header logo image


Page 33«..1020..32333435..40..»

Archive for the ‘Death by Stem Cells’ Category

UK and Japan duo win Nobel Prize for medicine

Tuesday, October 9th, 2012

Shinya Yamanaka of Japan and John B Gurdon of Britain have won the NobelPrize for medicinefor their groundbreaking work on stem cells.

The prize committee at Stockholm's Karolinska Institute said on Monday that the two researchers were honoured "for the discovery that mature cells can be reprogrammed to become pluripotent".

The committee said the discovery had "revolutionised our understanding of how cells and organisms develop".

The award was the first Nobel Prize to be announced this year.

The physics award will be announced on Tuesday, followed by chemistry on Wednesday, literature on Thursday and the Nobel Peace Prize on Friday.

The economics prize, which was not among the original awards, but was established by the Swedish central bank in 1968, will be announced on October 15.

Gurdon is currently at the Gurdon Institute in Cambridge, while Yamanaka is a professor at Kyoto University in Japan.

Because of the economic crisis, the Nobel Foundation has slashed the prize sum to eight million Swedish kronor ($1.2 million, 930,000 euros) per award, down from the 10 million kronor awarded since 2001.

Last year, the honour went to Bruce Beutler of the United States, Jules Hoffmann of Luxembourg and Ralph Steinman of Canada, for their groundbreaking work on the immune system.

This year's laureates will receive their prize at a formal ceremony in Stockholm on December 10, the anniversary of prize founder Alfred Nobel's death in 1896.

See the original post here:
UK and Japan duo win Nobel Prize for medicine

Read More...

Walkthrough With Neuralstem

Saturday, October 6th, 2012

10/5/2012 6:38 AM ET Amyotrophic Lateral Sclerosis is a progressive neurodegenerative disease that attacks nerve cells in the brain and spinal cord, leading to complete paralysis, and eventually, death. Also known as Lou Gehrig's disease, Amyotrophic Lateral Sclerosis, or ALS, is said to affect as many as 30,000 Americans, with 5,600 new cases being diagnosed each year.

Currently, there are two FDA-approved drugs to treat ALS namely, Sanofi-Aventis' (SNY: Quote) Riluzole, which prolongs life by 2-3 months, and Avanir Pharmaceuticals Inc.'s (AVNR: Quote) Nuedexta, which treats emotional instability that accompanies this disease.

Developing a neural stem cell therapy for ALS is Rockville, Maryland-based biotechnology company Neuralstem Inc. (CUR: Quote).

For readers who are new to Neuralstem, here's a brief overview of the company's pipeline and the upcoming events to watch out for...

The company is testing its cell product - NSI-566 human spinal cord stem cells, via transplantation technique, in the treatment of ALS symptoms. The phase I NSI-566 study was completed as recently as August of this year. This groundbreaking trial, the first to be approved by the FDA to test neural stem cells in patients with ALS, began in January 2010.

The trial was designed to enroll up to 18 patients, the last of which was treated in August of this year. The entire trial concludes six months after the final surgery.

The interim data on the NSI-566 ALS trial will be updated on October 8, 2012, according to the company.

NSI-566 will also be evaluated in treating motor deficits due to ischemic stroke. The company has received approval to commence a combined phase I/II ischemic stroke trial with NSI-566 in China, and it is expected to begin early next year.

The trial is designed to test up to 118 patients who have suffered an ischemic stroke with chronic residual motor disorder with NSI-566 cell line, 4-24 months post-stroke. The duration of the combined trial, including patient monitoring and data collection, is approximately two years.

Ischemic strokes, the most common type of stroke, occur as a result of an obstruction within a blood vessel supplying blood to the brain. After a stroke, many patients suffer from paralysis in arms and legs, which can be permanent.

Excerpt from:
Walkthrough With Neuralstem

Read More...

To Combat Alzheimer's, Scientists Genetically Reprogram One Kind of Brain Cell Into Another

Friday, October 5th, 2012

A section of healthy brain tissues contrasted with brain tissue from someone who had advanced Alzheimer's disease. (Credit: National Institutes of Health, via Wikimedia Commons)

We all lose brain cells as we get older. In people with neurodegenerative diseases such as Alzheimers, Parkinsons and Huntingtons, neurons shrivel and die at alarming ratesperhaps three to four times faster than usual in Alzheimers, for example. Currently, no known drugs reliably halt or reverse such staggering cell death in people, although some drugs are thought to protect neurons from degradation.

An alternative to saving dying neuronsor perhaps a future supplemental therapyis creating brand new neurons. One way to accomplish this is transforming non-neuronal brain cells into functional neurons. On a cellular level, the brain is as diverse as a rainforest populated by many different species of trees. The human brain contains approximately 170 billion cells, 86 billion of which are neurons and 84 billion of which are glial cellsnon-firing cells that assist neurons in various ways. Star-shaped cells known as astrocytes are perhaps the best-studied of the many various glial cells and researchers have had some success converting astroyctes into neurons. Many of these studies, however, have used cells from very young rodent brains.

A study published this week suggests that its possible to turn at least one class of adult human brain cells known as pericytes into functional neurons. The fact that pericytes help defend and heal the brainand may retain some of the plasticity of stem cellsmakes them all the more appealing as candidate replacements for damaged and dying neurons.

Benedikt Berninger of Ludwig-Maximilians University Munich and his colleagues began their research project with the intent to study astrocytes, just as they have done many times before. They acquired 30 samples of brain tissue from people who were undergoing surgery for disorders such as epilepsy. Sometimes, in order to remove or treat a damaged or malfunctioning brain region, neurosurgeons cannot avoid slicing through healthy brain tissue. Surgeons routinely provide sections of such healthy tissue to researchers studying the brain.

In the lab, Berninger and his teammates grew cultures of brain cells from the tissue samples and searched for astrocytes nestled among the tiny neural gardens. As it turned out, the cultures Berninger and his colleagues grew were mostly devoid of astrocytes. Instead, their Petri dish gardens were rife with pericytesnon-neuronal brain cells that wrap themselves around the brains delicate blood vessels, regulate blood flow to neurons and help maintain the blood-brain barrier, which protects neurons from bacteria and other pathogens. Pericytes are also known to proliferate in response to injury. Researchers recently showed, for example, that pericytes are essential for the formation of scar tissue in an injured spinal cord. Some evidence even suggests that certain kinds of pericytes boast the same flexibility as mesenchymal stem cellsthey can turn into bone cells, fat cells or cartilage cells. Perhaps, Berninger and his colleagues reasoned, the plasticity of pericytescoupled with their role in healingmight make them especially useful in future treatments for neurodegenerative diseases. So they decided to try changing pericytes into neurons by reprogramming their genomes.

An astrocyte stained with green fluorescent proteins (Credit: Dantecat, via Wikimedia Commons)

Using viruses, Berninger and his team infected the pericytes in their cultures with two transcription factorsproteins that alter gene expression by binding to segments of DNA and making certain genes more or less accessible to other cellular machinery. One of the transcription factors, Mash1, is known to guide the development of the nervous system. We all begin life as a hollow ball of embryonic stem cells that eventually become the many different kinds of cells in the human body. All somatic cells in your body have the same DNA, but distinct types of cells express very different sets of genesjust as different piano songs are unique combinations of notes played on the exact same set of keys. MASH 1 is like a tiny composer inside embryonic stem cells, making sure they turn on the right combination of genes to become neurons. The second transcription factor Berninger and his colleagues introduced into pericytes was Sox2, which is highly active in stem cells and thought to make DNA more amenable to manipulation by loosening the chemical bonds between DNA and the protein scaffolding that keeps it tightly wound in a bundle called chromatin.

The scientists successfully converted between 10 and 30 percent of the pericytes in various cultures into neurons; the overall success rate was 19 percent. Out of 17 successfully converted neurons selected for further testing, 12 generated electrical impulses. Berninger and his colleagues replicated these results with brain cells from adult mice. The results appear in Cell Stem Cell.

Treating neurodegenerative diseases by genetically reprogramming brain cells is a potential avenue for therapy that researchers have just started to navigateand they will have to scale plenty of hurdles along the way. Scientists must ensure that the viruses they use to ferry genes into neurons are harmless. And they would likely have to perform risky invasive surgery to get the viruses into exactly the right region of the brain. In recent years, however, gene therapy has safely restored vision to the blind. Not only do studies like Berningers suggest that gene therapy for the brain has similar potential, they also confirm that the fates of some adult cells are not written in stonerather, they are written in highly editable DNA.

See more here:
To Combat Alzheimer's, Scientists Genetically Reprogram One Kind of Brain Cell Into Another

Read More...

Snake Venom Could Relieve Pain; Baby Mice Birthed From Stem Cells

Friday, October 5th, 2012

Discovered: A whole new type of lab mouse; black mamba venom dulls pain better than morphine; drilling deep into the Earth; microbial diversity turned into jazz.

RELATED: Appeals Court Rules Against Ban on Federal Stem Cell Funding

A palliative use for snake venom. Probably very few people would willfully put snake venom in their bodies. But if they knew that it would relieve terrible pain without any nasty side-effects, perhaps they'd be more willing to ingest black mamba venom. Researchers in France have isolated mambalgins in the snake's venom which can block pain in sensory nerves and inhibit the passage of pain signals through the central nervous system. Though their painkilling effects are on par with morphine, these mambalgins are "powerful, naturally occurring, analgesic peptides of potential therapeutic value" that "do not produce motor dysfunction, apathy, flaccid paralysis, convulsions or death upon central injections." That means that they could greatly alleviate pain without causingmany of the nasty side effects involved in taking other painkillers. [Ars Technica]

RELATED: First Fully Lab-Grown Organ Successfully Transplanted

Baby mice born from stem cells. Giving a whole new meaning to the term "lab mouse," scientists in Japan have fostered baby mice into being through stem cells. Kyoto University's Mitinori Saitouand colleagueswere able to grow "reconstituted ovaries" from the stem cells. They then fertilized the eggs using in vitro technology. The baby mice that emerged were healthy and fertile, making this the first time scientists have successfully grown baby mice through stem cell research. "Our system serves as a robust foundation to investigate and further reconstitute female germline development in vitro, not only in mice, but also in other mammals, including humans," the researchers write.[The Guardian]

RELATED: Stem Cell Breakthrough Offers Hope for Endangered Animals

Microbial jazz. The complexity of microbial life presents a unique challenge to microbiologists: how to organize and make sense of it all. Argonne National Laboratory researcher Peter Larsen came up with one interesting solution by using music to map out patterns in microbial diversity. He took data from the English Channel project, a long-running effort to collect informationon microbes living in the Western English Channel and then matched certain variables (daylight, temperature,phosphorouslevels, etc.) with chords. Concentrations of the microbes determined which scales come into play. "The same population would sound different in the key of sunlight, says Larsen, than in the key of nitrogen." Jazz is the most suitable genre, Larsen found, because it best mimics the spontaneity he observes when looking at microbes under the microscope. Listen to microbial diversity swing below. [Tooth & Claw]

RELATED: Oklahoma Legislator Doesn't Really Think We're Eating Fetuses

RELATED: An Alternative to Embryonic Stem Cells; Some Fish Can Handle Climate Change

Journey to the center of the Earth. OK, maybe not all the way down to the inner core, but scientists are planning to drill quite deep into the Earth in an effort by the internationalIntegrated Ocean Drilling Program(IODP). What we know so far about the layers of the Earth come from computer simulations, mostly, but IODP plans to change that by drilling 3.7 miles into the Earth beneath the Pacific Ocean. There, the drill will retrieve the first-ever samples to be collected from within the Earth's mantle. One of the project's leaders, the University of Southampton in England's Damon Teagle, says this will be "the most challenging endeavor in the history of earth science." Japanese scientists currently hold the tunneling depth record, having drilled 7,000 feet below the seafloor last month.We currently know more about the surface of Mars than what lies just beneath the Earth's crust, and this project hopes to fix that irony. [Smithsonian]

Read more from the original source:
Snake Venom Could Relieve Pain; Baby Mice Birthed From Stem Cells

Read More...

ORF Genetics to Offer endotoxin- and Animal-free FGFb and mLIF for Stem Cell Research

Thursday, October 4th, 2012

REYKJAVIK, Iceland, October 4, 2012 /PRNewswire/ --

ORF Genetics announced today that the company has added endotoxin- and animal-free human Fibroblast Growth Factor Basic (FGF basic) and mouse Leukemia Inhibitory Factor (mouse LIF) to its portfolio of growth factors for stem cell research.

Most growth factors applied in stem cell research today are made in E. coli bacteria, which produce endotoxins that can have adverse effect on stem cell cultures. Other manufacturers of growth factors have various methods to remove these endotoxins, but traces inevitably remain, which can lead to increased death rate of cells and other suboptimal effects in cell cultures. Other growth factors on the market today are made by animal cells. However, most stem cell researchers prefer to use growth factors of non-animal origin to exclude risks of viral contamination and the inclusion of growth factor homologs.

This has led to a market demand for alternative sources of animal-free growth factors, void of endotoxins. ORF Genetics' unique growth factors are produced in the seeds of the barley plant, which does not produce any endotoxins or other substances toxic to mammalian cells.

FGF basic and mouse LIF are key growth factors for the cultivation of their respective stem cells, i.e. FGF basic for human stem cells and mouse LIF for mouse stem cells. Each protein is used to expand the stem cells' populations before researchers make them differentiate into various cell types, such as heart, liver or neural cells.

"ORF Genetics has built a reputation for offering the first plant-made, endotoxin-free and animal-free growth factor portfolio for stem cell researchers. As we are producing these growth factors in our novel plant expression system ORFEUS, we are very happy to be able to offer these high quality growth factors at more efficient prices than market leaders," said Bjrn rvar, CEO of ORF Genetics.

ORF Genetics is a world leader of plant made growth factors and offers a portfolio of endotoxin- and animal-free growth factors for human stem cell research. The company's production takes place in a biorisk-free production system in barley, bypassing conventional bacteria and animal cell production systems. The cultivation of barley takes place in greenhouses in inert volcanic pumice, using renewable geothermal energy.

For more information please contact:

Dr. Hakon Birgisson, Director of Global Market Development Tel: +354-821-1585 email:hakon.birgisson@orfgenetics.com

Original post:
ORF Genetics to Offer endotoxin- and Animal-free FGFb and mLIF for Stem Cell Research

Read More...

New stem cell research could bring choices to heart patients

Thursday, October 4th, 2012

Contributed photo

Dr. Nabil Dib

They're called "no-option patients."

They've endured angioplasty, stent procedures, bypasses and a long line of medications. None of the treatments has fixed the plaque-plugged coronary arteries that trigger angina, starve the heart of blood and force people to hunch in pain after walking twoblocks.

Adult stem cell research at an Oxnard hospital is aimed at giving themchoices.

"A patient who has no hope will have some hope," said Dr. Nabil Dib, a world-renowned researcher partnering with St. John's Regional Medical Center. "It's a hope for potential therapy that will revise the way we treat cardiovasculardisease."

Stem cells are blank cells that function as the body's building blocks. They are able to grow into many different kinds of cells, including blood, muscle and tissue. Dib's work involves adult stem cells harvested from his patients, as opposed to stem cells that come from embryos and trigger ethicaldebates.

In a clinical trial starting at St. John's and 49 other hospitals across the country, the adult stem cells will be isolated and used to create new blood vessels. It's a way of manipulating the body into building new pathways for blood flow impeded by barricadedarteries.

"We're doing like a bypass a biological bypass," Dibsaid.

The trial is part of a genre of research aimed at using the body's own resources to repair the heart. It could reduce consequences ranging from heart transplants and hospitalizations to heart failure anddeath.

See original here:
New stem cell research could bring choices to heart patients

Read More...

World Renowned Scientists and Advocates to Celebrate and Shine Light on Stem Cell Breakthroughs

Tuesday, October 2nd, 2012

IRVINE, CA--(Marketwire - Oct 1, 2012) - Oct. 3 marks International Stem Cell Awareness Day, a global celebration where leading scientists, researchers and supporters will acknowledge the scientific advances of stem cell research and its ability to potentially treat a variety of diseases and injuries in the 21st century. This dedicated community is committed to unlocking the potential of stem cells and has made significant strides since the discovery of a method to grow human stem cells less than 15 years ago.

"This is a critical and historic time for stem cell research," said Peter Donovan, Ph.D., director, Sue & Bill Gross Stem Cell Research Center, UC Irvine. "We're literally on the brink of developing new treatments for some of the world's most devastating diseases and injuries. The act of simply raising awareness about this research is one of the best things people can do to help accelerate the process. This event is a great opportunity for everyone to help spread the word and build momentum through a timely mass effort."

Scientists at UC Irvine and other research facilities around the globe continue to work diligently to develop therapies to treat life threatening and debilitating conditions such as Alzheimer's disease, multiple sclerosis, macular degeneration, cancer, Huntington's disease, Parkinson's disease, brain disorders and paralysis caused by spinal cord injuries. These efforts continue to give hope to millions who suffer from these devastating conditions by offering revolutionary treatments and potential cures.

There are several research programs taking place at the Sue & Bill Gross Stem Cell Research Center at UC Irvine that continue to break down barriers and open doors to new treatments for major diseases and injuries:

Spinal Cord and Traumatic Brain Injuries: Neurobiologist Hans Keirstead, Ph.D., as well as husband and wife scientists Aileen Anderson, Ph.D., and Brian Cummings, Ph.D., are conducting stem cell studies to develop treatments for the more than 1.3 million Americans who suffer from spinal cord injuries. Their advancements have led to the world's first clinical trial of human neural stem cell-based therapy for chronic spinal cord injuries (Anderson/Cummings) and the first FDA approved clinical trials using embryonic stem cells (Keirstead). Their research is significant because no drug or other forms of treatment have been able to restore function for those suffering from paralysis. In addition, Cummings and Anderson are applying their stem research to traumatic brain injury, a leading cause of death and disability worldwide, especially in children and young adults.

Alzheimer's Disease: An estimated 35 million people worldwide suffer from Alzheimer's disease, five million of whom live in the U.S. Frank LaFerla, Ph.D., director of UC Irvine's Institute for Memory Impairments and Neurological Disorders, and Matthew Blurton-Jones, Ph.D., of the Sue & Bill Gross Stem Cell Research Center, UC Irvine, have shown for the first time that neural stem cells can rescue memory in mice with advanced Alzheimer's disease, raising hope for a potential treatment in humans. Their work is expected to move to clinical trials in less than five years.

Huntington's Disease: Huntington's disease is a degenerative and ultimately fatal brain disorder that takes away a person's ability to walk, talk and reason. It affects about 30,000 people in the U.S. with another 200,000 or more likely to inherit the disorder. Leslie Thompson, Ph.D., and her team of researchers are currently investigating new stem cell lines and techniques to support the area of the brain that is susceptible to the disease with the hope of developing a cure for future generations.

Macular Degeneration, Retinitis Pigmentosa and Inherited Blindness: Henry Klassen, M.D., Ph.D. has focused his stem cell research on regenerating damaged retinal tissue to restore sight to people suffering from retinitis pigmentosa (an inherited form of degenerative eye disease) and macular degeneration which usually affects older people and leads to loss of vision. Macular degeneration affects millions of Americans. His work hopes to find cures and treatments for corneal and retinal eye disease.

New Website Helps Spread the Word Online To commemorate International Stem Cell Awareness Day and encourage support of stem cell research, an interactive website has been created. Advocates are asked to visit http://www.StemCellsOfferHope.com and share online a wide range of key facts, downloadable images and links to other valuable resources within their social networks.

International Stem Cell Awareness Day Events at UC Irvine The Sue & Bill Gross Stem Cell Research Center at UC Irvine will celebrate International Stem Cell Awareness Day by hosting three special events. An open house will take place on Oct. 1 for high school students. A UC Irvine student, faculty and staff open house will take place on Oct. 2. Finally, an all-day science symposium on Oct. 3 will feature a "Meet the Scientist" interactive forum. The forum and symposium are open to all UC Irvine scientists, clinicians, graduate students, post-docs and members of the community. To RSVP for any these events or for more information, include the name of the event in the subject line and email stemcell@research.uci.edu.

View original post here:
World Renowned Scientists and Advocates to Celebrate and Shine Light on Stem Cell Breakthroughs

Read More...

Understanding aging: Stem cell dysfunction links cancer and aging

Tuesday, October 2nd, 2012

ScienceDaily (Oct. 1, 2012) Aging is a complex biological process whereby the functional capacity of the body diminishes with time, ultimately leading to the death of the individual. However, aging is also associated with the onset of many diseases, including cancer, which is often called a "disease of aging." While aging has major effects on the individual, it also represents a significant burden on society as a major healthcare cost. Therefore, it is of chief importance to understand the normal process of aging to help improve not only the lifespan of individuals, but also their healthspan; in other words, to enable people to live longer, healthier lives.

Despite significant worldwide research, the causes of aging remain poorly understood. In particular, why the body undergoes a functional decline over the course of time is not entirely clear. Now, a new study from researchers at the CRG has uncovered a significant clue in understanding how aging may occur, and how this may promote the development of diseases such as cancer.

In this study, the researchers studied the skin of young and old mice, as the skin is one of the most obvious tissues to undergo aging. Indeed many of the visible features of aging are the result of skin aging, including loss of hair growth, wrinkling and thinning of the skin and a reduced wound-healing ability.

In the skin, as in the rest of the body, the tissue is constantly in a state of turnover, replenishing itself by replacing dead and damaged cells with new healthy ones. To achieve this, each tissue relies on populations of specialized cells known as stem cells. "These cells are unique in their ability, as they are able to grow and differentiate into all the other different cells types in the tissue, as well as tolerating stress and damage better than non-stem cells. This process of rejuvenation and renewal is something that was thought to occur all throughout life" says Jason Doles, the first author on the study and a postdoctoral researcher at the CRG.

In this work, the researchers have studied skin stem cells during the aging process to see if changes in stem cell function might contribute to aging. Their major finding is that during the aging process, skin stem cells actually lose their ability to function properly. "We have discovered that major changes occur in these stem cells during aging, whereby stem cells exhibit impaired growth in older animals as compared to their more youthful counterparts. We also found that the aged stem cells are not able to tolerate stress as well as young stem cells, strongly supporting the idea that changes in stem cell function might actually drive the aging process" says Bill Keyes, group leader of the Mechanisms of Cancer and Aging lab at the CRG and lead author of the study.

The report goes further, uncovering novel processes driving skin stem cell aging, and linking the aging process with diseases such as cancer. In fact, a recent study from the same group, demonstrated that these same stem cells become deregulated during the development of squamous cell carcinoma, a deadly type of skin cancer. The current study performed high-throughput profiling of the aging stem cells and identified a likely cause of the loss of function during aging. They demonstrated that during normal aging, the entire skin changes and produces many different proteins that mediate inflammation, and that it is the abnormal production of these inflammatory-mediators that contributes to the decline of stem cell function. Given that the link between inflammation and the development of cancer has been long known, the current study uncovers important findings on how the two might be linked.

Altogether, these findings help to explain what is likely a major cause of the aging process and how this develops, opening the door for future studies that may help to alleviate aspects of the aging process. But in addition, with the identification of inflammation as a cause of stem cell dysfunction, the study also uncovers likely causes in the development of cancer.

The research has been funded by the Spanish Ministry for Science and Innovation and the Centre for Genomic Regulation (CRG).

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

View original post here:
Understanding aging: Stem cell dysfunction links cancer and aging

Read More...

Aggressive cancer exploits Myc oncogene to amplify global gene activity

Sunday, September 30th, 2012

ScienceDaily (Sep. 27, 2012) For a cancer patient, over-expression of the MYC oncogene is a bad omen. Scientists have long known that in tumor cells, elevated levels of MYC's protein product, c-Myc, are associated with poor clinical outcomes, including increased rates of metastasis, recurrence, and mortality. Yet decades of research producing thousands of scientific papers on the subject have failed to consistently explain precisely how c-Myc exerts its effects across a broad range of cancer types. Until now, that is.

The prevailing theory emerging from this massive body of research has been that in tumor cells, c-Myc affects the expression of specific genes or sets of genes -- that so-called Myc target genes are being selectively activated or repressed, leading to aberrant cellular behavior. Now, however, researchers in the lab of Whitehead Institute Member Richard Young are dispelling this commonly held notion, showing that elevated expression of c-Myc amplifies the activity of all expressed genes in tumor cells of multiple cancer types. It turns out that high levels of c-Myc send a tumor cell's gene expression program into overdrive. Transcription increases dramatically, allowing malignant cells to overwhelm factors that might normally hamper their growth and proliferation. This surprising finding, published in this week's issue of the journal Cell, provides a simple, elegant explanation for how a single protein can have such profound effect in so many and varied types of cancer. The newly revealed mechanism may also help scientists develop novel therapeutic approaches that disrupt c-Myc's activity.

"MYC is a key driver in most major cancers, but it has been notoriously difficult to drug," says Young, who is also a professor of biology at MIT. "Now that we know the mechanism by which c-Myc acts, we can go after the components of that mechanism as potential drug targets. This research creates an even stronger impetus to find a way to drug the thing."

One potential drawback to thwarting c-Myc's activity is the important role it plays in normal cell division. That role is so powerful that cells co-evolved an emergency death pathway to keep c-Myc expression in check. If c-Myc's production spins out of control in an otherwise normal cell, the cell immediately commits suicide through a process called apoptosis. But in cancer cells in which c-Myc is overproduced, this suicide pathway is compromised, allowing the cell to survive and proliferate.

"MYC is the most deregulated gene in cancer," says Charles Lin, a graduate student in the Young lab and co-author of the Cell paper. "It's been called a bad-boy, a Swiss army knife, and a jack-of-all-trades because, according to previous research, it could do everything under the sun in a cancer cell. But most of the different attributes ascribed to MYC are contradictory or seemingly incompatible."

Propelled by its earlier research that identified c-Myc as an important regulator of transcription in embryonic stem cells, the Young lab began to focus on c-Myc's activity within cancer cells. Lab members found that as the expression of c-Myc increases in these cells, the protein attaches to the promoters and enhancers of all active genes, thereby amplifying the active genes' transcription. The heightened transcription produces cells bloated with excessive RNAs and proteins capable of altering normal cellular functions. Researchers observed this phenomenon in cells from a host of cancers, including Burkitt's lymphoma, small cell lung cancer, multiple myeloma, and glioblastoma multiforme.

"The previous research now makes sense -- finally!" says Jakob Lovn, co-author and postdoctoral researcher in the Young lab. "Our findings provide a way to unify everybody's seemingly conflicting data. I think that's really nice. Instead of saying 'you're all wrong,' we're saying 'you're all right, and here's why.' The model makes a lot of sense in terms of the biology that has been described so far."

With a better understanding of how c-Myc can wreak so much damage, the Young lab is turning its efforts to disrupting c-Myc's activity. Although cancer cells that overproduce c-Myc are associated with poor clinical outcomes, their reliance on c-Myc for survival may represent an Achilles' heel. When these "Myc-addicted" cells are deprived of c-Myc in vitro, even for a short period of time, they quickly die. Research in mice has shown that, Myc-addicted tumors deprived of the protein shrink dramatically. Despite c-Myc's necessary role in normal cell division, particularly in tissues with rapid cell turnover, such as the intestine and blood, these mouse studies have shown that if c-Myc activity is restored after a brief period, normal tissues quickly bounce back, while tumors are unable to regain their footing.

"So what we think now is that potentially, if drugs can tune down the levels of transcription just slightly, this might be catastrophic for the Myc-addicted cancer cells," says Peter Rahl, co-author and postdoctoral researcher in the Young lab. "You wouldn't need to abolish all transcription because that would be toxic to your other cells. So we're hoping that our model will show us ways to create a therapeutic window where the Myc-addicted cells just won't be able to adapt to lower levels of transcripts."

This work was supported by National Institutes of Health (grants HG002668 and CA146445), Swedish Research Council, American Cancer Society, and Damon-Runyon Cancer Research Foundation.

Read the original:
Aggressive cancer exploits Myc oncogene to amplify global gene activity

Read More...

MultiCell Technologies To Announce Positive Preclinical Results at 2012 ASCB Meeting

Sunday, September 30th, 2012

WOONSOCKET, R.I., Sept. 27, 2012 /PRNewswire/ --MultiCell Technologies, Inc. (OTC Bulletin Board: MCET) is pleased to announce the acceptance by the American Society for Cell Biology (ASCB) of abstract "Short Synthetic Double Stranded RNA with Dual Activity - Oncolytic and Immune Modulatory - for Hepatocellular Carcinoma." The preclinical research results will be presented by Anand Ghanekar M.D., Ph.D., Division of Cellular & Molecular Biology, Toronto General Hospital Research Institute, at the 2012 ASCB Annual Meeting in San Francisco, CA, December 15-19, 2012.

Poster Session: Cancer Therapy II Day/Date of Presentation: Tuesday, December 18, 2012 Time of Presentation: 12:30 PM - 2:00 PM PST Place: Exhibit Halls A-C Presentation Number: 2444 Board Number: B1425

Dr. Ghanekar's research was supported by MultiCell via a sponsored research grant with the University Health Network, Toronto General Hospital Research Institute, Ontario, Canada. The research results to be presented by Dr. Ghanekar support further mechanistic and in vivo studies exploring the safety, effectiveness and utility of MCT-465 and MCT-485 as novel therapeutic agents as a treatment for hepatocellular carcinoma and other cancers.

About MCT-465 and MCT-485 MCT-465 and MCT-485 are the first of a family of prospective cancer therapeutics based on the use of our patented TLR3 signaling technology. MCT-465 and MCT 485 are in preclinical development, and are being investigated as prospective treatments for primary liver cancer and triple negative breast cancer.

The immune system is composed of two synergistic elements: the innate immune system and the adaptive immune system. Stimulation of the innate immune system through key receptors plays a critical role in triggering the adaptive immune response stimulating T and B cells to produce antibodies. In cancer, this integrated defense system does not work well, resulting in suboptimal activation of innate immunity and thus, late or inefficient adaptive immunity. The innate immune system is composed of a family of ten receptor molecules, the Toll-like Receptors (TLR1-TLR10), which act as sentries to identify invaders and signal the alarm to mobilize the body's array of immune defenses.

Within the tumor lesion, there may be infiltrating monocytes, dendritic cells and leukocytes in general, that have the capability to mobilize an adaptive or innate immune response but they are either silent or immune suppressive in the absence of select immune interventions. Such infiltrating non-cancerous immune cells may express TLR3, other TLRs, RIG-I and/or MDA-5. In addition, within tumor lesions, there may be cancerous cells or stromal cells or cancer stem cells which express TLR3, other TLRs, RIG-I and MDA-5 (representing RNA-sensing molecules).

Cancer stem cells are thought to play a role in a tumor's resistance to therapy. While significant progress has been made in developing cancer therapies that result in cytoreduction and thus tumor regression, the control of cancer over a longer interval and especially of metastatic disease, remains a key goal. Cancer stem cells are believed to be responsible for cancer relapse by being less sensitive to conventional therapies.

MultiCell owns exclusive rights to two issued U.S. patents (6,872,389 and 6,129,911), one U.S. patent application (U.S. 2006/0019387A1), and several corresponding issued and pending foreign patents and patent applications related to the isolation and differentiation of liver stem cells. The role of liver stem cells in the carcinogenic process has recently led to a new hypothesis that hepatocellular carcinoma arises by maturation arrest of liver stem cells.

Double stranded RNA (dsRNA) provides a therapeutic avenue for cancer treatment through (a) activating intra-tumoral leukocytes, abrogating their immune suppressive activity and/or (b) interacting with cancerous cells and directly inducing apoptosis, or indirectly through mobilization of immune effector mechanisms.

MCT-465 is a high molecular weight synthetic dsRNA (polyA:polyU, of 70bps) with immune enhancing properties. The mechanism of action of MCT-465 is pleiotropic and mediated by RNA sensors such as TLR3, 7/8, MDA-5 and RIG-I - expressed by antigen presenting cells and select cases, by tumor cells:

Original post:
MultiCell Technologies To Announce Positive Preclinical Results at 2012 ASCB Meeting

Read More...

Study Shows Stem Cells May Prevent And Cure Alzheimer's

Sunday, September 30th, 2012

SEOUL, South Korea, Sept. 26, 2012 /PRNewswire/ --In the first study of its kind, researchers at Korea's leading university and the RNL Bio Stem Cell Technology Institute announced this week the results of a study that suggests an astounding possibility: adult stem cells may not only have a positive effect on those suffering from Alzheimer's disease, theycanprevent the disease.Using fat-derived adultstem cells from humans [scientific term:adMSCs, orhuman, adipose-derived mesenchymal stem cells], researchers were able to cause Alzheimer's disease brains in animal models to regenerate. The researchers, for the first time in history, used stem cells toidentify the mechanism that is key to treatment of Alzheimer's disease, and demonstrated how to achieve efficacy as well as prevention of the symptoms of Alzheimer's with adult stem cells, a "holy grail" of biomedical scientists for decades.

Alzheimer's disease, the most common form of dementia (loss of brain function), is the 6th leading cause of death, and affects 1 in 8 people -- more than breast cancer. As of 2010, there were 35.6 million people with Alzheimer's disease in the world, but this number is expected to double every 20 years. It is estimated that the total cost of Alzheimer's is US $604 billion worldwide, with 70% of this cost in the US and Europe. To put that in perspective, Alzheimer's care costs more than the revenues of Wal-Mart (US$414 billion) and Exxon Mobil (US$311 billion), according to the British World Alzheimer's Report of ADI. The cost of Alzheimer's is at the top of health economists' list of the disorders of aging that could topple nations' entire economies, and that regularly ruin not only the lives of patients but of their relatives.

According to the results of this first major study, Alzheimer's may soon be a preventable disease, or even a thing of the past. Equally important, the safety human administration of the kind of adult stem cells used in this experiment has been established in multiple articles and government-approved clinical trials.

THE RESEARCH:

The study was jointly led by Seoul National University Professor Yoo-Hun Suh and RNL Bio Stem Cell Technology Institute (SCTI) director Dr. Jeong-Chan Ra.

The researchers and their teams injected stem cells into mice genetically designed to have the core symptoms and physiology of Alzheimer's disease. They were able to identify that these human stem cells, derived from adipose tissue, behave in a very special way when injected into the tail vein of mice subjects. The cells migrated through the blood brain barrier, thought by many to be impossible for adult stem cells to cross, and went into the brain. In fact,fluorescent labeled cells were monitored for distribution in subjects and the team identified that the infused cells migrated throughout the bodiesincluding brainexcept the olfactory organ, and therefore confirmed that IV infused stem cell can reach to the brain across the blood brain barrier.

The team infused human adipose stem cells intravenously in Alzheimer model mice multiple times two weeks apart from three month to 10 month.Once there, the mice who received cells improved in every relevant way: ability to learn, ability to remember, and neuropathological signs. More important, for the first time ever, Alzheimer model mice showed the mediation of IL-10, which is known for anti-inflammation and neurological protection.

The team also found that stem cell restored special learning ability from Alzheimer model subjects with great reduction of neuropathy lesions.This was found using tests used for Alzheimer's disease: behavioral assessment. In assessment it was found, amazingly, that stem cells' therapeutic effect on Alzheimer's disease was tremendous. This was also found in pathological analysis. The key though was prevention: the scientists showed that stem cells, when infused into Alzheimer's mice, decreased beta amyloid and APP-CT, known to cause brain cell destruction, leading to dementia and Alzheimer's disease. In the lab it was clear that stem cells increased neprilysin, which hydrolyzes toxic proteins. No other compound or treatment has ever suggested so strongly the potential to prevent, as well as stop, this epidemic of incurable dementia sweeping across suffering patients and their families.

Stopping Alzheimer's disease, let alone preventing it, is the focus of thousands of researchers worldwide. Speaking of their breakthrough discovery,Professor Yoo-Hun Suh, who led the study, said, "It is a ground breaking discovery that such a simple method as IV injection of the safest autologous adipose stem cells, without causing any immune rejection, or any ethical issues, opened a new door to conquering Alzheimer's disease, one of the most horrible, expensive and incurablediseases of our time." Joining him, leader of the RNL Bio Stem Cell Technology InstituteDr. Jeong-Chan Ra said, "It has never been more clear that it is an ethical imperative for governments to provide patients with incurable diseases with their right to participate not only in studies like this but in therapies with such obvious potential, once they have been tested as many times for safety as has our technology." Both scientists stressed that the real breakthrough in their complex research is the prevention of the onset of symptoms.

Specifically, stem cells grafted in the brain, in another part of the study, were identified to induce cell division and neuro differentiation of endogenous neuro progenitor cells around the hippocampus and its surrounding cells and increase in great deal the stability of dendrites and synapses. Stem cell also contributed various anti-inflammatory and neuro growth factors, especially increased the expression of IL-10. This again suppressed apoptosis of brain neurons, the prevention effect against Alzheimer's disease.

See the original post here:
Study Shows Stem Cells May Prevent And Cure Alzheimer's

Read More...

Huntington’s disease neurons created from stem cells

Friday, June 29th, 2012

An international consortium of Huntington's disease experts, including several from the Sue & Bill Gross Stem Cell Research Center at UC Irvine and the UCSF Gladstone Institutes, has generated a human model of the deadly inherited disorder directly from the skin cells of affected patients.

The re-created neurons, which live in a petri dish, will help researchers better understand what disables and kills brain cells in people with HD and let them gauge the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

UCI scientists were part of a consortium that in 1993 identified the autosomal dominant gene mutation responsible for HD, but there is still no cure, and no treatments are available to even slow its onset or progression. The research, published online today in the journal Cell Stem Cell, is the work of the Huntington's Disease iPSC Consortium. Participants examined several other cell lines and control cell lines to ensure that their results were consistent and reproducible in different labs.

"Our discovery will enable us for the first time to test therapies on human Huntington's disease neurons," said Leslie Thompson, UCI professor of psychiatry & human behavior and neurobiology & behavior, one of the world's leading HD experts and a senior author of the study. "This has been a remarkable time in HD research, with the advent of stem cell technologies that have allowed these scientific advancements. Also, having a team of scientists working together as a consortium has benefited the research tremendously and accelerated its pace."

Huntington's is such a rare disease, although it is the most common inherited neurodegenerative disorder. It afflicts approximately 30,000 people in the United States-with another 75,000 people carrying the gene that will eventually lead to it.

"An advantage of this human model is that we now have the ability to identify changes in brain cells over time-during the degeneration process and at specific stages of brain-cell development," said Gladstone Senior Investigator Dr. Steve Finkbeiner. "We hope this model will help us more readily uncover relevant factors that contribute to Huntington's disease and especially to find successful therapeutic approaches."

UC Irvine press release

Gladstone Institutes press release

Read the rest here:
Huntington’s disease neurons created from stem cells

Read More...

Turning skin cells into brain cells

Friday, June 29th, 2012

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Stephanie Desmon sdesmon1@jhmi.edu 410-955-8665 Johns Hopkins Medical Institutions

Johns Hopkins researchers, working with an international consortium, say they have generated stem cells from skin cells from a person with a severe, early-onset form of Huntington's disease (HD), and turned them into neurons that degenerate just like those affected by the fatal inherited disorder.

By creating "HD in a dish," the researchers say they have taken a major step forward in efforts to better understand what disables and kills the cells in people with HD, and to test the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

Although the autosomal dominant gene mutation responsible for HD was identified in 1993, there is no cure. No treatments are available even to slow its progression.

The research, published in the journal Cell Stem Cell, is the work of a Huntington's Disease iPSC Consortium, including scientists from the Johns Hopkins University School of Medicine in Baltimore, Cedars-Sinai Medical Center in Los Angeles and the University of California, Irvine, as well as six other groups. The consortium studied several other HD cell lines and control cell lines in order to make sure results were consistent and reproducible in different labs.

The general midlife onset and progressive brain damage of HD are especially cruel, slowly causing jerky, twitch-like movements, lack of muscle control, psychiatric disorders and dementia, and eventually death. In some cases (as in the patient who donated the material for the cells made at Johns Hopkins), the disease can strike earlier, even in childhood.

"Having these cells will allow us to screen for therapeutics in a way we haven't been able to before in Huntington's disease," says Christopher A. Ross, M.D., Ph.D., a professor of psychiatry and behavioral sciences, neurology, pharmacology and neuroscience at the Johns Hopkins University School of Medicine and one of the study's lead researchers. "For the first time, we will be able to study how drugs work on human HD neurons and hopefully take those findings directly to the clinic."

Ross and his team, as well as other collaborators at Johns Hopkins and Emory University, are already testing small molecules for the ability to block HD iPSC degeneration. These small molecules have the potential to be developed into novel drugs for HD.

The ability to generate from stem cells the same neurons found in Huntington's disease may also have implications for similar research in other neurodegenerative diseases such as Alzheimer's and Parkinson's.

See the original post:
Turning skin cells into brain cells

Read More...

Human model of Huntington's disease created from skin's stem cells

Friday, June 29th, 2012

ScienceDaily (June 28, 2012) An international consortium of Huntington's disease experts, including several from the Sue & Bill Gross Stem Cell Research Center at UC Irvine, has generated a human model of the deadly inherited disorder directly from the skin cells of affected patients.

The re-created neurons, which live in a petri dish, will help researchers better understand what disables and kills brain cells in people with HD and let them gauge the effects of potential drug therapies on cells that are otherwise locked deep in the brain.

UCI scientists were part of a consortium that in 1993 identified the autosomal dominant gene mutation responsible for HD, but there is still no cure, and no treatments are available to even slow its onset or progression. The research, published online June 28 in the journal Cell Stem Cell, is the work of the Huntington's Disease iPSC Consortium. Participants examined several other cell lines and control cell lines to ensure that their results were consistent and reproducible in different labs.

"Our discovery will enable us for the first time to test therapies on human Huntington's disease neurons," said Leslie Thompson, UCI professor of psychiatry & human behavior and neurobiology & behavior, one of the world's leading HD experts and a senior author of the study. "This has been a remarkable time in HD research, with the advent of stem cell technologies that have allowed these scientific advancements. Also, having a team of scientists working together as a consortium has benefited the research tremendously and accelerated its pace."

Leslie Lock, a UCI assistant professor of developmental & cell biology and biological chemistry whose lab helped develop the induced pluripotent stem cells (iPSC), added: "It's exciting to be carrying out work that provides hope for HD patients and their families."

Thompson said that UCI scientists will use the new model to study the specific gene expression changes in human brain cells that trigger the onset of HD, helping them understand how these changes happen and how to correct them.

Huntington's disease afflicts about 30,000 people in the U.S. -- typically striking in midlife -- and another 75,000 carry the gene that will eventually lead to it. Caused by a mutation in the gene for a protein called huntingtin, the disease damages brain cells so that individuals with HD progressively lose their ability to walk, talk and reason. It invariably culminates in death. While rare, HD is the most common inherited neurodegenerative disease.

Alvin King, Malcolm Casale, Sara Winokur, Gayani Batugedara, Marquis Vawter and Peter Donovan of UCI contributed to the study.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

Read more:
Human model of Huntington's disease created from skin's stem cells

Read More...

Scientists Correct Huntington's Mutation in Induced Pluripotent Stem Cells

Friday, June 29th, 2012

Newswise Researchers at the Buck Institute have corrected the genetic mutation responsible for Huntingtons Disease (HD) using a human induced pluripotent stem cell (iPSC) that came from a patient suffering from the incurable, inherited neurodegenerative disorder. Scientists took the diseased iPSCs, made the genetic correction, generated neural stem cells and then transplanted the mutation-free cells into a mouse model of HD where they are generating normal neurons in the area of the brain affected by HD. Results of the research are published in the June 28, 2012 online edition of the journal Cell Stem Cell.

iPSCs are reverse-engineered from human cells such as skin, back to a state where they can be coaxed into becoming any type of cell. They can be used to model numerous human diseases and may also serve as sources of transplantable cells that can be used in novel cell therapies. In the latter case, the patient provides a sample of his or her own skin to the laboratory. We believe the ability to make patient-specific, genetically corrected iPSCs from HD patients is a critical step for the eventual use of these cells in cell replacement therapy, said Buck faculty Lisa Ellerby, PhD, lead author of the study. The genetic correction reversed the signs of disease in these cells the neural stem cells were no longer susceptible to cell death and the function of their mitochondria was normal. Ellerby said the corrected cells could populate the area of the mouse brain affected in HD, therefore, the next stage of research involves transplantation of corrected cells to see if the HD-afflicted mice show improved function. Ellerby said these studies are important as now we can deliver patient-specific cells for cell therapy, that no longer have the disease causing mutation.

Huntington's disease (HD) is a devastating, neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and psychiatric problems. It typically becomes noticeable in mid-adult life, with symptoms beginning between 35 and 44 years of age. Life expectancy following onset of visual symptoms is about 20 years. The worldwide prevalence of HD is 5-10 cases per 100,000 persons. More than a quarter of a million Americans have HD or are "at risk" of inheriting the disease from an affected parent. Key to the disease process is the formation of specific protein aggregates (essentially abnormal clumps) inside some neurons.

All humans have two copies of the Huntingtin gene (HTT), which codes for the protein Huntingtin (Htt). Part of this gene is a repeated section called a trinucleotide repeat, which varies in length between individuals and may change between generations. When the length of this repeated section reaches a certain threshold, it produces an altered form of the protein, called mutant Huntingtin protein (mHtt). Scientists in the Ellerby lab corrected the mutation by replacing the expanded trinucleotide repeat with a normal repeat using homologous recombination. Homologous recombination is a type of genetic recombination where two molecules of DNA are exchanged. In this case the diseased DNA sequence is exchanged for the normal DNA sequence.

Contributors to the work: Mahru An and Ningzhe Zhang are shared first authors of this study. Other Buck Institute researchers involved in the study include Gary Scott, Daniel Montoro, Tobias Wittkop, and faculty members Sean Mooney and Simon Melov. The work was funded by the Buck Institute and the National Institutes of Health.

About the Buck Institute for Research on Aging The Buck Institute is the U.S.s first and foremost independent research organization devoted to Geroscience focused on the connection between normal aging and chronic disease. Based in Novato, CA, The Buck is dedicated to extending Healthspan, the healthy years of human life and does so utilizing a unique interdisciplinary approach involving laboratories studying the mechanisms of aging and those focused on specific diseases. Buck scientists strive to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimers and Parkinsons, cancer, cardiovascular disease, macular degeneration, diabetes and stroke. In their collaborative research, they are supported by the most recent developments in genomics, proteomics and bioinformatics. For more information: http://www.thebuck.org.

Original post:
Scientists Correct Huntington's Mutation in Induced Pluripotent Stem Cells

Read More...

Huntington's Research Tool Developed Using Stem Cells

Friday, June 29th, 2012

Main Category: Huntingtons Disease Also Included In: Stem Cell Research Article Date: 28 Jun 2012 - 9:00 PDT

Current ratings for: Huntington's Research Tool Developed Using Stem Cells

Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.

As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.

"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."

The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.

The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.

"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."

Read this article:
Huntington's Research Tool Developed Using Stem Cells

Read More...

Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Friday, June 29th, 2012

Public release date: 28-Jun-2012 [ | E-mail | Share ]

Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center

LOS ANGELES (EMBARGOED UNTIL NOON EDT ON JUNE 28, 2012) Cedars-Sinai scientists have joined with expert colleagues around the globe in using stem cells to develop a laboratory model for Huntington's disease, allowing researchers for the first time to test directly on human cells potential treatments for this fatal, inherited disorder.

As explained in a paper published June 28 on the Cell Stem Cell website and scheduled for print in the journal's Aug. 3 issue, scientists at Cedars-Sinai's Regenerative Medicine Institute and the University of Wisconsin took skin cells from patients with Huntington's disease and reprogrammed them into powerful stem cells; these were then made into the nervous system cells affected by the disease. Seven laboratories around the world collaborated to demonstrate the cells had hallmarks of Huntington's.

"This Huntington's 'disease in a dish' will enable us for the first time to test therapies on human Huntington's disease neurons," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute and a senior author of the study. "In addition to increasing our understanding of this disorder and offering a new pathway to identifying treatments, this study is remarkable because of the extensive interactions between a large group of scientists focused on developing this model. It's a new way of doing trailblazing science."

The Huntington's Disease iPSC Consortium united some of the world's top scientists working on this disease. Cedars-Sinai researchers took skin cells from a several Huntington's patients, including a six-year-old with a severe juvenile form of the disease. They genetically reprogrammed these tissues into induced pluripotent stem cells, which can be made into any type of cell in the body. The cells lines were banked by scientists at Cedars-Sinai and scrutinized by all consortium members for differences that may have led to the disease. These cell lines are now an important resource for Huntington's researchers and have been made available via a National Institutes of Health-funded repository at Coriell Institute for Medical Research in New Jersey.

Huntington's, known to the public, for example, as the cause of folksinger Woody Guthrie's death, typically strikes patients in midlife. It causes jerky, twitching motions, loss of muscle control, psychiatric disorders and dementia; the disease ultimately is fatal. In rare, severe cases, the disorder appears in childhood.

Researchers believe that Huntington's results from a mutation in the huntintin gene, leading to production of an abnormal protein and ultimately cell death in specific areas of the brain that control movement and cognition. There is no cure for Huntington's, nor therapies to slow its progression.

The consortium showed Huntington's cell deficits or how they differ from normal cells, including that they were less likely to survive cultivation in the petri dish. Scientists tried depriving them of a growth factor present around normal cells, or "stressing" them, and found that Huntington's neurons died even faster.

"It was great that these characteristics were seen not only in our laboratory, but by all of the consortium members using different techniques," said Virginia Mattis, a post-doctoral scientist at the Cedars-Sinai Regenerative Medicine Institute and one of the lead authors of the study. "It was very reassuring and significantly strengthens the value of this study."

See the rest here:
Cedars-Sinai researchers, with stem cells and global colleagues, develop Huntingtons research tool

Read More...

Bone marrow donors soon may be compensated

Wednesday, June 27th, 2012

A mother with three daughters who have Fanconi anemia sued the federal government for the right to compensate bone marrow donors. The U.S. Attorney General will not pursue the case with the Supreme Court, thus making a lower court's ruling law. That means bone marrow donors may now receive vouchers worth up to $3,000. NBC's Dr. Nancy Snyderman reports.

By JoNel Aleccia

Certain bone marrow donors could soon be compensated for their life-saving stem cells after federal officials declined to take the matter to the U.S. Supreme Court, allowing a lower court order to become law.

At least one agency, MoreMarrowDonors.org, hopes to begin a pilot program offering up to $3,000 in scholarships, housing vouchers or charity donations -- but not cash -- in exchange for matching donations of marrow cells derived from blood.

This decision is a total game-changer, said Jeff Rowes, a senior attorney with the Institute for Justice, which filed the lawsuit three years ago on behalf of cancer victims and others seeking bone marrow matches. Any donor, any doctor, any patient across the country can use compensation in order to get bone marrow donors.

That may be the effect of the decision by U.S. Attorney General Eric Holder to forgo a high court review of a 9th U.S. Circuit Court of Appeals ruling that certain kinds of bone marrow donations are exempt from federal rules banning compensation.

Under the ruling, donors who provide marrow cells through a process similar to blood donation, called peripheral blood stem cell apheresis, can be compensated because those cells are no longer regarded as organs or organ parts as defined in the National Organ Transplant Act.

The ruling does not apply, however, to bone marrow obtained through traditional techniques that use a needle to aspirate the cells from the hip.

Although it applies only to nine states covered by the 9th Circuit Court, Rowes expects the effects to be felt nationwide.

The move met with praise from Doreen Flynn, 36, of Lewiston, Maine, the lawsuits namesake and the single mother of three daughters with an incurable blood disorder called Fanconi anemia.

See original here:
Bone marrow donors soon may be compensated

Read More...

Understanding of spinal muscular atrophy improved with use of stem cells

Thursday, June 21st, 2012

ScienceDaily (June 20, 2012) Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

"With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis -- the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model -- and then be reproduced in clinical trials."

The study was funded in part by a $1.9 million Tools and Technology grant from the California Institute for Regenerative Medicine aimed at developing new tools and technologies to aid pharmaceutical discoveries for this disease.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

More:
Understanding of spinal muscular atrophy improved with use of stem cells

Read More...

Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy

Wednesday, June 20th, 2012

Newswise LOS ANGELES (June 19, 2012) Cedars-Sinais Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institutes work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process, said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a disease-in-a-dish that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesnt allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive, said Dhruv Sareen, director of Cedars-Sinais Induced Pluripotent Stem Cell Core Facility and a primary author on the study. This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model and then be reproduced in clinical trials.

The study was funded in part by a $1.9 million Tools and Technology grant from the California Institute for Regenerative Medicine aimed at developing new tools and technologies to aid pharmaceutical discoveries for this disease.

# # #

Visit link:
Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy

Read More...

Page 33«..1020..32333435..40..»


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick