header logo image


Page 10«..9101112..2030..»

Archive for the ‘Gene therapy’ Category

Beacons Gene Therapy Shows Continued Promise in Trial – TipRanks

Saturday, September 21st, 2024

Beacons Gene Therapy Shows Continued Promise in Trial  TipRanks

Read the rest here:
Beacons Gene Therapy Shows Continued Promise in Trial - TipRanks

Read More...

How stem cell and gene therapies are revolutionising healthcare – Express Healthcare

Saturday, September 21st, 2024

How stem cell and gene therapies are revolutionising healthcare  Express Healthcare

Go here to read the rest:
How stem cell and gene therapies are revolutionising healthcare - Express Healthcare

Read More...

Nanoscope Therapeutics to be Featured at Annual EUretina Congress in Barcelona – PR Newswire

Saturday, September 21st, 2024

Nanoscope Therapeutics to be Featured at Annual EUretina Congress in Barcelona  PR Newswire

Visit link:
Nanoscope Therapeutics to be Featured at Annual EUretina Congress in Barcelona - PR Newswire

Read More...

6-year-old Tennessee boy denied potentially life-saving gene therapy by insurance company – WCYB

Saturday, September 21st, 2024

6-year-old Tennessee boy denied potentially life-saving gene therapy by insurance company  WCYB

Read this article:
6-year-old Tennessee boy denied potentially life-saving gene therapy by insurance company - WCYB

Read More...

Seeking a sickle cell cure: 12-year-old in DC is 1st patient in US to get new gene therapy – NBC Washington

Friday, May 24th, 2024

Seeking a sickle cell cure: 12-year-old in DC is 1st patient in US to get new gene therapy  NBC Washington

Read the original post:
Seeking a sickle cell cure: 12-year-old in DC is 1st patient in US to get new gene therapy - NBC Washington

Read More...

Game-changer: The Hindu Editorial on approval for gene therapy to treat sickle cell disease and beta thalassemia – The Hindu

Wednesday, December 13th, 2023

Game-changer: The Hindu Editorial on approval for gene therapy to treat sickle cell disease and beta thalassemia  The Hindu

Continued here:
Game-changer: The Hindu Editorial on approval for gene therapy to treat sickle cell disease and beta thalassemia - The Hindu

Read More...

Early trials show promise for innovative gene therapy in lung cancer treatment – WJAR

Monday, October 16th, 2023

Early trials show promise for innovative gene therapy in lung cancer treatment  WJAR

Continue reading here:
Early trials show promise for innovative gene therapy in lung cancer treatment - WJAR

Read More...

Cell and Gene Therapy Manufacturing Quality Control Market Growing Trends and Technology Forecast to 2029 |… – SeeDance News

Monday, October 16th, 2023

Cell and Gene Therapy Manufacturing Quality Control Market Growing Trends and Technology Forecast to 2029 |...  SeeDance News

See the original post:
Cell and Gene Therapy Manufacturing Quality Control Market Growing Trends and Technology Forecast to 2029 |... - SeeDance News

Read More...

How Gene Therapy Can Cure or Treat Diseases | FDA

Tuesday, March 21st, 2023

Espaol

The genes in your bodys cells play a key role in your health. Indeed, a defective gene or genes can make you sick.

Recognizing this, scientists have worked for decades on ways to modify genes or replace faulty genes with healthy ones to treat, cure, or prevent a disease or medical condition.

This research is paying off, as advancements in science and technology today are changing the way we define disease, develop drugs, and prescribe treatments.

The U.S. Food and Drug Administration has approved multiple gene therapy products for cancer and rare disease indications.

Genes and cells are intimately related. Within the cells of our bodies, there are thousands of genes that provide the information to produce specific proteins that help make up the cells. Cells are the basic building blocks of all living things; the human body is composed of trillions of them.

The genes provide the information that makes different cells do different things. Groups of many cells make up the tissues and organs of the body, including muscles, bones, and blood. The tissues and organs in turn support all our bodys functions.

Sometimes the whole or part of a gene is defective or missing from birth. This is typically referred to as a genetically inherited mutation.

In addition, healthy genes can change (mutate) over the course of our lives. These acquired mutations can be caused by environmental exposures. The good news is that most of these genetic changes (mutations) do not cause disease. But some inherited and acquired mutations can cause developmental disorders, neurological diseases, and cancer.

Depending on what is wrong, scientists can do one of several things in gene therapy:

To insert new genes directly into cells, scientists use a vehicle called a vector. Vectors are genetically engineered to deliver the necessary genes for treating the disease.

Vectors need to be able to efficiently deliver genetic material into cells, and there are different kinds of vectors. Viruses are currently the most commonly used vectors in gene therapies because they have a natural ability to deliver genetic material into cells. Before a virus can be used to carry therapeutic genes into human cells, it is modified to remove its ability to cause infectious disease.

Gene therapy can be used to modify cells inside or outside the body.When a gene therapy is used to modify cells inside the body, a doctor will inject the vector carrying the gene directly into the patient.

When gene therapy is used to modify cells outside the body, doctors take blood, bone marrow, or another tissue, and separate out specific cell types in the lab. The vector containing the desired gene is introduced into these cells. The cells are later injected into the patient, where the new gene is used to produce the desired effect.

Before a gene therapy can be marketed for use in humans, the product must be tested in clinical studies for safety and effectiveness so FDA scientists can consider whether the risks of the therapy are acceptable considering the potential benefits.

The scientific field for gene therapy products is fast-paced and rapidly evolving ushering in a new approach to the treatment of vision loss, cancer, and other serious and rare diseases. As scientists continue to make great strides in this therapy, the FDA is committed to helping speed up development by interacting with those developing products and through prompt review of groundbreaking treatments that have the potential to save lives.

Read the original here:
How Gene Therapy Can Cure or Treat Diseases | FDA

Read More...

Genetic Therapies – What Are Genetic Therapies? | NHLBI, NIH

Tuesday, March 21st, 2023

Genetic therapies aim to treat or cure conditions by correcting problems in your DNA. Your DNA, including specific genes, contains instructions for making proteins that are essential for good health. Mutations, or changes in your DNA, can lead to proteins that do not work properly or that are missing altogether. These changes can cause genetic, or inherited, disorders such as cystic fibrosis, thalassemia, hemophilia, and sickle cell disease.

Genetic therapies are approaches that treat genetic disorders by providing new DNA to certain cells or correcting the DNA. Gene transfer approaches, also called gene addition, restore the missing function of a faulty or missing gene by adding a new gene to affected cells. The new gene may be a normal version of the faulty gene or a different gene that bypasses the problem and improves the way the cell works.

Genome editing is a newer approach that allows precise correction or other targeted changes to the DNA in cells to restore a cells function. Genome editing can:

Gene transfer or genome editing treatments can directly modify the cells in your body, or your cells can be collected and treated outside of your body and then returned to you. For example, a doctor can remove immune system cells, cells that are part of your bodys natural defense system, or bone marrow cells from your body, modify their DNA, and then re-introduce them to your body.

The only genetic therapies that are currently approved by the U.S. Food and Drug Administration (FDA) are for a rare inherited eye condition, as well as certain types of cancer. Genetic therapies that are in development could treat or cure other inherited disorders; treat other cancers; or treat infections, including HIV.

Go here to read the rest:
Genetic Therapies - What Are Genetic Therapies? | NHLBI, NIH

Read More...

FDA approves novel gene therapy to treat patients with a rare form of …

Wednesday, December 28th, 2022

For Immediate Release: December 18, 2017

Espaol

The U.S. Food and Drug Administration today approved Luxturna (voretigene neparvovec-rzyl), a new gene therapy, to treat children and adult patients with an inherited form of vision loss that may result in blindness. Luxturna is the first directly administered gene therapy approved in the U.S. that targets a disease caused by mutations in a specific gene.

Todays approval marks another first in the field of gene therapy both in how the therapy works and in expanding the use of gene therapy beyond the treatment of cancer to the treatment of vision loss and this milestone reinforces the potential of this breakthrough approach in treating a wide-range of challenging diseases. The culmination of decades of research has resulted in three gene therapy approvals this year for patients with serious and rare diseases. I believe gene therapy will become a mainstay in treating, and maybe curing, many of our most devastating and intractable illnesses, said FDA Commissioner Scott Gottlieb, M.D. Were at a turning point when it comes to this novel form of therapy and at the FDA, were focused on establishing the right policy framework to capitalize on this scientific opening. Next year, well begin issuing a suite of disease-specific guidance documents on the development of specific gene therapy products to lay out modern and more efficient parameters including new clinical measures for the evaluation and review of gene therapy for different high-priority diseases where the platform is being targeted.Luxturna is approved for the treatment of patients with confirmed biallelic RPE65 mutation-associated retinal dystrophy that leads to vision loss and may cause complete blindness in certain patients.

Hereditary retinal dystrophies are a broad group of genetic retinal disorders that are associated with progressive visual dysfunction and are caused by mutations in any one of more than 220 different genes. Biallelic RPE65 mutation-associated retinal dystrophy affects approximately 1,000 to 2,000 patients in the U.S. Biallelic mutation carriers have a mutation (not necessarily the same mutation) in both copies of a particular gene (a paternal and a maternal mutation). The RPE65 gene provides instructions for making an enzyme (a protein that facilitates chemical reactions) that is essential for normal vision. Mutations in the RPE65 gene lead to reduced or absent levels of RPE65 activity, blocking the visual cycle and resulting in impaired vision. Individuals with biallelic RPE65 mutation-associated retinal dystrophy experience progressive deterioration of vision over time. This loss of vision, often during childhood or adolescence, ultimately progresses to complete blindness.

Luxturna works by delivering a normal copy of the RPE65 gene directly to retinal cells. These retinal cells then produce the normal protein that converts light to an electrical signal in the retina to restore patients vision loss. Luxturna uses a naturally occurring adeno-associated virus, which has been modified using recombinant DNA techniques, as a vehicle to deliver the normal human RPE65 gene to the retinal cells to restore vision.

The approval of Luxturna further opens the door to the potential of gene therapies, said Peter Marks, M.D., Ph.D., director of the FDAs Center for Biologics Evaluation and Research (CBER). Patients with biallelic RPE65 mutation-associated retinal dystrophy now have a chance for improved vision, where little hope previously existed.

Luxturna should be given only to patients who have viable retinal cells as determined by the treating physician(s). Treatment with Luxturna must be done separately in each eye on separate days, with at least six days between surgical procedures. It is administered via subretinal injection by a surgeon experienced in performing intraocular surgery. Patients should be treated with a short course of oral prednisone to limit the potential immune reaction to Luxturna.

The safety and efficacy of Luxturna were established in a clinical development program with a total of 41 patients between the ages of 4 and 44 years. All participants had confirmed biallelic RPE65 mutations. The primary evidence of efficacy of Luxturna was based on a Phase 3 study with 31 participants by measuring the change from baseline to one year in a subjects ability to navigate an obstacle course at various light levels. The group of patients that received Luxturna demonstrated significant improvements in their ability to complete the obstacle course at low light levels as compared to the control group.

The most common adverse reactions from treatment with Luxturna included eye redness (conjunctival hyperemia), cataract, increased intraocular pressure and retinal tear.

The FDA granted this application Priority Review and Breakthrough Therapy designations. Luxturna also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The sponsor is receiving a Rare Pediatric Disease Priority Review Voucher under a program intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. A voucher can be redeemed by a sponsor at a later date to receive Priority Review of a subsequent marketing application for a different product. This is the 13th rare pediatric disease priority review voucher issued by the FDA since the program began.

To further evaluate the long-term safety, the manufacturer plans to conduct a post-marketing observational study involving patients treated with Luxturna.

The FDA granted approval of Luxturna to Spark Therapeutics Inc. The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines, and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nations food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products.

Luxturna is the first gene therapy approved in the U.S. to target a disease caused by mutations in a specific gene

Andrea Fischer301-796-0393

888-INFO-FDAOCOD@fda.hhs.gov

###

Original post:
FDA approves novel gene therapy to treat patients with a rare form of ...

Read More...

Gene Therapy – Discover How It Works Its Types And Applications – BYJUS

Wednesday, December 28th, 2022

Ever since the dawn of mankind, diseases have plagued humans over the ages. Years of innovations and advancements in science has provided us with a deeper understanding of how diseases work. This has led to lower mortality rates and longer lifespans. But there are some diseases that just cannot be cured using traditional medicine or surgery. Gene therapy is an experimental technique that caters to patients with such diseases.

Gene therapy is a technique which involves the replacement of defective genes with healthy ones in order to treat genetic disorders. It is an artificial method that introduces DNA into the cells of the human body. The first gene therapy was successfully accomplished in the year 1989.

The simple process of gene therapy is shown in the figure below:

In the figure, the cell with the defective gene is injected with a normal gene which helps in the normal functioning of the cell. This technique is employed mainly to fight against the diseases in the human body and also to treat genetic disorders. The damaged proteins are replaced in the cell by the insertion of DNA into that cell. Generally, improper protein production in the cell leads to diseases. These diseases are treated using a gene therapy technique. For example, cancer cells contain faulty cells which are different from the normal cells and have defective proteins. Hence, if these proteins are not replaced, this disease would prove to be fatal.

Basically, there are two types of gene therapy

This type usually occurs in the somatic cells of human body. This is related to a single person and the only person who has the damaged cells will be replaced with healthy cells. In this method, therapeutic genes are transferred into the somatic cells or the stem cells of the human body. This technique is considered as the best and safest method of gene therapy.

It occurs in the germline cells of the human body. Generally, this method is adopted to treat the genetic, disease causing-variations of genes which are passed from the parents to their children. The process involves introducing a healthy DNA into the cells responsible for producing reproductive cells, eggs or sperms. Germline gene therapy is not legal in many places as the risks outweigh the rewards.

For more information about gene therapy, login to BYJUS.

Read more:
Gene Therapy - Discover How It Works Its Types And Applications - BYJUS

Read More...

IVERIC bio Subsidiary Sells Assets of Gene Therapy Product Candidates for Treatment of Retinal Diseases – Marketscreener.com

Wednesday, December 28th, 2022

IVERIC bio Subsidiary Sells Assets of Gene Therapy Product Candidates for Treatment of Retinal Diseases  Marketscreener.com

See the original post:
IVERIC bio Subsidiary Sells Assets of Gene Therapy Product Candidates for Treatment of Retinal Diseases - Marketscreener.com

Read More...

Mustang Bio Announces Phase 1/2 Clinical Trial Data of MB-106, a First-in-Class CD20-targeted, Autologous CAR T Cell Therapy, to be Presented at 11th…

Monday, October 31st, 2022

Mustang Bio Announces Phase 1/2 Clinical Trial Data of MB-106, a First-in-Class CD20-targeted, Autologous CAR T Cell Therapy, to be Presented at 11th International Workshop for Waldenstrom's Macroglobulinemia  GlobeNewswire

Continued here:
Mustang Bio Announces Phase 1/2 Clinical Trial Data of MB-106, a First-in-Class CD20-targeted, Autologous CAR T Cell Therapy, to be Presented at 11th...

Read More...

Decibel Therapeutics Receives FDA Clearance of IND Application for DB-OTO, a Gene Therapy Product Candidate Designed to Provide Hearing to Individuals…

Sunday, October 23rd, 2022

Decibel Therapeutics Receives FDA Clearance of IND Application for DB-OTO, a Gene Therapy Product Candidate Designed to Provide Hearing to Individuals with Otoferlin-Related Hearing Loss  GlobeNewswire

Excerpt from:
Decibel Therapeutics Receives FDA Clearance of IND Application for DB-OTO, a Gene Therapy Product Candidate Designed to Provide Hearing to Individuals...

Read More...

NIH researchers develop gene therapy for rare ciliopathy – National Institutes of Health (.gov)

Monday, September 12th, 2022

News Release

Thursday, September 8, 2022

Gene augmentation rescues cilia defects in light-sensing cells derived from patients with blinding disease.

Researchers from the National Eye Institute (NEI) have developed a gene therapy that rescues cilia defects in retinal cells affected by a type of Leber congenital amaurosis (LCA), a disease that causes blindness in early childhood. Using patient-derived retina organoids (also known as retinas-in-a-dish), the researchers discovered that a type of LCA caused by mutations in the NPHP5 (also called IQCB1) gene leads to severe defects in the primary cilium, a structure found in nearly all cells of the body. The findings not only shed light on the function of NPHP5 protein in the primary cilium, but also led to a potential treatment for this blinding condition. NEI is part of the National Institutes of Health.

Its so sad to see little kids going blind from early onset LCA. NPHP5 deficiency causes early blindness in its milder form, and in more severe forms, many patients also exhibit kidney disease along with retinal degeneration, said the studys lead investigator, Anand Swaroop, Ph.D., senior investigator at the NEI Neurobiology Neurodegeneration and Repair Laboratory. Weve designed a gene therapy approach that could help prevent blindness in children with this disease and one that, with additional research, could perhaps even help treat other effects of the disease.

LCA is a rare genetic disease that leads to degeneration of the light-sensing retina at the back of the eye. Defects in at least 25 different genes can cause LCA. While there is an available gene therapy treatment for one form of LCA, all other forms of the disease have no treatment. The type of LCA caused by mutations in NPHP5 is relatively rare. It causes blindness in all cases, and in many cases it can also lead to failure of the kidneys, a condition called Senior-Lken Syndrome.

Three post-doctoral fellows, Kamil Kruczek, Ph.D., Zepeng Qu, Ph.D., and Emily Welby, Ph.D., together with other members in the research team collected stem cell samples from two patients with NPHP5 deficiency at the NIH Clinical Center. These stem cell samples were used to generate retinal organoids, cultured tissue clusters that possess many of the structural and functional features of actual, native retina. Patient-derived retinal organoids are particularly valuable because they closely mimic the genotype and retinal disease presentation in actual patients and provide a human-like tissue environment for testing therapeutic interventions, including gene therapies. As in the patients, these retinal organoids showed defects in the photoreceptors, including loss of the portion of the photoreceptor called outer segments.

In a healthy retina, photoreceptor outer segments contain light-sensing molecules called opsins. When the outer segment is exposed to light, the photoreceptor initiates a nerve signal that travels to the brain and mediates vision. The photoreceptor outer segment is a special type of primary cilium, an ancient structure found in nearly all animal cells.

In a healthy eye, NPHP5 protein is believed to sit at a gate-like structure at the base of the primary cilium that helps filter proteins that enter the cilium. Previous studies in mice have shown that NPHP5 is involved in the cilium, but researchers dont yet know the exact role of NPHP5 in the photoreceptor cilium, nor is it clear exactly how mutations affect the proteins function.

In the present study, researchers found reduced levels of NPHP5 protein within the patient-derived retinal organoid cells, as well as reduced levels of another protein called CEP-290, which interacts with NPHP5 and forms the primary cilium gate. (Mutations in CEP-290 constitute the most common cause of LCA.) In addition, photoreceptor outer segments in the retinal organoids were completely missing and the opsin protein that should have been localized to the outer segments was instead found elsewhere in the photoreceptor cell body.

When the researchers introduced an adeno-associated viral (AAV) vector containing a functional version of NPHP5 as a gene therapy vehicle, the retinal organoids showed a significant restoration of opsin protein concentrated in the proper location in outer segments. The findings also suggest that functional NPHP5 may have stabilized the primary cilium gate.

The study was funded by the NEI Intramural program. Patient samples were collected at the NIH Clinical Center.

NEI leads the federal governments efforts to eliminate vision loss and improve quality of life through vision researchdriving innovation, fostering collaboration, expanding the vision workforce, and educating the public and key stakeholders. NEI supports basic and clinical science programs to develop sight-saving treatments and to broaden opportunities for people with vision impairment. For more information, visit https://www.nei.nih.gov.

About the NIH Clinical Center:The NIH Clinical Center is the worlds largest hospital entirely devoted to clinical research. It is a national resource that makes it possible to rapidly translate scientific observations and laboratory discoveries into new approaches for diagnosing, treating, and preventing disease. Over 1,600 clinical research studies are conducted at the NIH Clinical Center, including those focused on cancer, infectious diseases, blood disorders, heart disease, lung disease, alcoholism and drug abuse. For more information about the Clinical Center, visit:https://www.cc.nih.gov.

About the National Institutes of Health (NIH):NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIHTurning Discovery Into Health

Kruczek K, Qu Z, Welby E, et al. In vitro modeling and rescue of ciliopathy associated with IQCB1/NPHP5 mutations using patient-derived cells. Stem Cell Reports. Sept 8, 2022.

###

See more here:
NIH researchers develop gene therapy for rare ciliopathy - National Institutes of Health (.gov)

Read More...

Engensis Gene Therapy for ALS Found Safe in Small Phase 2a Trial |… – ALS News Today

Monday, September 12th, 2022

Repeated muscle injections with Engensis (VM202), Helixmiths investigational non-viral gene therapy, were generally safe and well-tolerated in people with amyotrophic lateral sclerosis (ALS), according to top-line data from a Phase 2a clinical trial.

While the sample size was too small to determine the therapys efficacy, muscle biopsies were collected and will be examined to further evaluate the underlying mechanisms of Engensis.

These data suggest that high dose, repeated treatments of Engensis, were safe and well tolerated, providing a great deal of flexibility in designing dosing schemes for future clinical studies, Helixmith stated in a company press release.

Trial analysis will continue once the full dataset is available, and the company plans to present such findings at a future conference. The next steps for Engensis development will be determined at that time.

Engensis is a non-viral gene therapy that uses Helixmiths proprietary small circular DNA molecule to deliver the hepatocyte growth factor (HGF) gene to cells in the muscle environment.

HGF provides instructions to produce a protein of the same name that helps the body form new blood vessels, prevents muscle loss, and promotes the growth and survival of nerve cells. The therapyis delivered via intramuscular (into-the-muscle) injections.

Helixsmith believes that by increasing HGF production, Engensis has the potential to promote nerve cell and muscle regeneration, thereby countering the progressive loss of motor control that characterizes ALS.

The therapy has been granted orphan drug and fast track designations by the U.S. Food and Drug Administration, both of which are intended to speed its clinical development and regulatory review.

A previous open-label Phase 1/2 trial (NCT02039401) found that four once-weekly intramuscular injections of Engensis (to a total dose of 64 mg) were safe and well-tolerated among 18 ALS patients. Signs that the therapy could slow disease progression were also observed.

These promising findings prompted the launch of a placebo-controlled Phase 2a trial, called REViVALS-1A (NCT04632225), which began patient enrollment last year. A total of 18 ALS patients experiencing motor symptoms in their limbs for four years or less were recruited at four sites in the U.S. and one in Korea.

Participants were randomized in a 2:1 ratio to receive three cycles of either Engensis or a placebo: at studys start, at two months, and at four months. Each cycle consisted of two days of injections to upper and lower limb target muscles, spaced two weeks apart (64 mg total of Engensis or a placebo).

This meant that Engensis-treated patients received a total of 192 mg of medication over the four-month period. All participants were monitored for six months from the studys start.

The trials main goal was to assess the safety and tolerability of Engensis, while efficacy measures were included as exploratory outcomes. These included changes in disability, muscle and lung function, survival, ALS-specific health-related quality of life, and the levels of muscle shrinkage biomarkers.

Top-line data showed that the investigational treatment was generally safe and well-tolerated, with no difference in the frequency of adverse events observed between the Engensis and placebo groups (83% for each).

One case of bronchitis a condition characterized by inflammation in the main airways of the lungs due to infection was observed in the Engensis group but was determined unrelated to treatment.

Injection site reactions were reported by 50% of Engensis-treated patients and 66.7% of those in the placebo group. Most of these reactions were mild or moderate in severity and temporary; no participant discontinued treatment due to the number of injections.

According to Helixmith, efficacy was unable to be evaluated due to the fact that four participants dropped out early from the small study.

Still, muscle tissue biopsies were obtained from injection sites to undergo analyses of muscle atrophy (shrinkage) biomarkers and others.

Since data on Engensis underlying mechanisms have been largely based on animal models, these results are expected to provide valuable information on the understanding of the mechanisms of actions of Engensis, and its effects on the [activity] of human genes, which will greatly help in the development of innovative medicines, the company stated in the release.

Helixmith greatly appreciates the generous and eager participation of the ALS patients, the company added.

Engensis is also being investigated across a range of conditions associated with deficits in circulation, and nerve and/or muscle damage, such as diabetic neuropathy, coronary artery disease, and Charcot-Marie-Tooth disease.

More than 500 patients have been treated with Engensis to date across 10 clinical trials and six different diseases, according to Helixmith. Data from these studies have also supported the therapys favorable safety profile and its ability to increase HGF production.

Read more from the original source:
Engensis Gene Therapy for ALS Found Safe in Small Phase 2a Trial |... - ALS News Today

Read More...

Global Cancer Gene Therapy Market Report 2022: Benefits of Gene Therapy Over Conventional Therapies Driving Adoption – ResearchAndMarkets.com -…

Monday, September 12th, 2022

DUBLIN--(BUSINESS WIRE)--The "Cancer Gene Therapy Market By Therapy, By End User: Global Opportunity Analysis and Industry Forecast, 2020-2030" report has been added to ResearchAndMarkets.com's offering.

Cancer Gene Therapy Market was valued at $1,389.42 million in 2020 and is estimated to reach $11,359.35 million by 2030, registering a CAGR of 23.3% from 2021 to 2030.

Cancer gene therapy is a technique used for the treatment of cancer where therapeutic DNA is being introduced into the gene of the patient with cancer. Owing to the high success rate during the preclinical and clinical trials, cancer gene therapy has gained popularity.

Many techniques are used for cancer gene therapy, for example, a procedure where the mutated gene is being replaced with a healthy gene or inactivation of the gene whose function is abnormal. Recently, a new technique has been developed, where new genes are introduced into the body to help fight against cancer cells.

The rise in the prevalence of cancer, the benefits of cancer gene therapy over conventional cancer therapies, and the advancement in this field are the major factors that drive the market growth.

In addition, the surge in government support, ethical acceptance of gene therapy for cancer treatment, and rise in biotechnological funding encouraging the R&D activities for cancer gene therapy and thus fuel the growth of the cancer gene therapy market.

In addition rise in awareness regarding cancer gene therapy is a major factor that drives the global cancer gene therapy market growth.

In addition, an increase in government support for research in gene therapy, ethical acceptance of gene therapy for cancer treatment, and a rise in the prevalence of cancer boost the growth of the cancer gene therapy market. However, the high cost associated with the treatment and unwanted immune responses is expected to restrain the market growth.

Key Benefits For Stakeholders

Key Market Segments

By Therapy

By End User

By Region

Key Market Players

Key findings of the Study

Key Topics Covered:

CHAPTER 1: INTRODUCTION

CHAPTER 2: EXECUTIVE SUMMARY

CHAPTER 3: MARKET OVERVIEW

CHAPTER 4: CANCER GENE THERAPY MARKET, BY THERAPY

CHAPTER 5: CANCER GENE THERAPY MARKET, BY END USER

CHAPTER 6: CANCER GENE THERAPY MARKET, BY REGION

CHAPTER 7: COMPANY LANDSCAPE

CHAPTER 8: COMPANY PROFILES

For more information about this report visit https://www.researchandmarkets.com/r/ipoqor

See the article here:
Global Cancer Gene Therapy Market Report 2022: Benefits of Gene Therapy Over Conventional Therapies Driving Adoption - ResearchAndMarkets.com -...

Read More...

As Philly becomes a hub for life sciences, a new program will train workers for jobs in the field – The Philadelphia Inquirer

Monday, September 12th, 2022

Hopes run high in Philadelphia that the region the scientific home of two of the first cell and gene therapies approved by the FDA will remain a major player as the cutting-edge treatments assume a bigger role in medicine.

To make that happen, Philadelphias life sciences industry will need not just scientists, management, and money, but also skilled workers to help laboratories run smoothly at an ever-growing number of biotech companies in the region and eventually to manufacture cures and treatments for rare diseases and elusive types of cancer.

To help build that skilled workforce, the Wistar Institute, the University City Districts West Philadelphia Skills Initiative, and partners have launched a new biomedical technician training program.

It will enroll 18 students in a 12-week paid training program at Wistar, potentially followed by an additional 10 weeks of hands-on work at Iovance Biotherapeutics Inc. in the Navy Yard and then a $23-an-hour manufacturing job. Iovance, which now employs 150 people in Philadelphia, is developing cancer treatments using cell therapy.

Iovance did not say how many of the trainees it would hire. Iovance officials will interview them after they complete the Wistar part of the training.

We expect to have a number of opportunities to which program participants can apply, Tracy Winton, Iovances senior vice president for human resources, said in a statement.

Cell and gene therapies are still in the early stages of development, but Philadelphia scientists have long played a central part. Luxturna, a gene therapy cure for a rare form of congenital blindness, and Kymriah, a cell therapy treatment for some forms of leukemia, are based on the work of Philadelphia scientists. Both received FDA approval in 2017.

Cell therapy uses modified cells to carry treatment into the body. Gene therapy involves the replacement of defective genes that cause what are typically rare diseases.

The new training effort, scheduled to start Sept. 22, builds on one started in 2000 at Wistar, a nonprofit biomedical research institute in University City, in partnership with Community College of Philadelphia. The original Wistar program, which provided general preparation for work in biotech and until this year was spread over two summers for each cohort, has graduated 196 students.

Recruitment for the new program, which Wistar designed to specifically prepare individuals for jobs at Iovance, started Aug. 23 and runs through Friday. As of last Friday morning, 263 people had applied, according to the West Philadelphia Skills Initiative (WPSI), which for a decade has been training Philadelphians for specific jobs at individual employers, such as Childrens Hospital of Philadelphia and SEPTA.

WPSI is handling recruitment selection for the Iovance training. The selection process for the 18 open spots includes an assessment of mathematical ability and an interview, said Cait Garozzo, managing director of WPSI.

Some folks, obviously, are very desperate for a job, any job, and were not trying to connect people that just want any job to this opportunity. Were trying to connect people that want a career in this industry to this opportunity, Garozzo said.

This is the first time WPSI and Wistar have worked together. Other supporters are the Chamber of Commerce of Philadelphia and the Philadelphia Industrial Development Corp.

If this is successful, we really think this could be a game changer for this region, said Kristy Shuda McGuire, dean for biomedical studies at Wistar. We think this is something we could repeat. We could have more cohorts each year if there are single employers who are interested in this and have a lab-based position and would be interested in taking a whole cohort.

The total budget for the training program was not disclosed.

Wistars original training program which expanded this year to include Montgomery County Community College and will be open to students at Bucks County Community College and Camden County College next year typically sends graduates into biotech jobs or on to further education, McGuire said.

Among the graduates of the Wistar program that have gone on to build careers in life sciences is Lois Tovinsky, 36, who completed the program in 2013 and is now laboratory operations manager for Chimeron Bio, a biotech start-up in the Curtis Building that is working on RNA therapeutics against cancer.

Tovinsky graduated from college with a degree in political science in 2008, when the economy collapsed and jobs were hard to find. She heard about the Wistar program in a science class at Community College of Philadelphia and saw it as a chance to fulfill her interest in science and leap from her job as a dog walker into a science career.

I came to the program with no practical skills in the lab, and my knowledge of science was really just the few courses I had taken and my own interest and enthusiasm that I had for it, said Tovinsky, who now mentors students in the Wistar program.

Tylier Driscoll, 21, a biology major at Community College of Philadelphia, was one of 15 students in the Wistar training cohort that finished early last month.

I definitely wanted to do something over the summer that wasnt working at Aldi, Driscoll said. Before this, I hadnt had any lab experience and I really wanted to get a feel for what it was like to work in a lab. I was working at a supermarket at the time. This is the perfect opportunity for me to get into my field.

As part of his training, he spent five weeks working at BioAnalysis LLC, a contract research organization in Kensington that performs quality analysis on the viruses used in gene therapy.

Now, Driscoll has a part-time job at BioAnalysis that he starts Tuesday, the same day he goes back to CCP for the fall semester. He plans to finish his associate degree in the spring and then attend either Drexel University or Temple University for his bachelors degree.

Lake Paul, the president and founder of BioAnalysis, which he called a minority-owned biotech, said the Wistar program is an awesome opportunity and one that reminds him of his own experience. Paul said he grew up in the hood in Miami and wouldnt have obtained his doctorate at Purdue University without the Upward Bound programs that helped him pursue education.

It is a wonderful, exciting, and unique opportunity for these students, both underrepresented folks and regular folks. And to give them actual training like this is unparalleled, said Paul.

The Philadelphia Inquirer is one of more than 20 news organizations producing Broke in Philly, a collaborative reporting project on solutions to poverty and the citys push toward economic justice. See all of our reporting at brokeinphilly.org.

See the original post:
As Philly becomes a hub for life sciences, a new program will train workers for jobs in the field - The Philadelphia Inquirer

Read More...

Charles River and Cure AP-4 Announce Gene Therapy Manufacturing Collaboration – Business Wire

Monday, September 12th, 2022

ALDERLEY PARK, England--(BUSINESS WIRE)--Charles River Laboratories International, Inc. (NYSE: CRL) and Cure AP-4, a non-profit foundation dedicated to raising funds and awareness about Adapter-Protein 4 Hereditary Spastic Paraplegia (AP-4 HSP), today announced a manufacturing collaboration. Charles River, a contract research and development manufacturing organization (CRO/CDMO), will provide High Quality (HQ) plasmid DNA for Cure AP-4s Phase I/II gene therapy trials against AP-4 HSP.

Founded in 2016 by the families of two newly diagnosed AP-4 HSP (SPG47) patients, Molly Duffy and Robbie Edwards, Cure AP-4s gene therapy treatment will look to address the root cause of AP-4 HSP, a rare neurodegenerative disorder, and is intended as a one-time, curative treatment for the patient.

What is AP-4 HSP? AP-4 HSP, also known as AP-4 Deficiency Syndrome, includes four sub-types of HSP: SPG47, SPG50, SPG51 and SPG52. Each of these HSP sub-types is associated with a defective autosomal recessive gene which causes a failure in the AP-4 Adaptor Complex. The phenotype and prognosis for each sub-type is extremely similar. Patients afflicted with any of the AP-4 HSP genetic disorders generally present with symptoms including global developmental delay, microcephaly, seizures, brain malformation, and hypotonia (low-muscle tone). The few patients who learn to walk independently tend to lose that ability a few months or few years later as they develop hypertonia (high-muscle tone) and muscle spasticity. Of the 249 currently confirmed global AP-4 HSP cases, most patients experience mobility in some or all extremities as the disorder progresses and are severely intellectually challenged.

Plasmid DNA Manufacturing ServicesThe collaboration will leverage Charles Rivers market leading expertise in plasmid DNA production, specifically HQ plasmid, which combines key features of GMP manufacture with rapid turnaround times to accelerate the timeline to clinic. DNA plasmids are a critical starting material for many cell and gene therapy therapeutics and demand continues to outstrip supply. In response to this, Charles River recently announced the opening of a state-of-the-art HQ plasmid manufacturing center of excellence to address these supply shortages and support the growing needs of the cell and gene therapy field.

Charles River, with the acquisitions of Cognate BioServices, Cobra Biologics, and Vigene Biosciences in 2021, has extended its comprehensive cell and gene therapy portfolio to include CDMO capabilities spanning viral vector, plasmid DNA and cellular therapy production for clinical through to commercial supply.

Approved Quotes

About Cure AP-4Cure AP-4, originally known as Cure SPG47, was founded in 2016 by the families of two newly diagnosed SPG47 patients, Molly Duffy and Robbie Edwards. At the time there were only nine other documented cases worldwide, and due to the extreme rarity of the disorder there are no known treatments or cures.

About Charles RiverCharles River provides essential products and services to help pharmaceutical and biotechnology companies, government agencies and leading academic institutions around the globe accelerate their research and drug development efforts. Our dedicated employees are focused on providing clients with exactly what they need to improve and expedite the discovery, early-stage development and safe manufacture of new therapies for the patients who need them. To learn more about our unique portfolio and breadth of services, visit http://www.criver.com.

Follow this link:
Charles River and Cure AP-4 Announce Gene Therapy Manufacturing Collaboration - Business Wire

Read More...

Page 10«..9101112..2030..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick