of the disease. However, the virus outbreak in Iran, Italy, and South Korea are raising fears of a broader epidemic. The coronavirus (COVID-19), caused by SARS-CoV-2 started in Whuan China started in December 2019. To date, coronavirus has claimed 2,701 human lives and wreck havoc to global markets.

As of 25 February 2020, around 80,149 cases have been confirmed, including in all provinces of China and more than two dozen other countries. Of these, 11,569 cases were classified as serious. There have been 2,701 deaths attributable to the disease, including 38 outside mainland China, surpassing that of the 2003 SARS outbreak.

As the virus spread around the world so are the rumors about the origin of the virus. Weve written many stories about the virus ranging from Chinese scientists arguing that the the virus originated from Chinas Wuhan laboratory. Some media outlets also pointed to comments from Chinas Presidentabout the need to contain the coronavirus and set up a system to prevent similar epidemics in the future. President Xi said a national system to control biosecurity risks must be put in place to protect the peoples health because lab safety is a national security issue.To add to the suspicion, NY Post also pointed toa newly release directive from Chinese Ministry of Science and Technology titled: Instructions on strengthening biosecurity management in microbiology labs that handle advanced viruses like the novel coronavirus.

The problem, however, is these news storieshave very little scientific merit. According to a new study published in ScienceDirect titled: Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event, their findings show that theCOVID-19 is 96 percent similar to the bat virus RaTG13. The 2019-nCoV although closely related to BatCoV RaTG13 sequence throughout the genome (sequence similarity 96.3%), shows discordant clustering with the Bat_SARS-like coronavirus sequences, the authors said.

The study concludes with the statement: The levels of genetic similarity between the 2019-nCoV and RaTG13 suggest that the latter does not provide the exact variant that caused the outbreak in humans, but the hypothesis that 2019-nCoV has originated from bats is very likely. Their conclusion supports the widely accepted claim that coronavirus originated from Whuan meat market where bats are snakes were sold for food.

The question is, what do we make of the study published by Chinese scientists in The Lancet?The wider scientific community, upon seeing the paper, were also less than impressed with the speculations and conclusions drawn by the Chinese scientists. The scientist at the forefront of an international effort to track the deadly coronavirus outbreak shot down claims about the diseases origins, including that it escaped from a Wuhan laboratory after being genetically engineered.Trevor Bedford, of the Fred Hutchinson Cancer Research Center in Seattle, said:There is no evidence whatsoever of genetic engineering that we can find. He made the statement at the American Association for the Advancement of Science meeting in Seattle. The evidence we have is that the mutations (in the virus) are completely consistent with natural evolution.

Finally, on February 2, the World Health Organization (WHO)called the new coronavirus a massive infodemic, referring to an overabundance of informationsome accurate and some notthat makes it hard for people to find trustworthy sources and reliable guidance when they need it.

Due to the high demand for timely and trustworthy information about 2019-nCoV, WHO technical riskcommunication and social media teams have been working closely to track and respond to myths and rumours.Through its headquarters in Geneva, its six regional offices and its partners, the Organization is working 24 hours aday to identify the most prevalent rumors that can potentially harm the publics health, such as false preventionmeasures or cures. These myths are then refuted with evidence-based information. WHO is making public healthinformation and advice on the 2019-nCoV, including myth busters, available on its social media channels (includingWeibo, Twitter, Facebook, Instagram, LinkedIn, Pinterest) and website, WHO said.

Read the original post:
Coronavirus was not genetically engineered. Instead it is the first Infodemic - TechStartups.com

Read More...

Burger Wars: Beyond Nutrition Idealism and Junk-Science Rhetoric, the Benefits of Choosing Plant-Based are Clear – The Spoon

Sunday, February 16th, 2020

Reports from theFood and Agricultural Organization of the United Nations,World Health Organization, andothers emphasize the critical role of plant-based diets in creating a sustainable food future for all. Plant-based diets are also key for human nutrition, highlighted in diet guidelines the world over includingUS,Canada, andBrazil. Yet livestock remains essential to aroundone billionof the worlds indigent and theglobal demand for meat and dairy is expected toincrease by 70% by 2050.

Meat production and consumption habits must shift, and solutions are sorely needed to feed the appetite for meat in the US and abroad.

Enter plant-based burgers, which exploded onto the food scene in the 2010s. While eaters love them, questions followed: Are they healthier? More sustainable? And are they even real food?

Opinions are heated, but what does the science show?

A Brave New Burger thats Just Plain Better

Forget bland veggies burgers of yore that only appealed to die-hard vegetarians. Todays food technology methods have brought consumers a beefy patty that sizzlesand theyre a game-changer.

Beyond MeatandImpossible Foodslead the plant-based burger market, and are quite similarin nutrient content and ingredients. A key difference is the use of genetic engineering, used in Impossible to create its umami punch from soy leghemoglobin. Not surprisingly,Impossible eaters care not at all about the tech that made it tastynor should they, given the copious evidence of its safety. (Beyond, conversely, boasts theyre non-GMO.) Major food companies also offer their own plant-based burgers using a variety of techniques and ingredients, now available in supermarkets alongside Beyond and Impossible.

Critics questioned wondered whether plant-based burgers would take off; the marketplace already offers myriad vegetarian choices, after all. Yet contemporary consumersare increasingly seeking ecoconscious options that supplant meat, while delivering the pleasure of eating meatat least, some of the time. Ninety percent of plant-based meat and dairy consumers are omnivores, in fact, and Beyond reports that more than 70 percent of its consumers are meat-eaters seeking a more sustainable option. Importantly, Beyond and Impossible burgers are found on restaurant andfast foodmenus, a good thing since49% of eaters globallydine at restaurants at least weekly, and most choose fast food fare.

Public health and environmental benefits of plant-based burgers are plentiful. Research funded by Beyond Meat and conducted by independent scientists at the University of Michigan found that its burger used 99 percent less water, 93 percent less land, and 46 percent less energy and produced 90 percent fewer greenhouse gas emissions compared to a beef burger; similar results were found in a study of the Impossible Burger. While no peer-reviewed studies are yet available, a significant body of evidencelike this report of 40,000 farms in 119 countries and covering 40 food products that represent 90 percent of all that is eatenshows significantly higher environmental impacts of meat production on land, water, and air compared to plants. While grass-fed beef can be more sustainable, its complicatedand hardly the panacea supporters claim it to be.

And dont forget about antibiotic resistance, among the biggest threats to global health driven largely bymisuse of medicinesin livestock production.

Whatever the individual motivation to select a plant-based burger, the secret sauce is clear: When food tech delivers taste and convenience, health and sustainability win.

Burger Bloviating: Push Back on Plant-Based Meat

As with many food tech innovations, some folks in nutrition and activist circles began disparaging plant burgers as yet another ultra-processed food that consumers dont need. However, there is considerable variation in nutritional quality across the four-categoryNOVA classification(unprocessed and minimally processed foods, processed culinary ingredients, processed, ultra-processed). Andnumerous studiesincluding areportfrom several professional nutrition and food tech organizationsshow that (ultra-) processed foods like bread and canned goods are nutritionally beneficial; its thewhole dietthat matters.

Plus, beef burgers dont grow on trees; the industry employs an extensive set of ingredientsconsumers simply choose not to consider. A wide range ofadditives and preservativesand food processing methods were needed to get that cow ground up onto your bun, for instance, alongside atrocious conditions in industrial animal farming systems. And were you aware that meatpacking is among the most dangerous jobs in the world? The reality is that getting a burger to your table made from animals involves far more processing than one made with plants, facts its polystyrene package doesnt provide.

But is plant-based meat real food? The concept was popularized by journalist Michael Pollan, whose other pithy yet patronizing advice includes eat plants, not food made in plants. Food writer Mark Bittman recently opined, [w]e have to determine whether theyre actually food,likening plant-based burgers to Cheetos. (Seriously?) Other foodies jumped on the bandwagon, creatingnutrition confusionby preaching that meat from animals is inherently superior simply because its from an animal.

At the same time, some health professionals return to the dog-tired diet advice that consumers need to eat more vegetables and fruits, like fresh peas instead of burgers made from pea protein. Similarly, anivory-tower academiccalled plant-based burgers transitional en route to a whole foods diet, ignoring evidence that burgers can be part of a healthy diet, in moderationand are integral to American traditions.

Viewpoints like these reflect a lack of compassion for the realities most people face in just trying to get a meal on the table. They also undermine how difficult it is to change the way we eat, They also discount the vibrant role cuisine plays in culture and disregard the power of technology to meet food needs healthfully and sustainably.

For a Brighter Food Future, Vote With Your Fork

Addressing todays complex food challenges requires all the tools we have to curb climate change, address unsustainable and unjust practices in agriculture, and reduce diet-related chronic diseases. Though novel food technologies will always have haters, its a brave new world with a new generation of eaters.Millennials and Gen Zare highly motivated by health and sustainabilityand both are far more accepting offood technologythan previous generations. Scientific innovations like plant-based burgers will always play a role in shaping human diets,as they always haveand often for the better.

But lets not forget that a burger is a burger is a burgerand its especially tasty with all the fixins. (And fries. Obviously.) Most of us in high-income nations who strive to manage weight, stave off disease, and live longer are better off eating a vibrant salad loaded in fresh veggies, beans, and whole grains rather than a plant-based burger. At least, most of the time.

But you already know that, right?

So when that craving hits, grab a plant-based burger, and enjoy. Voting with your fork is a delicious way to support technologies that will help move forward the food revolution necessary to create a healthy and sustainable food future for all.

P.K. Newby, ScD, MPH, MS, is a nutrition scientist and author whose newest book is Food and Nutrition: What Everyone Needs to Know. Learn more about her at pknewby.com.

Related

See the article here:
Burger Wars: Beyond Nutrition Idealism and Junk-Science Rhetoric, the Benefits of Choosing Plant-Based are Clear - The Spoon

Read More...

New RPG from Sask. creators – Yorkton This Week

Sunday, February 16th, 2020

While it seems increasingly difficult to find a crew to delve into role playing games these days, they hold a special place for me.

Few gaming experiences have been as well-remembered as the first months of playing Dungeons & Dragons, and the pure combination of wonder and amazement that provided.

There have been other RPGs since then of course, and in most every case they have been fun because you become immersed in the world of the game, and the character you play becomes near and dear to you.

As a result I often look at RPGs on Kickstarter, and on one such excursion GeneFunk 2090 from CRISPR Monkey Studios.

There was some great art to the game that was advertising itself as a Biopunk RPG so I looked a little deeper.

That led to the biggest discovery, that the studio doing the game is based in Saskatoon, which made me curious to learn more.

To begin with the game is a biopunk/cyberpunk RPG and setting made using the D&D 5E Open Gaming License. Players take on the role of elite mercenaries that specialize in investigation and violence. No magic or fantasy, but tons of cybernetics, genetic enhancements, nanobots, drones, hacking, androids, high tech guns and armor, and other amazing tech, explains a quick intro on the successful Kickstarter page.

Comparisons of course are natural, and this one immediately had me thinking a game in the same vein as Shadowrun, a long-running RPG, many will know.

So next I contacted James Armstrong regarding the game he has been involved in creating, to find out some information first hand.

He said the game is certainly Biopunk on nature.

I love biology, and the idea of genetic engineering, he replied via email. I actually have a M.Sc. in molecular biology, partially because I was interested in understanding the science behind genetic modification.

Also, Ive always loved speculative fiction, especially of the biopunk variety, from Brave New World, to Cronenberg movies. While I first started this game in 2001, I can tell its only now that biopunk is starting to come into the zeitgeist. Theres currently a Netflix special on biohacking, Jaimie Metzl is on Joe Rogan speaking about his Hacking Darwin book, and CRISPR is part of school curricula.

Theres been an open niche for biopunk RPGs, especially near-future ones and I wanted to address that, and see where I could take it. Endogenous DNA computers, genetic enhancement, mind-hacking, transgenic beasts, and anything else I could think of.

Not surprisingly Armstrong comes at creating an RPG based on his own long held interest.

Ive been an RPG fan since I was in Grade 3, he said. It was the Dungeons and Dragons box sets, red and blue. My older brother brought them home and I was immediately fascinated by the art, and the idea that I could be a character in a fantasy story.

From there, it was the Marvel Super Heroes game, T.M.N.T, WEG Star Wars, and whatever else I could get my hands on! Ive made plenty of my own systems along the way as well.

So where did the germ of the idea for GeneFunk come from.

It was really a convergence of creative influences, and an open niche! I grew up reading the Eastman and Laird T.M.N.T. graphic novels and RPG, loved cyberpunk fiction of every kind, and felt the Gattaca movie was well ahead of its time, related Armstrong. I wanted to play in a world filled will genetically enhanced humans and ubiquitous biotechnology.

Armstrong went into the creative process with a vision.

Create a modern take on the cyberpunk genre using the 5e ruleset, with a biopunk twist, he said. While I love the 80s vision of cyberpunk, most cyberpunk games I see tend to fit into this mold. It could use some updating, some new spice!

Its now apparent that a great deal of human enhancement will be at the genetic level, not necessarily grafted-on chrome arms and robot bodies. I want to show how the world might look if that genetic enhancement started before birth, and how biologically specializing humans might affect society, (and) an informal genetic caste system that emerges from a global market economy.

I also wanted to make some of the cyberpunk tropes a little more fluid. Rather than an explicitly dystopian world, I wanted to showcase a series of double-edged swords. Not technological and capitalistic doom-and-gloom, but something more ambiguous, with some parts being wonderful, and other parts being nightmarish, depending on your perspective. There are pros to living in a technological wonderland. Who needs Huntingtons disease? Alienation due to a collapse of a common human condition? Yes. Ultimate expression of personal identity and diversity through a fluid human form? Also yes.

With such a vast vision to capture the game took years to develop 18-years in fact.

I started in 2001, said Armstrong. I have homebrew versions of it in 3.5e and 4e as well, but once 5e came out, I knew it fit with the mechanics well and I wanted to take it to the next level. Granted, many of those years only had very part-time development, I really kicked it into high-gear over the last three years.

So what was the most difficult aspect of designing the game?

Capturing the powerful nature of genetic enhancement at character creation, said Armstrong. I wanted a characters base genome to provide a great deal of mechanical influence, much more so than a D&D race does. Genetic enhancement is unambiguously superior in GeneFunk, and I needed the mechanics to capture that. As such, starting characters are more powerful than they are in D&D. Theyre not close to X-Men level or anything like that, but they certainly wont be spending level 1 killing boars.

But the game is more than fights and battles.

Asked what is the best element of the game Armstrong said the biohacking, and the great variety of different genomes and upgrades.

There are 42 genetic enhancements and 58 upgrades. Theres even a tool included for players and GMs to make their own genomes.

Being able to play a character with completely different abilities at level 1, each time you make a character, is great for replayability. Ive always loved the meta-game of making characters, Ive probably made 10 characters for every 1 Ive played, regardless of system.

Also, diversity is fun! D&D groups are often a hodge-podge of dragon born, tieflings, gnomes, and goliaths, even if a campaign world might describe these races as rare. I built it so that there is baked-in fluff to support the fact that youre a party of genetic weirdos, stylishly exotic appearances and all.

The vibrancy of a new game world, and the built in diversity of characters to play make GeneFunk a game well worth looking into. Like any RPG the experience of course is only partly dictated by the ruleset, the game master, the one guiding things much as the director of a stage performance, being at least equally important to the overall experience.

It will help to know the base rules of 5e, the most recent incarnation of D&D and one admittedly turned me off the game completely. While I think 5e homogenized D&D into a world of overpowered clones, in a different world setting the core rules can shine.

So check out GeneFunk, it may not be the setting for every taste, but it offers an interesting vision of a future which may be closer than we think.

Check it out via the GeneFunk 2090 page on Facebook.

See more here:
New RPG from Sask. creators - Yorkton This Week

Read More...

Why Bill Gates thinks gene editing and artificial intelligence could save the world – GeekWire

Saturday, February 15th, 2020

Microsoft co-founder Bill Gates makes a point during a Q&A with Margaret Hamburg, board chair for the American Association for the Advancement of Science. (GeekWire Photo / Alan Boyle)

Microsoft co-founder Bill Gates has been working to improve the state of global health through his nonprofit foundation for 20 years, and today he told the nations premier scientific gathering that advances in artificial intelligence and gene editing could accelerate those improvements exponentially in the years ahead.

We have an opportunity with the advance of tools like artificial intelligence and gene-based editing technologies to build this new generation of health solutions so that they are available to everyone on the planet. And Im very excited about this, Gates said in Seattle during a keynote address at the annual meeting of the American Association for the Advancement of Science.

Such tools promise to have a dramatic impact on several of the biggest challenges on the agenda for the Bill & Melinda Gates Foundation, created by the tech guru and his wife in 2000.

When it comes to fighting malaria and other mosquito-borne diseases, for example, CRISPR-Cas9 and other gene-editing tools are being used to change the insects genome to ensure that they cant pass along the parasites that cause those diseases. The Gates Foundation is investing tens of millions of dollars in technologies to spread those genomic changes rapidly through mosquito populations.

Millions more are being spent to find new ways fighting sickle-cell disease and HIV in humans. Gates said techniques now in development could leapfrog beyond the current state of the art for immunological treatments, which require the costly extraction of cells for genetic engineering, followed by the re-infusion of those modified cells in hopes that theyll take hold.

For sickle-cell disease, the vision is to have in-vivo gene editing techniques, that you just do a single injection using vectors that target and edit these blood-forming cells which are down in the bone marrow, with very high efficiency and very few off-target edits, Gates said. A similar in-vivo therapy could provide a functional cure for HIV patients, he said..

The rapid rise of artificial intelligence gives Gates further cause for hope. He noted that that the computational power available for AI applications has been doubling every three and a half months on average, dramatically improving on the two-year doubling rate for chip density thats described by Moores Law.

One project is using AI to look for links between maternal nutrition and infant birth weight. Other projects focus on measuring the balance of different types of microbes in the human gut, using high-throughput gene sequencing. The gut microbiome is thought to play a role in health issues ranging from digestive problems to autoimmune diseases to neurological conditions.

This is an area that needed these sequencing tools and the high-scale data processing, including AI, to be able to find the patterns, Gates said. Theres just too much going on there if you had to do it, say, with paper and pencil to understand the 100 trillion organisms and the large amount of genetic material there. This is a fantastic application for the latest AI technology.

Similarly, organs on a chip could accelerate the pace of biomedical research without putting human experimental subjects at risk.

In simple terms, the technology allows in-vitro modeling of human organs in a way that mimics how they work in the human body, Gates said. Theres some degree of simplification. Most of these systems are single-organ systems. They dont reproduce everything, but some of the key elements we do see there, including some of the disease states for example, with the intestine, the liver, the kidney. It lets us understand drug kinetics and drug activity.

The Gates Foundation has backed a number of organ-on-a-chip projects over the years, including one experiment thats using lymph-node organoids to evaluate the safety and efficacy of vaccines. At least one organ-on-a-chip venture based in the Seattle area, Nortis, has gone commercial thanks in part to Gates support.

High-tech health research tends to come at a high cost, but Gates argues that these technologies will eventually drive down the cost of biomedical innovation.

He also argues that funding from governments and nonprofits will have to play a role in the worlds poorer countries, where those who need advanced medical technologies essentially have no voice in the marketplace.

If the solution of the rich country doesnt scale down then theres this awful thing where it might never happen, Gates said during a Q&A with Margaret Hamburg, who chairs the AAAS board of directors.

But if the acceleration of medical technologies does manage to happen around the world, Gates insists that could have repercussions on the worlds other great challenges, including the growing inequality between rich and poor.

Disease is not only a symptom of inequality, he said, but its a huge cause.

Other tidbits from Gates talk:

Read Gates prepared remarks in a posting to his Gates Notes blog, or watch the video on AAAS YouTube channel.

Excerpt from:
Why Bill Gates thinks gene editing and artificial intelligence could save the world - GeekWire

Read More...

Twist Bioscience Pursues Growth at All Costs. How Long Will Investors Tolerate It? – Motley Fool

Saturday, February 15th, 2020

In recent years, promising start-ups have faced almost no obstacles to raising capital, so long as they pursued growth at all costs. Investors accepted significant losses in the present on the premise that these would translate to incredible market share in the future. The environment of easy money created many questionable valuations (see: WeWork), and even rare instances of outright fraud (see: Theranos).

But the market shifted in 2019. Investors are thinking more objectively about the stories presented by start-ups and emerging companies, and are much more interested in profitable growth, or at least progress toward it, than empty promises of a big payoff down the road.

While tech companies such as WeWork, Uber, Slack Technologies, and others have been hit by this newfound skepticism, even swearing off the growth-at-all-costs mantra of years past, the field of synthetic biology has yet to (publicly) face its reckoning. If and when it does, Twist Bioscience (NASDAQ:TWST) might be the first to fall.

Image source: Getty Images

Twist Bioscience wields the leading technology platform for synthesizing DNA, which can be used in genetic engineering experiments to create reference probes for DNA sequencing applications and to store digital data. The company is often associated with synthetic biology, or engineered biology, which is the intentional design of living technologies with reproducible functionality.

The company recently reported fiscal first-quarter 2020 operating results for the three-month period ending Dec. 31, and announced it had settled a long-standing legal dispute with Agilent Technologies. The settlement avoided a costly jury trial, but cost the synthetic DNA pioneer $22.5 million. Investors were just pleased to be rid of the headache, and to have removed the largest source of uncertainty hanging over the stock. Shares soared on the announcement.

The immediate interpretation of this event is that the settlement will allow Twist Bioscience and Wall Street to focus entirely on growth and financial performance. A deeper dive, however, suggests investors might want to be careful what they wish for.

While the company touts impressive growth in revenue and gross profit, that means little when losses attributed to shareholders are growing even faster in absolute dollar amounts. Operating losses have now grown sequentially for eight consecutive quarters.

Metric

Fiscal Q1 2020

Fiscal Q1 2019

Change (YoY)

Revenue

$17.2 million

$11.5 million

49%

Gross profit

$3.3 million

($0.4 million)

N/A

Operating expenses

$59.2 million

$22.5 million

163%

Operating expenses excluding Agilent settlement

$36.7 million

$22.5 million

63%

Operating income

($55.8 million)

($22.9 million)

N/A

Operating income excluding Agilent settlement

($33.3 million)

($22.9 million)

N/A

Data source: Twist Bioscience press release. YoY = Year over Year.

When the Agilent legal settlement is excluded, normal day-to-day operations resulted in fiscal first-quarter 2020 operating expenses of $36.7 million. That was $14.2 million greater than in the year-ago period, which easily offset the $3.7 million improvement in gross profit in that span.

Swelling losses have had a real impact on shareholders: dilution. Twist Bioscience has tapped into the public markets multiple times since conducting its initial public offering (IPO) in late 2018, including an offering in late January that raised $48.2 million in net proceeds. Investors now know that was largely conducted to pay for the Agilent legal settlement, which will consume roughly half of the proceeds.

In a little over 15 months as a publicly traded company, multiple stock offerings from Twist Bioscience have increased the number of shares outstanding from 26.6 million to 35.4 million. That's an increase of 33%. Considering the business reported $103 million in cash at the end of December and expects to report a net loss of at least $129.5 million in fiscal 2020, investors should expect additional public stock offerings or convertible debt offerings -- and, therefore, additional dilution -- in the near future.

It might be tempting to think the company could just flip a switch and focus on profitable growth, but a closer look at SEC filings suggests that might not be possible.

Image source: Getty Images

Investors know Twist Bioscience as the company that makes synthetic DNA. It serves industrial and pharmaceutical customers that require (relatively) large amounts of DNA for high-throughput genetic engineering research. It's by far the best in the industry -- even supplying some of its competitors.

However, most of the company's growth and profits come from an entirely different market: next-generation sequencing (NGS) tools. In fact, NGS tools are expected to generate nearly as much revenue in fiscal 2020 as synthetic genes. It's a bit ironic that the company known for writing DNA is increasingly dependent on companies that read DNA, but there are two primary reasons for that.

First, despite all of the hype, the market for synthetic DNA is simply not very large and isn't very profitable (if it's profitable at all). Roughly 25% of the company's synthetic gene revenue in fiscal 2020 will come from a single customer. It's also worth noting that the business didn't begin generating gross profit until it ramped up sales of NGS tools.

Second, Twist Bioscience's technology platform is well suited for designing NGS tools. The company uses its ability to synthesize accurate DNA sequences to create high-quality target enrichment probes, which allow researchers to detect specific genetic sequences in biological samples.

But investors cannot conflate early success in the NGS market with being on the path to profitability. Sales of target enrichment probes are far from sufficient to offset losses from the remainder of the business. The company expects roughly half of fiscal full-year 2020 revenue to come from money-losing or low-margin products related to synthetic genes; the other half will comprise NGS tools.

Revenue Category

Fiscal Full-Year 2020 Revenue Guidance

Fiscal Full-Year 2019 Revenue, Actual

Change (YoY)

Synthetic genes and related products

$42 million to $43 million

$33.3 million

26% to 29%

NGS tools

$37 million to $40 million

$21.0 million

67% to 76%

Biopharma collaboration

$1 million

N/A

N/A

Total revenue

$80 million to $84 million

$54.4 million

47% to 54%

Data source: Twist Bioscience. YoY = Year over Year.

Despite impressive revenue growth, Twist Bioscience expects to report a net loss of at least $107 million from day-to-day operations in the current fiscal year. That's exactly the same net loss reported in fiscal 2019, and it jumps to at least $129.5 million when the Agilent legal settlement is included.

That also suggests that Twist Bioscience might be stuck financially for the foreseeable future. In order toremain relevant in a money-losing market for synthetic genes and a very competitive market for NGS tools, it must spend significant sums of money on sales and marketing expenses, which are the main driver of operating losses.

In other words, although NGS products are responsible for most of the company's gross profit, they're also responsible for much of the company's operating losses. If the company stopped marketing its products as heavily in an attempt to pare losses, then it might not grow quickly enough to achieve breakeven operations. That suggests Twist Bioscience is pursuing growth at all costs because it doesn't really have any other options. That's not a very secure position for individual investors.

Image source: Getty Images

Investors might be drawn to Twist Bioscience because of its industry-leading technology platform for synthesizing DNA. It can create products today for high-throughput genetic engineering experiments or NGS tools, while tomorrow's opportunities could span digital data storage in DNA or rational design of biologic drugs.

But, to be blunt, publicly traded synthetic biology companies have a downright awful track record of living up to their lofty promises. The best product from the field to date has been hype, and that's led to terrible outcomes for individual investors who invested on storytelling alone. Shares of Twist Bioscience have rewarded investors with solid gains since the IPO, but swelling losses make it reasonable to question if and when the sentiment will turn negative.

Continued here:
Twist Bioscience Pursues Growth at All Costs. How Long Will Investors Tolerate It? - Motley Fool

Read More...

Page 21«..10..20212223..30..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick