header logo image


Page 51«..1020..50515253..»

Archive for the ‘Cell Therapy’ Category

Entest BioMedical Excited With Progress on 10 Dog Pilot Study of “Universal Donor” Stem Cell Treatment for Canine …

Wednesday, March 21st, 2012

SAN DIEGO, CA--(Marketwire -03/21/12)- Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News)

Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News) and RenovoCyte LLC announced they have treated 8 canine patients of a 10 dog pilot study utilizing Canine Endometrial Regenerative Cells (CERC) licensed from Medistem Inc. (Pinksheets: MEDS.PK - News) in the treatment of canine osteoarthritis.

Previously, Entest announced the treatment of the first canine patient on November 18, 2011. Since that time Entest's McDonald Animal Hospital has treated 8 dogs in its 10 Dog Pilot Study with RenovoCyte. To date, all of the dogs participating in this study have shown dramatic improvement in their mobility and apparent reduction of pain.

Dr. Greg McDonald, Chief Veterinarian at McDonald Animal Hospital, said, "50 million CERC stem cells have been injected intravenously into eight dogs. Each dog selected for this study showed signs of arthritis. Follow-up blood tests, urinalysis and physical exams are now being scheduled for the patients that have already been treated. So far, all these canine patients have shown improvement."

Entest BioMedical Chairman David Koos stated, "Osteoarthritis is considered one of the most common causes of lameness in dogs, occurring in up to 30% of all dogs. It is caused by a deterioration of joint cartilage, followed by pain and loss of range of motion of the joint. We expect this treatment to relieve these animals from the pain associated with arthritis. This has extraordinary possibilities for dogs and may lead the way for human treatment of arthritic pain."

The CERC is a "universal donor" stem cell product that does not require matching with the recipient allowing for the generation of standardized products that can be delivered to the office of the veterinarian ready for injection. This is in stark contrast to current stem cell therapies utilized in veterinary applications which require the extraction, manipulation, and subsequent implantation of tissue from the animal being treated. CERC is the canine equivalent of Medistem's Endometrial Regenerative Cell (ERC). Medistem was recently granted approval from the FDA to initiate a clinical trial in human patients using its ERCs.

"We are extremely pleased with our research relationship with Entest BioMedical. This study of canine pets suffering from naturally occurring osteoarthritis is a better test model than laboratory induced disease because it will give us the opportunity for long term follow up of these patients. RenovoCyte sees this study as part of the supporting documentation that will be needed to obtain FDA approval for widespread usage of this therapy," said Shelly Zacharias, DVM, Director of Veterinary Operations, RenovoCyte, LLC.

A spokesperson for Entest noted the Company is also currently conducting a 10 dog safety study on its immune-therapeutic cancer vaccine for dogs, having treated 3 dogs so far.

About Entest BioMedical Inc.:Entest BioMedical Inc. (http://www.entestbio.com) is a veterinary biotechnology company focused on developing therapies that harness the animal's own reparative / immunological mechanisms. The Company's products include an immuno-therapeutic cancer vaccine for canines (ImenVax). ImenVax is less invasive and less traumatic in treating cancer. Additionally, the Company serves as the contract research organization conducting a pilot study on a stem cell based canine osteoarthritis treatment (developed by RenovoCyte LLC) utilizing a 'universal donor' stem cell. Entest is also building a network of veterinary hospitals (with its initial location in Santa Barbara, CA and anticipates acquiring other veterinary hospitals in California) -- which serve as distribution channels for its products.

DisclaimerThis news release may contain forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking statements. The risks and uncertainties to which forward-looking statements are subject include, but are not limited to, the effect of government regulation, competition and other material risks.

Read more from the original source:
Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine ...

Read More...

VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences

Wednesday, March 21st, 2012

SOUTH SAN FRANCISCO, CA--(Marketwire -03/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, and Vala Sciences, Inc., a biotechnology company developing and selling next-generation cell image-based instruments, reagents and analysis software tools, have entered into a strategic collaboration. Their goal is to advance drug safety screening methodologies in the most clinically relevant human in vitro bioassay systems available to researchers today.

Cardiomyocytes are the muscle cells of the heart that provide the force necessary to pump blood throughout the body, and as such are the targets of most of the drug toxicities that directly affect the heart. Many of these drug toxicities result in either arrhythmia (irregular, often fatal, beating of the heart) or reduced ability of the heart to pump the blood necessary to maintain normal health and vigor.

"Our collaboration with Vala directly supports the core drug rescue applications of our Human Clinical Trials in a Test Tube platform," said Shawn K. Singh, JD, VistaGen's Chief Executive Officer. "Our high quality human cardiomyocytes combined with Vala's high throughput electrophysiological assessment capabilities is yet another example of how we are applying our stem cell technology platform within a strategic ecosystem of complementary leading-edge companies and technologies. We seek to drive our drug rescue programs forward and generate a pipeline of new, cardiosafe drug candidates."

Through the collaboration, Vala will use its Kinetic Image Cytometer platform to demonstrate both the suitability and utility of VistaGen's human pluripotent stem cell derived-cardiomyocytes for screening new drug candidates for potential cardiotoxicity over conventional in vitro screening systems and animal models. VistaGen's validated human cardiomyocyte-based bioassay system, CardioSafe 3D, will permit Vala to demonstrate the quality, resolution, applicability and ease of use of its new instrumentation and analysis software to make information-rich, high throughput measurements and generate fundamentally new insights into heart cell drug responses. Accurate, sensitive and reproducible measurement of electrophysiological responses of stem cell-derived cardiomyocytes to new drug candidates is a key element of VistaGen's CardioSafe 3D drug rescue programs. VistaGen's strategic collaboration with Vala is directed towards this goal.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

About Vala Sciences

Vala Sciences is a San Diego-based biotechnology company that develops and sells cell-image-based instrumentation, reagents and analysis software tools to academic, pharmaceutical and biotechnology scientists. Vala's IC 200 class of instrumentation, and CyteSeer Automated Image Cytometry software convert labor-intensive qualitative observations of biological changes that can take from days to months, into accurate measurements delivered automatically in minutes.

Cautionary Statement Regarding Forward Looking Statements

Read the original post:
VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences

Read More...

Cell-in-a-Box® Encapsulation Technology Creates Extensive Applications within the Stem Cell Arena

Wednesday, March 21st, 2012

SILVER SPRING, Md.--(BUSINESS WIRE)--

Nuvilex, Inc. (OTCQB:NVLX), an emerging biotechnology provider of cell and gene therapy solutions through its acquisition of the SG Austria assets, today discussed the value of encapsulation, freezing, storage, survivability and localization of human stem cells once implanted using the proprietary Cell-in-a-Box technology.

The encapsulation of human stem cells is enabled by the Cell-in-a-Box technology, which can then be frozen, stored and later implanted into target tissues. The benefits of encapsulation are several: first, the process allows for freezing of stem cells for long-term storage without appreciably affecting viability. Second, encapsulation protects the stem cells from stress factors caused by direct aeration and sheer forces associated with bioreactors. Third, Cell-in-a-Box encapsulated stem cells are held in place at the site of implantation, maximizing their potential efficacy as they have the potential to stimulate growth of surrounding new, healthy tissue. Finally, encapsulated cells may prevent any potential side effects associated with direct injection since they remain localized to the area of treatment when encapsulated.

Dr. Robert Ryan, Chief Executive Officer of Nuvilex, commented, For many years it was assumed stem cells existed only to replace cells that had died or were damaged. Recent studies suggest factors stem cells secrete provide signals to surrounding tissue that can stimulate regeneration. The potential therefore, is that if stem cells can be maintained at a particular site where damaged, removed or non-functional tissue was through some sort of holding mechanism, this may aid in a positive growth response in that tissue. In addition, the stem cells themselves have the potential to undergo development into the appropriate cell type at that location, potentially creating miniature organs. The Cell-in-a-Box technology is designed specifically for those purposes. Thus, encapsulated stem cells would be implanted and remain in place, ultimately being able to serve a broad number of medical applications entirely dependent on where in the body they are placed.

About Nuvilex

Nuvilex, Inc. (OTCQB:NVLX) is an emerging international biotechnology provider of live clinically useful, therapeutically valuable, encapsulated cells, as well as services for encapsulating live cells for the research and medical communities. Through substantial effort, the aspects of our corporate activities alone and in concert with SG Austria continue to move toward agreement completion and ultimately a strong future together. Our companys ultimate clinical offerings will include cancer, diabetes and other treatments using the companys industry-leading cell and gene therapy expertise and cutting edge, live-cell encapsulation technology.

Safe Harbor Statement

This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 involving risks and uncertainties, including product demand, market competition, and Nuvilexs ability to meet current or future plans which may cause actual results, events, and performances, expressed or implied, to vary and/or differ from those contemplated or predicted. Investors should study and understand all risks before making an investment decision. Readers are recommended not to place undue reliance on forward-looking statements or information. Nuvilex is not obliged to publicly release revisions to any forward-looking statement, to reflect events or circumstances afterward, or to disclose unanticipated occurrences, except as required under applicable laws.

Go here to see the original:
Cell-in-a-Box® Encapsulation Technology Creates Extensive Applications within the Stem Cell Arena

Read More...

Stem Cell Therapy Could Boost Kidney Transplant Success: Study

Wednesday, March 21st, 2012

TUESDAY, March 20 (HealthDay News) -- A novel technique that uses a kidney transplant recipient's own stem cells may someday replace or reduce the initial use of anti-rejection medications, new research suggests.

Six months after receiving a kidney transplant, only about 8 percent of people given their own mesenchymal stem cells experienced rejection compared with almost 22 percent of people on the standard anti-rejection drugs, according to the study.

"Mesenchymal stem cells are stem cells that can be differentiated into a variety of cells," explained Dr. Camillo Ricordi, study senior author and director of the Cell Transplant Center and Diabetes Research Institute at the University of Miami Miller School of Medicine.

"If you infuse mesenchymal stem cells at the time of the transplant, you could replace the use of powerful anti-rejection drugs, and maybe replace immunosuppressants altogether," he said. This technique could be used in the transplantation of islet cells (in the pancreas) for people with type 1 diabetes, and for other organ transplants, such as the liver, he added.

The people given their own stem cells also had improved kidney function earlier after transplant, Ricordi said.

Results of the study appear in the March 21 issue of the Journal of the American Medical Association.

One of the biggest remaining hurdles in organ transplantation remains the need for powerful anti-rejection and immune-suppressing medications after the transplant.

"Basically, the way we prevent kidney rejections is by putting you on very powerful anti-rejection drugs and immunosuppressive agents to prevent your cells from attacking the foreign organ," said Dr. Robert Provenzano, chair of the department of nephrology, hypertension and transplantation at St. John Providence Health System in Detroit. "But, the current standard has some problems, like an increased risk of infections and the possibility of creating a cancer."

The body's immune system sends out surveillance cells to protect the body against foreign invaders, such as a bacteria, virus or, in this case, a new organ, Provenzano said. The current method of preventing these cells from attacking the new organ is essentially to destroy the surveillance cells. But mesenchymal cells can naturally suppress those surveillance cells so they don't attack, he said.

To see if this suppression would be enough to prevent rejection, Ricordi and his colleagues, including researchers from Xiamen University in China, recruited 159 people with serious kidney disease who were on dialysis. They ranged in age from 18 to 61.

Read the original here:
Stem Cell Therapy Could Boost Kidney Transplant Success: Study

Read More...

SanBio Announces Enrollment of First Cohort of Patients in Its Clinical Trial of Stem Cell Therapy for Chronic Stroke

Tuesday, March 20th, 2012

MOUNTAIN VIEW, Calif., March 20, 2012 /PRNewswire/ -- SanBio Inc. today announced the successful enrollment of the first dose cohort of patients in its Phase 1/2a clinical trial testing the safety and efficacy of a novel allogeneic stem cell therapy product, SB623, in patients suffering from chronic deficits resulting from previous stroke injuries. The first 6 patients, of a total of 18, have been successfully administered SB623. The trial is being conducted at Stanford University and the University of Pittsburgh. No safety concerns have been reported. For details regarding this clinical trial, please refer to http://www.strokeclinicaltrial.org.

SB623 is derived from adult bone marrow and has shown safety and efficacy in rodent models of chronic stroke. "This represents a major milestone in the human clinical testing of this important new approach for regenerative medicine", said Keita Mori, SanBio CEO. "We are pleased to learn that the initial dose level was well tolerated."

SB623 is being delivered to the damaged region of the brains of patients who have suffered an ischemic stroke. Product safety is the primary focus of the study but various measurements of efficacy are also being tested.

"The successful completion of the initial dose cohort is a major step in any first-in-human study", said Dr. Ernest Yankee, SanBio's Vice President of Development. "We are looking forward to initiating the next two dose cohorts and wrapping up the study. The safety findings thus far are very encouraging"

About SB623: SB623 is a proprietary cell therapy product consisting of cells derived from genetically engineered bone marrow stromal cells obtained from healthy adult donors. SB623 is administered adjacent to the area damaged by stroke and functions by producing proteins that aid the regenerative process.

About SanBio: SanBio is a privately held San Francisco Bay Area biotechnology company focused on the discovery and development of new regenerative cell therapy products.

For more information: http://www.san-bio.com

Read the rest here:
SanBio Announces Enrollment of First Cohort of Patients in Its Clinical Trial of Stem Cell Therapy for Chronic Stroke

Read More...

9/11 search and rescue dog receives stem cell therapy

Tuesday, March 20th, 2012

A special dog used to help people is getting some much-needed help of her own at a Virginia clinic, myFOXdc.com reported.

Red, a 12-year-old black Labrador, is one of the last surviving search and rescue dogs deployed during the 9/11 attacks.

Her handler, Heather Roche, told WTTG-TV that Red was recently certified when Sept. 11, 2001, occurred, and the devastating terror attacks were her first big mission.

Red's job was to find DNA evidence at The Pentagon's north parking lot with 26 other dogs, and according to Roche, she did a "fantastic job."

"I got her as a puppy ... You have to convince [her] everything that she does, whether it's climbing ladders or any kind of search, that it's her idea," Roche told WTTG-TV. "No matter what I've asked her to do, she's done it and she's done it flawlessly."

But in her old age Red developed crippling arthritis, and underwent stem cell regenerative therapy Monday to help ease her pain so she can get back out on the job.

Dr. John Herrity of Burke Animal Clinic in Burke, Va., told WTTG-TV, "Red has a back issue that, after a fall from a ladder has not really been right, and has been living in pain, so we're going to give those stem cells IV [intravenously] and then also inject them along the back to try to help Red's comfort."

"She's had a great career and has made a difference to a lot of families by bringing their loved ones home," Roche said.

Click here to read more.

See the article here:
9/11 search and rescue dog receives stem cell therapy

Read More...

Vitro Biopharma Receives Approval for Presentation to the International Society for Cellular Therapy

Tuesday, March 20th, 2012

GOLDEN, Colo., March 20, 2012 (GLOBE NEWSWIRE) -- Vitro Diagnostics, Inc. (OTCQB:VODG.PK - News), dba Vitro Biopharma, has recently received approval for its presentation entitled "GMP Cell Culture Media for Expansion of MSCS Prior to Allogeneic or Autologous Transplantation." The Company recently expanded its stem cell media products to include clinical grade MSC-Gro(TM) media for use in clinical trials of stem cells. The Company will present its current findings at the annual meeting of the International Society of Cellular Therapy (ISCT) in Seattle, Washington this coming June. To get more information regarding the International Society of Cellular Therapy visit http://www.celltherapysociety.org/

Vitro Biopharma has developed a series of products to support clinical application of adult stem cells known as mesenchymal stem cells (MSCs) that are completely divorced and different from ethically contentious embryonic stem cells. MSCs are derived from numerous adult tissue sources including bone marrow, blood, adipose tissue, teeth, etc and show considerable promise in clinical applications especially for treatment of injury and diseases affecting joints, bone, ligaments and tendons. There are over 200 ongoing clinical trials of MSCs to study potential treatment of diabetes, Parkinson's disease, organ transplant rejection, osteoarthritis, MS, spinal cord injury, stroke, myocardial infarction, cardiovascular disease, liver degeneration, COPD and other medical conditions.

Vitro Biopharma will present the current status of its clinical grade MSC-Gro(TM) Brand of culture medium for growth and differentiation of MSCs at the ISCT meeting. Through its extensive research and experience with cell culture media, Vitro Biopharma has developed highly competitive media that is suitable for clinical applications. Critical characteristics are that they are serum-free, chemically-defined and free from animal-derived components. Furthermore, it is essential that serum-free media perform the same as formulations containing contain blood serum, a complex mixture of biologically active components with intrinsic variability from batch to batch and safety issues regarding potential infectious agents. Vitro will present its results regarding each of these points and the status of FDA approval of its clinical products.

Dr. Jim Musick, Vitro's President & CEO, said, "We are very pleased to be approved for presentation at the ISCT Annual Meeting. It is apparent from the reported widespread efficacy of MSCs in clinical trials and the low incidence of adverse effects that there is potential to achieve regulatory approval for advanced treatment of many diseases, injuries and cellular degenerative conditions. Our new clinical products expand our offering of tools to support stem cell research by providing highly competitive new products for clinical studies including our serum-free, animal-free and chemically defined MSC-Gro(TM) Brand of media formulations optimized for human MSC self-renewal & lineage-specific differentiation, together with LUMENESC(TM) high performance assays of stem cell quality, potency and response to toxic agents. We intend to leverage our current advances in human medical MSC-based treatments to offer products for treatment of horses, dogs and cats. The results of MSC therapy in animals may also provide safety and efficacy data to support human clinical studies."

About Vitro Diagnostics, Inc.

Vitro Diagnostics, Inc. dba Vitro Biopharma (OTCQB:VODG.PK - News) (http://www.vitrobiopharma.com), owns US patents for production of FSH, immortalization of pituitary cells, and a cell line that produces beta islets for use in treatment of diabetes. Vitro also owns a pending international patent for generation of pluripotent stem cells. Vitro's mission is "Harnessing the Power of Cells(TM)" for the advancement of regenerative medicine to its full potential. Vitro operates within a modern biotechnology manufacturing, R&D and corporate facility in Golden, Colorado. Vitro manufactures and sells "Tools for Stem Cell and Drug Development(TM)", including human mesenchymal stem cells and derivatives, MSC-Gro(TM) optimized media for stem cell self-renewal and lineage-specific differentiation. Vitro recently formed a strategic alliance with HemoGenix(R), Inc. (http://www.hemogenix.com/) to jointly manufacture and distribute LUMENESC(TM) and LumiSTEM(TM) quantitative assays for determination of stem cell quality, potency and response to toxic agents.

The Vitro Biopharma logo is available at http://www.globenewswire.com/newsroom/prs/?pkgid=12086

Safe Harbor Statement

Certain statements contained herein and subsequent statements made by and on behalf of the Company, whether oral or written may contain "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995. Such forward looking statements are identified by words such as "intends," "anticipates," "believes," "expects" and "hopes" and include, without limitation, statements regarding the Company's plan of business operations, product research and development activities, potential contractual arrangements, receipt of working capital, anticipated revenues and related expenditures. Factors that could cause actual results to differ materially include, among others, acceptability of the Company's products in the market place, general economic conditions, receipt of additional working capital, the overall state of the biotechnology industry and other factors set forth in the Company's filings with the Securities and Exchange Commission. Most of these factors are outside the control of the Company. Investors are cautioned not to put undue reliance on forward-looking statements. Except as otherwise required by applicable securities statutes or regulations, the Company disclaims any intent or obligation to update publicly these forward looking statements, whether as a result of new information, future events or otherwise.

View original post here:
Vitro Biopharma Receives Approval for Presentation to the International Society for Cellular Therapy

Read More...

NeoStem Provides Updates and Reports Year End Results

Tuesday, March 20th, 2012

NEW YORK, March 20, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE Amex:NBS) ("NeoStem" or "the Company") is a leader in the cell therapy industry, developing cell based therapeutics supported by the Company's expertise in contract manufacturing. This strategic combination and depth of experience in cell therapy development and manufacturing provide NeoStem with unique capabilities to develop its own cell therapies and that sets the Company apart from others in the cell therapy landscape. 2011 represented a major year of strategic transition for NeoStem, and the Company plans to build upon that in 2012 and in the years ahead.

NeoStem reported its audited results for 2011. Consolidated revenues for the year ended December 31, 2011 were $73.7 million compared to $69.8 million for 2010. The Company's consolidated net loss for 2011 was $56.6 million, which included $10.3 million of non-cash equity-based compensation expense, $19.4 million of goodwill impairment charges and $9.0 million of depreciation and amortization. Overall, the Company's consolidated cash loss for 2011 was $15.5 million (see reconciliation below). Net loss attributable to NeoStem common shareholder interests for 2011 was $47.8 million, or $0.54 per share.

As of December 31, 2011, the Company had consolidated cash and cash equivalents of $12.7 million, and an additional $2.5 million in cash held in escrow (classified in Other Assets).

NeoStem believes that the opportunities that exist today in cell therapy are robust and growing despite a persistently difficult financial environment, making this an opportunistic time to pursue the monetization of the Company's 51% ownership of Suzhou Erye Pharmaceutical Co., Ltd. and bolster its cell therapy business. In June 2011, the Company engaged a financial advisor to lead the effort to pursue the possible divestiture of the Company's interest in Erye. Marketing efforts are underway and have generated interest from both financial and strategic buyers.

On the therapeutics side of the business NeoStem now has a pipeline of assets that includes Amorcyte (Phase 2 trial for preservation of heart function after a heart attack), Athelos (physician sponsored Phase 1 trials for a range of auto-immune conditions) and pre-clinical development work on its VSEL(TM) technology. The Company's most advanced asset is AMR-001 for the treatment of acute myocardial infarction for which enrollment for a Phase 2 study in the United States commenced in January. The study is a multicenter, randomized, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of infarct-related artery infusion of AMR-001, an autologous bone marrow derived cell therapy enriched for CD34+ cells. AMR-001 is administered 5 to 11 days post-stent placement in patients diagnosed with an ST segment elevation myocardial infarction ("STEMI") with ejection fraction less than or equal to 48%. The study will include 160 subjects, age 18 and older, randomized 1:1 between treatment and control. The manufacturing, product supply, and logistics for the trial will be supported by Progenitor Cell Therapy, LLC, NeoStem's contract manufacturing company.

Amorcyte currently has ten activated clinical trial sites for its Phase 2 AMI clinical trial with the initial patients enrolled. Trial enrollment is expected to be completed in approximately one year with data read out six months following the last treated patient. The Amorcyte franchise is supported by a strong patent portfolio which includes both composition of matter and methods of treatment around use of these hematopoietic stem cells for treatment of cardiac ischemia and other ischemic tissue that result from vascular insufficiency. The Company sees Amorcyte as a pipeline of therapeutics with potential in multiple indications from STEMI to congestive heart failure and other related vascular insufficiencies. The Amorcyte product addresses both an unmet medical need and a large potential market.

"One of the most important attributes of AMR-001 is that it's 'natural.' We are enhancing the body's normal and natural response to ischemic injury," said Dr. Robin Smith, CEO of NeoStem. "Ample historical evidence, published literature and our own compelling Phase 1 data give us confidence that this product will ultimately make it to the marketplace. Our next most advanced asset is held by Athelos Corporation, (a NeoStem company, partnered with Becton, Dickinson and Company) which is developing a novel T-cell platform for immunological disorders. The Athelos T-cell technology represents an innovative approach to restoring immune balance with potential applications in graft vs. host disease (GvHD), solid organ transplant (SOT) and autoimmune diseases, such as asthma and diabetes. Multiple physician sponsored phase 1 studies are expected to report results that will be used to determine the direction of clinical development.

"NeoStem is also developing pre-clinical assets, including its VSEL(TM) Technology platform for regenerative medicine, which NeoStem believes is an endogenous pluripotent non-embryonic cell that has the potential to change the paradigm of cell therapy as we know it today. These activities have received awards in excess of $2.5 million which funds support the work of prestigious researchers who are pioneering this science with NeoStem.

"Behind the development of these therapeutic assets is the NeoStem cell therapy contract manufacturing business (PCT) which itself continues to grow. New clients have engaged PCT to assist them in the development of their products, including a global, diversified healthcare company who recently selected PCT to provide stem cell processing in our two GMP manufacturing facilities in the United States (California and New Jersey). PCT's prominence in the marketplace continues to grow and that is reflected by both client satisfaction and the revenues the company generates.

"As we look to the year ahead, we are excited on multiple fronts. Our capital preservation efforts are now bearing fruit as our cash burn rate is in-line with our peers. We expect to continue to carefully invest our capital in projects that meet our internal rate of return hurdle and risk parameters. We believe the PCT and Amorcyte acquisitions have created true value for our shareholders and we look forward to demonstrating that as these assets reach their respective value inflection points. We see the unmet medical need in cardiology and the treatment burden associated with chronic diseases as representing a significant challenge to modern society. We believe that cell therapy holds many of the solutions to the health crisis that societies face and have the potential to create real pharmacoeconomic benefit as well as shareholder value for our company.

Excerpt from:
NeoStem Provides Updates and Reports Year End Results

Read More...

Huntington’s Disease – Stem Cell Therapy Potential

Tuesday, March 20th, 2012

Editor's Choice Academic Journal Main Category: Huntingtons Disease Also Included In: Stem Cell Research Article Date: 19 Mar 2012 - 10:00 PDT

email to a friend printer friendly opinions

Current Article Ratings:

4 (1 votes)

3 (1 votes)

However, according to a study published March 15 in the journal Cell Stem Cell, a special type of brain cell created from stem cells could help restore the muscle coordination deficits that are responsible for uncontrollable spasms, a characteristic of the disease. The researchers demonstrated that movement in mice with a Huntington's-like condition could be restored.

Su-Chun Zhang, a University of Wisconsin-Madison neuroscientist and the senior author of the study, said:

In the study Zhang, who is an expert in creating various types of brain cells from human embryonic or induce pluripotent stem cells, and his team focused on GABA neurons. The degradation of GABA cells causes the breakdown of a vital neural circuit and loss of motor function in individuals suffering from Huntington's disease.

According to Zhang, GABA neurons generate a vital neurotransmitter, a chemical that helps support the communication network in the brain that coordinates movement.

Zhang and his team at the UW-Madison Waisman Center, discovered how to generate large quantities of GABA neurons from human embryonic stem cells. The team's goal was to determine whether these cells would safely integrate into the brain of a mouse model of Huntington's disease.

Visit link:
Huntington's Disease - Stem Cell Therapy Potential

Read More...

Hero Dog Receives Stem Cell Therapy

Tuesday, March 20th, 2012

Stem Cell Therapy Helping Heroic Dogs Recover

News4's Darcy Spencer explains how a breakthrough treatment is helping search and rescue dogs like Red recover after years of working in disaster zones.

A breakthrough treatment is helping area search-and-rescue dogs that played key roles on Sept. 11, 2001, and during other disasters.

Red's first assignment as a search, rescue and recovery dog was at the Pentagon following the 9/11 attacks. Years of rescue work and a 12-foot fall from a ladder have taken a toll. Arthritis forced Red into retirement in July and turned her into a couch potato.

The 12-year-old black lab received a breakthrough stem cell treatment today that will ease her pain and give her more mobility.

Her veterinarian, Dr. John Herrity, of the Burke Animal Clinic, has done more than two dozen of the stem cell operations developed by Medivet America, which also donated the cost of the procedure.

The treatment won't bring Red back out of retirement, but it is expected to put spring back in her step within a couple of months.

Two other 9/11 search-and-rescued dogs have been treated with stem cell therapy and are back to their normal activities.

Read more here:
Hero Dog Receives Stem Cell Therapy

Read More...

Stem cell therapy banned in Kuwait

Monday, March 19th, 2012

(MENAFN - Arab Times) Ministry of Health (MoH) employees holding PhD degrees announced that they will participate in the sit-in demonstration carried out by the Labor Union of Health Ministry, reports Al-Seyassah daily.

In the press release, they said they are protesting against the fact that they are receiving the same salary scale and benefits as any other ministry employee with lower qualifications and if necessary, they are ready to even burn their PhD certificates at the sit-in to get the benefits they deserve according to their qualifications.

The sit-in will be carried out in front of Health Ministry headquarters in Sulaibikhat at 10 am on Tuesday, March 20, 2012.

The number of PhD holders has exceeded 100 considering the participation of PhD holders from other ministries as well.

Meanwhile, the MoH has banned stem cell therapy in the country until the committee tasked to set the standards for the treatment completes its work, reports Al-Anba daily quoting Director of Health License Department Dr Marzouq Al-Bader.

Al-Bader disclosed the ministry had earlier formed the committee to ensure the stem cell procedures are carried out in an appropriate manner to protect the patients. He added the ministry will also issue a decision soon to regulate the use of antibiotics in the private health sector.

Meanwhile, Al-Bader confirmed the ministry has endorsed around 51,000 female doctors in private hospitals and health centers. He said the ministry closely monitors the performance of female doctors and those found to have violated the law will be referred to the Medical Council for the necessary action.

On the issuance of licenses through the Internet, Al-Bader revealed his department has asked the ministry to activate the e-link system for this purpose.

He said the ministry has asked the Kuwait Municipality to issue permit for the construction of a building fit for the department's operations.

Meanwhile, the Medical Emergency Department at the Ministry of Health has affirmed its readiness to deal with emergency cases that may arise due to a series of dust storms engulfing the country.

View post:
Stem cell therapy banned in Kuwait

Read More...

Eastday-Big stem cell breakthrough

Saturday, March 17th, 2012

A NEW stem cell therapy treatment to develop new bones for patients with bone loss and new skin for recipients of plastic surgery has been developed, doctors from Shanghai No.9 People's Hospital announced yesterday.

In the procedure, medical staff use a special machine to collect stem cells from a patient's blood. The stem cells adhere to a base made of a special biological material.

The stem cells are then transplanted into the patient's body, where they grow into either new bones or skin tissue, while the base is absorbed by the human body.

"So far the practice has been successful in treating patients with bone and skin loss," said Dr Dai Kerong from Shanghai Jiao Tong University's translational medicine institute at Shanghai No.9 hospital. "The stem cell technology will be used to develop corneas for blind people as well as treating heart attack and stroke patients by developing new heart and cerebral tissue."

The technology is patented in China and abroad and will be licensed within one or two years, according to Dai.

China has established 51 translational medicine centers to boost the introduction of laboratory research into clinical use.

The complicated procedures and documentation required often prevent doctors from introducing lab success into clinical practice.

Dai said one reagent developed by No. 9 hospital's doctors for in vitro fertilization received a license in Europe within six months and has been used in clinical practice "while this would take at least five years in China."

Read more here:
Eastday-Big stem cell breakthrough

Read More...

Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock

Thursday, March 15th, 2012

Public release date: 15-Mar-2012 [ | E-mail | Share ]

Contact: Jennifer Ganton jganton@ohri.ca 613-798-5555 x73325 Ottawa Hospital Research Institute

A team of researchers from the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa (uOttawa) has been awarded $367,000 from the Canadian Institutes of Health Research (CIHR) and $75,000 from the Stem Cell Network to lead the first clinical trial in the world of a stem cell therapy for septic shock. This deadly condition occurs when an infection spreads throughout the body and over-activates the immune system, resulting in severe organ damage and death in 30 to 40 per cent of cases. Septic shock accounts for 20 per cent of all Intensive Care Unit (ICU) admissions in Canada and costs $4 billion annually. Under the leadership of Dr. Lauralyn McIntyre, this new "Phase I" trial will test the experimental therapy in up to 15 patients with septic shock at The Ottawa Hospital's ICU.

The treatment involves mesenchymal stem cells, also called mesenchymal stromal cells or MSCs. Like other stem cells, they can give rise to a variety of more specialized cells and tissues and can help repair and regenerate damaged organs. They also have a unique ability to modify the body's immune response and enhance the clearance of infectious organisms. They can be found in adult bone marrow and other tissues, as well as umbilical cord blood, and they seem to be easily transplantable between people, because they are more able to avoid immune rejection.

There has been a great deal of interest in using MSCs to treat disease, with most research so far focused on heart disease, stroke, inflammatory bowel disease and blood cancers. Hundreds of patients with these diseases have already been treated with MSCs through clinical trials, with results suggesting that these cells are safe in these patients, and have promising signs of effectiveness. MSCs are still considered experimental however, and have not been approved by Health Canada as a standard therapy for any disease.

In recent years, a number of animal studies have suggested that MSCs may also be able to help treat septic shock. For example, a recent study by Dr. Duncan Stewart, CEO and Scientific Director of OHRI (and also a co-investigator on the new clinical trial) showed that treatment with these cells can triple survival in a mouse model of this condition.

"Mesenchymal stem cell therapy appears promising in animal studies, but it will require many years of clinical trials involving hundreds of patients to know if it is safe and effective," said Dr. Lauralyn McIntyre, a Scientist at the OHRI, ICU Physician at The Ottawa Hospital, Assistant Professor of Medicine at uOttawa and a New Investigator with CIHR and Canadian Blood Services. "This trial is a first step, but it is a very exciting first step."

As with all "Phase I" trials, the main goal of this study is to evaluate the safety of the therapy and determine the best dose for future studies. The 15 patients in the treatment group will receive standard treatments (such as fluids, antibiotics and blood pressure control), plus a planned intravenous dose of 0.3 to 3 million MSCs per kg of body weight. The MSCs will be obtained from the bone marrow of healthy donors and purified in the OHRI's Good Manufacturing Practice Laboratory in the Sprott Centre for Stem Cell Research. The researchers also plan to evaluate 24 similar septic shock patients who will receive standard treatments only (no MSCs). All patients will be rigorously monitored for side effects, and blood samples will be taken at specific time points to monitor the cells and their activity. This trial will not be randomized or blinded and it will not include enough patients to reliably determine if the therapy is effective. It will be conducted under the supervision of Health Canada and the Ottawa Hospital Research Ethics Board, and will have to be approved by both of these organizations before commencing.

"The OHRI is rapidly becoming known as a leader in conducting world-first clinical trials with innovative therapies such as stem cells," said Dr. Duncan Stewart, CEO and Scientific Director of OHRI, Vice-President of Research at The Ottawa Hospital and Professor of Medicine at uOttawa. "This research is truly pushing the boundaries of medical science forward, and is providing the citizens of Ottawa with access to promising new therapies."

"The Canadian Institutes of Health Research (CIHR) is very pleased to support this clinical trial," said Dr. Jean Rouleau, Scientific Director of the CIHR Institute of Circulatory and Respiratory Health. "The work of Dr. McIntyre and her colleagues will not only add to our growing knowledge of the benefits of stem-cell therapies, but will hopefully lead to treatments that can help save the lives of patients where currently, our treatment options are less than optimal."

Read this article:
Ottawa researchers to lead world-first clinical trial of stem cell therapy for septic shock

Read More...

TiGenix Reports Full Year 2011 Financial Results

Thursday, March 15th, 2012

LEUVEN, BELGIUM--(Marketwire -03/15/12)- TiGenix NV (EURONEXT: TIG) today gave a business update and announced financial results for the full year 2011.

Business highlights

Financial highlights

"TiGenix has created a new and strong basis in 2011 on which we can build going forward and we have strengthened our position as the European leader in cell therapy," says Eduardo Bravo, CEO of TiGenix. "We have delivered on our promises: we have obtained national reimbursement for ChondroCelect in Belgium and made progress in other European markets. We advanced all clinical stem cell programs on plan, and raised substantial funds from specialized healthcare investors and through non-dilutive financing. Today, TiGenix is well-positioned to reach the next value-enhancing inflection points."

Business Update

Successful integration of Cellerix reinforces leadership position in cell therapyIn May 2011, TiGenix closed the business combination with the stem cell therapy company Cellerix, creating the European leader in cell therapy. During 2011 the Company succeeded in rapidly integrating both entities. The Company now combines top line revenues with an advanced pipeline of clinical stage regenerative and immuno-modulatory products. TiGenix's operations are supported by a strong commercial and manufacturing infrastructure for advanced cell therapies, an experienced international management team and a solid cash position.

As a result of the merger, the Company's development focus has shifted from early stage preclinical programs towards a number of highly promising clinical stage products for inflammatory and autoimmune disorders of high unmet medical need, each addressing markets in excess of EUR 1 billion. TiGenix product pipeline is based on a proprietary stem cell platform that exploits expanded allogeneic (donor-derived) adult stem cells derived from human adipose (fat) tissue ('eASCs'). The platform has been extensively characterized in line with requirements of the European Medicines Agency (EMA) and is supported by exhaustive preclinical and CMC packages.

Given its focus on cell therapy, TiGenix is in the process of divesting its ChondroMimetic franchise, which is based on a biomaterial platform. To be able to concentrate on its core business and move forward with a clean slate, TiGenix has decided to write-off the intellectual property related to the OrthoMimetics acquisition.

ChondroCelect commercial roll-out progressing with first national reimbursementChondroCelect obtained reimbursement in Belgium in May 2011, and is today available in 22 specialized treatment centers.

TiGenix is selling ChondroCelect in the UK, the Netherlands, Germany, and Spain under managed access and private insurance schemes, while pursuing national reimbursement in these countries and France.

Read more:
TiGenix Reports Full Year 2011 Financial Results

Read More...

Washington Center for Pain Management Begins Enrollment in United States Stem Cell Therapy Study in Subjects With …

Wednesday, March 14th, 2012

EDMONDS, Wash., March 14, 2012 /PRNewswire/ --Washington Center for Pain Management is participating in a nationwide FDA-cleared adult stem cell study testing novel treatment for chronic low back pain and has enrolled its first patient. The study will test the use of Mesenchymal Precursor Cells (MPCs) adult stem cells derived from bone marrow that will be directly injected into the lumbar disc. The minimally invasive procedure may offer an alternative to back surgery for eligible patients with chronic pain from degenerative discs.

An estimated 30 million people in the United States suffer from back pain. Degenerative disc disease is the most common cause of low-back pain, which develops with the gradual loss of a material called proteoglycan, which cushions the bones of the spine and enables normal motion.

Most patients with low-back pain respond to physical therapy and medications, but in advanced cases, artificial disc replacement or spinal fusion -- removal of the degenerated discs and the fusion of the bones of the spine -- is necessary. However, these surgeries often are not entirely effective.

"Millions of Americans are debilitated by chronic low back pain," says Dr Hyun Joong Hong MD, the lead investigator at The Washington Center for Pain Management. "This promising therapy is at the cutting edge of medical science and has the potential to create a paradigm shift in our approach to minimally invasive solutions to this disease."

Researchers will enroll approximately 100 study participants. About fifteen participants will be enrolled at The Washington Center for Pain Management and the rest at 11 other medical centers throughout the United States. The trial is scheduled to last for three years.

Washington Center for Pain Management is enrolling study participants suffering from moderate low-back pain for a minimum of six months and whose condition has not responded to other, conventional treatments.

Once enrolled, patients are randomly assigned to one of four treatment groups:

Patients will receive a single injection of their assigned test agent directly into the center of the target discs within their spine and will be monitored for safety. Patients will also be monitored using imaging to identify any changes in their disease condition or disease progression. Use of pain medications, self-reports of pain, subsequent surgical interventions and assessments of disability, quality of life, productivity and activity will be evaluated. Repair of the disc and reduction of chronic back pain will be assessed in each patient.

Promising results have been observed in prior research using animal models when stem cells were investigated for the repair of damaged spine discs. The cells were well tolerated in these study animals.

This study is sponsored by Mesoblast Limited, a world leader in the development of biologic products for the broad field of regenerative medicine. Mesoblast has the worldwide exclusive rights to a series of patents and technologies developed over more than 10 years relating to the identification, extraction, culture and uses of adult Mesenchymal Precursor Cells (MPCs). The MPCs are derived from young adult donors' bone marrow and are immune tolerant.

Read the rest here:
Washington Center for Pain Management Begins Enrollment in United States Stem Cell Therapy Study in Subjects With ...

Read More...

Stem Cell Therapy at Newkirk Family Veterinarians – Hunter’s Story – Video

Tuesday, March 13th, 2012

12-03-2012 17:41 Dr.Mark Newkirk is once again on the cutting edge of medicine. Newkirk Family Veterinarians now offer STEM CELL THERAPY for pets. Dr. Mark Newkirk combines traditional medicine and surgery with Holistic Alternatives to access the best of both worlds. As a Veterinarian, Dr. Newkirk has been serving Southern New Jersey for over 25 years. He is extensively trained in medicine and surgery and also is skilled in the care of exotic pets such as reptiles and birds. Dr. Newkirk is also one of only 5 doctors in the country currently undergoing training by the nationally renowned Dr. Martin Goldstein, the author of "The Nature of Animal Healing", and founder of immuno-augmentative therapy for animals, a true alternative cancer therapy. Dr. Newkirk is a member of American Holistic Veterinary Medical Society, the American Veterinary Medical Association, New Jersey Veterinary Medical Association and the Colorado Veterinary Medical Association. For more information check out Stem Cell Therapy on The Animal Planet's dogs 101 http://www.youtube.com

Read the original here:
Stem Cell Therapy at Newkirk Family Veterinarians - Hunter's Story - Video

Read More...

Chia medical tourism–stroke–stem cell therapy 1.flv – Video

Tuesday, March 13th, 2012

12-03-2012 20:48 by:www.medicaltourism.hk

Original post:
Chia medical tourism--stroke--stem cell therapy 1.flv - Video

Read More...

Chia medical tourism–stroke–stem cell therapy 3.flv – Video

Tuesday, March 13th, 2012

12-03-2012 21:11 by:www.medicaltourism.hk

Here is the original post:
Chia medical tourism--stroke--stem cell therapy 3.flv - Video

Read More...

Patient dies during procedure

Friday, March 9th, 2012

(CNN) -

A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

The president of the International Society of Stem Cell Research, Dr. Irving Weissman, told CNN at the time that "there is no such cell."

"There is nothing called a regenocyte," he said.

After CNN's initial report, Grekos said the name was "advertising" and was not intended to be scientific.

Read the original post:
Patient dies during procedure

Read More...

Florida suspends doctor accused of illegal stem cell therapy

Friday, March 9th, 2012

By David Fitzpatrick and Drew Griffin, Special Investigations Unit

updated 9:23 PM EST, Thu March 8, 2012

Dr. Zannos Grekos, seen here in 2009, could have his license suspended.

STORY HIGHLIGHTS

(CNN) -- A Florida cardiologist could have his medical license revoked by state authorities who have accused him of performing illegal stem cell therapy on a patient who died during the procedure.

Florida's Department of Health ordered the emergency suspension of Zannos Grekos' medical license Wednesday, accusing the Bonita Springs doctor of violating an emergency order against using stem cell treatments in Florida and causing the death of an unidentified elderly patient. Grekos can appeal the order.

According to the license suspension order, Grekos performed a stem cell treatment this month on the patient, who was suffering from pulmonary hypertension and pulmonary fibrosis. Both diseases restrict blood flow to the heart.

"During said stem cell treatment, patient R.P. suffered a cardiac arrest and died," the suspension order said.

CNN first investigated Grekos' activities in 2009, when he said he was using stem cell therapy for a company called Regenocyte Therapeutic. His profile, listed on the company's website, describes Grekos as having "extensive experience in the field of stem cell therapy" and says he "was recently appointed to the Science Advisory Board of the United States' Repair Stem Cell Institute."

At the time of CNN's interview, Grekos said he extracted stem cells from patients and then sent the blood to Israel for laboratory processing. That processing, he said, resulted in "regenocytes," which he said would help heal crippling diseases, mostly associated with lung problems.

View original post here:
Florida suspends doctor accused of illegal stem cell therapy

Read More...

Page 51«..1020..50515253..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick