header logo image


Page 16«..10..15161718..3040..»

Archive for the ‘Cell Therapy’ Category

stem cell therapy-treatment for adhd by dr alok sharma, mumbai, india – Video

Wednesday, June 4th, 2014


stem cell therapy-treatment for adhd by dr alok sharma, mumbai, india
improvement seen in just 5 days after stem cell therapy treatment for Global Developmental Delay with Attention Deficit Hyperactivity Disorder predominantly Hyperactivity Disorder by dr alok...

By: Neurogen Brain and Spine Institute

Follow this link:
stem cell therapy-treatment for adhd by dr alok sharma, mumbai, india - Video

Read More...

(2006-06) David Steenblock – Umbilical Cord Stem Cell Therapy – Video

Tuesday, June 3rd, 2014


(2006-06) David Steenblock - Umbilical Cord Stem Cell Therapy
David Steenblock Umbilical cord stem cell therapy 2006-06-15 Visit the Silicon Valley Health Institute (aka Smart Life Forum) at http://www.svhi.com Silicon Valley Health Institute Smart...

By: Silicon Valley Health Institute

Go here to see the original:
(2006-06) David Steenblock - Umbilical Cord Stem Cell Therapy - Video

Read More...

MetroMDs Advanced Regenerative Therapy Set to Counter Aging; Interesting Price-sharing Model to Make Cosmetic …

Sunday, June 1st, 2014

Los Angeles, CA (PRWEB) May 30, 2014

MetroMD Institute of Regenerative Medicine, a clinic that specializes in HGH and stem cell therapy, introduces an advanced cosmetic regeneration therapy that makes use of CO2 Fractional Laser System and highly efficient DOT to cure age-related skin problems, sun tanning, improve texture and laxity.

All within minimum discomfort, the Co2 Fractional Laser treatment helps in: 1.Reversing the appearance of aged and sun-damaged skin 2.Improving texture and elasticity of the skin 3.Smoothing Wrinkles 4.Reducing the acne and other scar marks

What does DOT Therapy Do?

Sun can wreak havoc to sensitive skin. Now, for ones who need to spend hours under the sun and suffer from wrinkles, discoloration, sun-spots, or lack of skin elasticity, or all of the above, the MetroMD DOT Therapy brings in a chance to alleviate individuals from all these problems. Persons with scars resulting from acne or other skin conditions and injuries can also benefit from this procedure.

One can restore skins youthful appearance with the DOT Therapy even within a one-hour sitting at the doctors office, says Dr Alex Martin, MD and the cosmetic regeneration specialist at MetroMD. While the aging process cannot be stopped, with proper care you can maintain your rejuvenated skins appearance for many years!

MetroMDs therapy is FDA approved and helps people feel younger and revitalized again. Patients seeking a cosmetic treatment in MetroMD, however, will have to go through a complete medical examination to ascertain if their body is suitable for the treatment.

Dr. Martin also said that to make the treatment accessible to more men and women, MetroMD have decided to offer the advanced cosmetic skin regeneration therapy at an exciting price. In addition, there are several charitable trusts that MetroMD has collaborated with in making their advanced therapies available to all at incredibly reduced prices!

About MetroMD

MetroMD is a prominent research institute of regenerative medicine based out of Los Angeles. The institute uses the latest medical technologies and has a highly qualified team to treat hundreds of patients who approach them for non-invasive and painless treatment. Involved in the field of cellular therapy for many years, Dr. Martins cosmetic akin and cellular regeneration therapy team renders complete pre and post treatment help.

See the original post:
MetroMDs Advanced Regenerative Therapy Set to Counter Aging; Interesting Price-sharing Model to Make Cosmetic ...

Read More...

Mesoblast to accelerate operations in S’pore

Wednesday, May 28th, 2014

SINGAPORE: Australia-based stem cell therapy firm Mesoblast has announced plans to accelerate commercial manufacturing operations in Singapore.

This is to prepare for new product launches in the United States and other major markets over the next couple of years.

Its existing operations in Singapore include making stem cell products for clinical trials under its contract with its partner, pharmaceutical company Lonza.

One of its key products still awaiting full approval is Prochymal, which Mesoblast says can help to more than double the survival rate of patients suffering from complications after receiving tissue transplants from donors -- known as graft versus host disease.

The global stem cell market is expected to grow at an average annual rate of 12 per cent between 2011 and 2016 to reach more than S$8 billion by 2016.

Mesoblast said commercial manufacturing requires a much larger capacity and operations must be scaled-up to meet regulatory demands.

Silviu Itescu, chief executive at Mesoblast, said: "We are now in a phase of making more investments in order to get our processes to commercial scale. That anticipates successful commercial launches.

"If we're successful in that over the next 18-24 months, then we're going to leverage the investment in our commercial facilities to be able to build up and prepare for launching of much larger opportunities in cardiovascular medicine, orthopaedics and diseases of immunity and inflammation which would require purpose-built facilities."

Here is the original post:
Mesoblast to accelerate operations in S'pore

Read More...

Stem cell therapy | biopen Copy – Video

Monday, May 26th, 2014


Stem cell therapy | biopen Copy
http://www.arthritistreatmentcenter.com I #39;m in Australia again... to report on a fascinating new concept when it comes to stem cells. Surgeons 3D print stem cells and repair bone with biopen...

By: Nathan Wei

See the original post here:
Stem cell therapy | biopen Copy - Video

Read More...

Dr. J Off Air – SVF Stem Cell Therapy Informational Video – Video

Monday, May 26th, 2014


Dr. J Off Air - SVF Stem Cell Therapy Informational Video
http://www.innovationsstemcellcenter.com Call: 214.420.7970 If you are considering stem cell therapy, you need to watch this video prior to your consultation. Facebook: https://www.facebook.com/i...

By: dallasdrj

Visit link:
Dr. J Off Air - SVF Stem Cell Therapy Informational Video - Video

Read More...

Stem Cell Therapy Market Worth $330 Million in 2020 – New Report by MarketsandMarkets

Monday, May 26th, 2014

(PRWEB) May 26, 2014

The report Stem Cell Therapy Market by Treatment Mode (Autologous & Allogeneic), Therapeutic Applications (CNS, CVS, GIT, Wound Healing, Musculoskeletal, Eye, & Immune System) - Regulatory Landscape, Pipeline Analysis & Global Forecasts to 2020 analyzes and studies the major market drivers, restraints, opportunities, and challenges in North America, Asia-Pacific, Europe, and the Rest of the World (RoW).

Browse 57 market data tables 32 figures spread through 196 Slides and in-depth TOC on Stem Cell Therapy Market. http://www.marketsandmarkets.com/Market-Reports/stem-cell-technologies-and-global-market-48.html

Early buyers will receive 10% customization on report.

The global stem cell therapy market on the basis of the mode of treatment is segmented into allogeneic and autologous stem cell therapy. In addition, based on the therapeutic applications, the global stem cell therapy market is segmented into eye diseases, metabolic diseases, GIT diseases, musculoskeletal disorders, immune system diseases, CNS diseases, CVS diseases, wounds and injuries, and others.

Inquire before buying at http://www.marketsandmarkets.com/Enquiry_Before_Buying.asp?id=48.

This report studies the global stem cell therapy market over the forecast period of 2015 to 2020.The market is poised to grow at a CAGR of 39.5% from 2015 to 2020, to reach $330million by 2020.

Download PDF brochure: http://www.marketsandmarkets.com/pdfdownload.asp?id=48.

A number of factors such as increasing funding from various government and private organizations, growing industry focus on stem cell research, and rising global awareness about stem cell therapies through various organizations are driving the growth of the global market. In addition, increasing funding for new stem cell lines, development of advanced genomic methods for stem cell analysis, and rising approvals of clinical trials for stem cell therapy are other factors that are propelling the growth of the market.

However, factors such as lack of required infrastructure, ethical issues related to embryonic stem cell, and difficulties related with the preservation of stem cell are restraining the growth of the market.

See the article here:
Stem Cell Therapy Market Worth $330 Million in 2020 - New Report by MarketsandMarkets

Read More...

Arthritic knee 10 weeks after stem cell therapy by Dr Harry Adelson – Video

Saturday, May 24th, 2014


Arthritic knee 10 weeks after stem cell therapy by Dr Harry Adelson
Frank describes his results for his stem cell therapy injection by Dr Harry Adelson for his arthritic knee http://www.docereclinics.com.

By: Harry Adelson, N.D.

View post:
Arthritic knee 10 weeks after stem cell therapy by Dr Harry Adelson - Video

Read More...

Stem Cell Therapy Provided by Pend Oreille Veterinary Service Helps Local Leonberger Get the Bounce Back in His Step …

Thursday, May 22nd, 2014

Poway, California (PRWEB) May 22, 2014

Zeke was in pain from arthritis caused by an old injury and was facing possible surgery on both knees. Christine Ponsness-Wetzel, DVM, at Pend Oreille Veterinary Service determined that Zeke was a good candidate for stem cell therapy by Vet-Stem, Inc. as an alternative, and just a few months later, he now has a bounce back in his step.

Zeke is a 125-pound Leonberger who lives in Idaho and enjoys going on back country ski trips. Zekes hobbies came to a halt two years ago when he was diagnosed with a partial cruciate ligament tear. He had gone lame and two weeks of rest was recommended, but his owners did not see improvement. After a month of rest, x-rays revealed arthritis had developed in one of Zekes knees.

After a year of pain medications to control the discomfort and pain, Zeke started having more difficulties. He had a delayed ability to comfortably bend his leg, often needed help getting up from a laying position, and would whimper in pain. This time, x-rays would reveal arthritis in both knees. After a few months of increased pain medications and only mild improvement, Zekes owners opted for stem cell therapy with Dr. Ponsness-Wetzel.

Zeke was still quite active and happy, so the thought of double knee surgery and the long recovery time was not in my books, so we opted for stem cell therapy, Zekes owner explains. It has been four months since the stem cell injections (both knees and an IV dose) and Zeke has definitely improved. He no longer needs help getting up. He does not whimper in pain. His delay in bending his knee is non-existent, and his pain medication has been reduced by about 80%. Hikes are no longer sheer drudgery and he has a bounce in his step that I forgot existed.

Pend Oreille Veterinary Services celebrates its 50th anniversary in the Bonner County, providing basic health care services to small animals and reptiles, as well as cutting edge therapies such as acupuncture, laser, and stem cells. Pend Oreille Veterinary Services also offers boarding and grooming to the cities around their two locations in Ponderay and Bonners Ferry. To find out more about Pend Oreille Veterinary Service and Vet-Stem Cell Therapy with Dr. Ponsness-Wetzel, visit http://www.sandpointvets.com.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Continued here:
Stem Cell Therapy Provided by Pend Oreille Veterinary Service Helps Local Leonberger Get the Bounce Back in His Step ...

Read More...

A brave new world: Stem cell therapy in Lebanon

Thursday, May 22nd, 2014

BEIRUT: Fat removal and a non-surgical facelift at the same time might sound like a two-for-one offer too good to be true. But that is a pretty common combination at the Innovi Stem Cell Therapy Clinic, where doctors extract stem cells from the bodys fat to do any number of cosmetic cleanups, from scar removal to diminishing fine lines and wrinkles.

The clinic opened five months ago in the Beirut neighborhood of Sodeco, bringing Lebanon its first specialized center in stem cell research.

Around the world at any given medical conference, from fields as diverse as orthopedics to dentistry, stem cells have become one of the main events, as researchers believe these undifferentiated cells hold the cure to some of the gravest human diseases: cancer, diabetes, multiple sclerosis, to name a few.

In a country like Lebanon, stem cell specialists figured the best way to support their research was to offer one of the most in-demand medical procedures: cosmetic surgery.

Walking through the halls of the elegant, albeit quaint, clinic, one will see top-of-the-line fat freezing technology, equipment for laser hair removal and facilities where doctors carry out medical face peels and stretch mark treatment.

They also offer Ozone therapy, which uses pure oxygen that can supposedly alleviate a range of maladies from skin disorders and premature aging to chronic pain.

But we are not a beauty clinic, said one of the doctors, who asked not to be identified due to Lebanons strict medical advertising laws.

These cosmetic procedures complement their work in stem cells, a far less understood and rapidly evolving area of medicine. Innovi, for example, has built the Middle Easts only stem cell bank, where up to 19,000 vials can be frozen and preserved with liquid nitrogen. The closet housing the bank, which looks like an enormous washing machine, now holds the stem cells of a modest 10 clients.

The clinic has become a hub for various stem cells research. Doctors have visited from Europe and a Syrian doctor is now working with a couple to try and grow sperm from the stem cells of a man with aspermia.

But cosmetic treatments and stem cells go well together as doctors have been using fat-derived cells, also called adipose stem cells, as a Botox-like filler for almost a decade.

See the original post:
A brave new world: Stem cell therapy in Lebanon

Read More...

Dr. Todd Malan Named Chief Cell Therapy Officer at Okyanos Heart Institute

Wednesday, May 21st, 2014

Freeport, The Bahamas (PRWEB) May 20, 2014

Okyanos Heart Institute has announced the addition of Dr. Todd Malan to their executive medical team as Chief Cell Therapy Officer and General Surgeon. He will perform and oversee the liposuction step of Okyanos treatment, removing a small amount of fat from patients from which their own stem cells are isolated. Cardiac cell therapy is intended for no-option heart patients who have exhausted the currently available standards of care for their condition, of which there are about 2 million in the United States alone.

Dr. Malan is founder of the Innovative Cosmetic Surgery Center in Scottsdale, Arizona, specializing in advanced liposuction and fat transfer procedures. A pioneer in adipose- (fat) derived stem cell research and fellow of the American Academy of Cosmetic Surgery, Dr. Malan became the first physician in the United States to utilize adult stem cells from fat tissue for soft tissue reconstruction. He has co-authored two medical textbooks on fat-derived stem cell therapies and has served as principal investigator on two Institutional Review Board- (IRB) approved adult stem cell trials.

As an active member of the adipose stem cell research community, Dr. Malan is very familiar with the therapeutic benefits of adult stem cells for cardiac, as demonstrated in clinical trials, said Dr. Howard Walpole, chief medical officer at Okyanos. He lends his experience and integrated knowledge of both innovative cosmetic surgery and stem cell therapy to our medical leadership team, he added.

"It is truly gratifying to see the gathering of like-minded researchers, clinicians, and administrators who see the remarkable value of developing evidence-based protocols for effective stem cell therapies, said Dr. Malan. He added, This project is a culmination of years of experience between industry leaders who are dedicated to making Okyanos a premier cell therapy center in the world. The work we do today will define the future of medicine for years to come."

Okyanos cardiac cell therapy is the first stem cell-based procedure for heart failure available to patients outside of clinical trials, wherein the patients own adipose-derived stem cells are infused directly into the damaged part of the heart via catheter. Okyanos will begin treating advanced heart disease patients in Freeport, The Bahamas, in the summer of 2014.

ABOUT OKYANOS HEART INSTITUTE: [Oh key AH nos] Based in Freeport, The Bahamas, Okyanos Heart Institutes mission is to bring a new standard of care and a better quality of life to patients with coronary artery disease using cardiac stem cell therapy. Okyanos adheres to U.S. surgical center standards and is led by founder and CEO Matt Feshbach, as well as Chief Medical Officer Howard T. Walpole Jr., M.D., M.B.A., F.A.C.C., F.S.C.A.I. Okyanos Treatment utilizes a unique blend of stem and regenerative cells derived from ones own adipose (fat) tissue. The cells, when placed into the heart via a minimally-invasive procedure, can stimulate the growth of new blood vessels, a process known as angiogenesis. Angiogenesis facilitates blood flow in the heart, which supports intake and use of oxygen (as demonstrated in rigorous clinical trials such as the PRECISE trial). The literary name Okyanos, the Greek god of rivers, symbolizes restoration of blood flow.

For more information, please visit http://www.okyanos.com/.

Read more:
Dr. Todd Malan Named Chief Cell Therapy Officer at Okyanos Heart Institute

Read More...

Stem Cell Therapy using Bone Marrow Derived Mononuclear Cells in Treatment of Lower Limb Lymphedema – Video

Sunday, May 18th, 2014


Stem Cell Therapy using Bone Marrow Derived Mononuclear Cells in Treatment of Lower Limb Lymphedema

By: osama ashmawy

Continued here:
Stem Cell Therapy using Bone Marrow Derived Mononuclear Cells in Treatment of Lower Limb Lymphedema - Video

Read More...

Successful Stem Cell Therapy in Monkeys is First of Its Kind

Saturday, May 17th, 2014

Mice have been poked, prodded, injected and dissected in the name of science. But there are limits to what mice can teach us especially when it comes to stem cell therapies. For the first time, researchers haveturned skin cells into bone in a creature more closely related to humans: monkeys.

In a study published Thursday in the journal Cell Reports, scientists report that they regrew bone in 25rhesus macaques using induced pluripotent stem cells (iPSCs) taken from the creatures skin. Since macaques are more closely related to humans, their discovery could help push stem cell therapies into early clinical trials in humans.

While this is the good news, the bad news is that iPSCs can also seed tumors in monkeys; however, the tumors grew at a far slower rate than in previous studies in mice. This finding further emphasizes the key role primates likely will play in testing the safety of potential stem cell therapies.

Repairing Bone

Researchers used a common procedure to reprogram macaque skin cells, and coaxed them into pluripotent cells that were capable of building bone. They seeded these cells into ceramic scaffolds, which are already used by surgeons used to reconstruct bone. The cells took, and the monkeys successfully grew new bone.

In some experiments, the monkeys formed teratomas nasty tumors that can contain teeth and hair when they were injected with undifferentiated iPSCs, or cells that have the potential to change into any kind of cell. However, the tumors grew 20 times slower than in mice, highlighting an important difference between mice and monkeys.

Fortunately, tumors did not form in monkeys that were injected with differentiated iPSCs, or cells that were programmed to createbone cells.

Advancing Research

Researchers say their successful procedure proves that monkeys willplay an important rolein research on therapies using iPSCs. These monkeys will help scientists test and analyze risks associated with the therapies and improve their safety.

Go here to see the original:
Successful Stem Cell Therapy in Monkeys is First of Its Kind

Read More...

First test of pluripotent stem cell therapy in monkeys is successful

Saturday, May 17th, 2014

Researchers have shown for the first time in an animal that is more closely related to humans that it is possible to make new bone from stem-cell-like induced pluripotent stem cells (iPSCs) made from an individual animal's own skin cells. The study in monkeys reported in the Cell Press journal Cell Reports on May 15th also shows that there is some risk that those iPSCs could seed tumors, but that unfortunate outcome appears to be less likely than studies in immune-compromised mice would suggest.

"We have been able to design an animal model for testing of pluripotent stem cell therapies using the rhesus macaque, a small monkey that is readily available and has been validated as being closely related physiologically to humans," said Cynthia Dunbar of the National Heart, Lung, and Blood Institute. "We have used this model to demonstrate that tumor formation of a type called a 'teratoma' from undifferentiated autologous iPSCs does occur; however, tumor formation is very slow and requires large numbers of iPSCs given under very hospitable conditions. We have also shown that new bone can be produced from autologous iPSCs, as a model for their possible clinical application."

Autologous refers to the fact that the iPSCs capable of producing any tissue typein this case bonewere derived from the very individual that later received them. That means that use of these cells in tissue repair would not require long-term or possibly toxic immune suppression drugs to prevent rejection.

The researchers first used a standard recipe to reprogram skin cells taken from rhesus macaques. They then coaxed those cells to form first pluripotent stem cells and then cells that have the potential to act more specifically as bone progenitors. Those progenitor cells were then seeded onto ceramic scaffolds that are already in use by reconstructive surgeons attempting to fill in or rebuild bone. And, it worked; the monkeys grew new bone.

Importantly, the researchers report that no teratoma structures developed in monkeys that had received the bone "stem cells." In other experiments, undifferentiated iPSCs did form teratomas in a dose-dependent manner.

The researchers say that therapies based on this approach could be particularly beneficial for people with large congenital bone defects or other traumatic injuries. Although bone replacement is an unlikely "first in human" use for stem cell therapies given that the condition it treats is not life threatening, the findings in a primate are an essential step on the path toward regenerative clinical medicine.

"A large animal preclinical model for the development of pluripotent or other high-risk/high-reward generative cell therapies is absolutely required to address issues of tissue integration or homing, risk of tumor formation, and immunogenicity," Dunbar said. "The testing of human-derived cells in vitro or in profoundly immunodeficient mice simply cannot model these crucial preclinical safety and efficiency issues."

The NIH team is now working with collaborators on differentiation of the macaque iPSCs into liver, heart, and white blood cells for eventual clinical trials in hepatitis C, heart failure, and chronic granulomatous disease, respectively.

Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.

See the rest here:
First test of pluripotent stem cell therapy in monkeys is successful

Read More...

Succssful Stem Cell Therapy in Monkeys is First of Its Kind

Friday, May 16th, 2014

Mice have been poked, prodded, injected and dissected in the name of science. But there are limits to what mice can teach us especially when it comes to stem cell therapies. For the first time, researchers haveturned skin cells into bone in a creature more closely related to humans: monkeys.

In a study published Thursday in the journal Cell Reports, scientists report that they regrew bone in 25rhesus macaques using induced pluripotent stem cells (iPSCs) taken from the creatures skin. Since macaques are more closely related to humans, their discovery could help push stem cell therapies into early clinical trials in humans.

While this is the good news, the bad news is that iPSCs can also seed tumors in monkeys; however, the tumors grew at a far slower rate than in previous studies in mice. This finding further emphasizes the key role primates likely will play in testing the safety of potential stem cell therapies.

Repairing Bone

Researchers used a common procedure to reprogram macaque skin cells, and coaxed them into pluripotent cells that were capable of building bone. They seeded these cells into ceramic scaffolds, which are already used by surgeons used to reconstruct bone. The cells took, and the monkeys successfully grew new bone.

In some experiments, the monkeys formed teratomas nasty tumors that can contain teeth and hair when they were injected with undifferentiated iPSCs, or cells that have the potential to change into any kind of cell. However, the tumors grew 20 times slower than in mice, highlighting an important difference between mice and monkeys.

Fortunately, tumors did not form in monkeys that were injected with differentiated iPSCs, or cells that were programmed to createbone cells.

Advancing Research

Researchers say their successful procedure proves that monkeys willplay an important rolein research on therapies using iPSCs. These monkeys will help scientists test and analyze risks associated with the therapies and improve their safety.

See the original post:
Succssful Stem Cell Therapy in Monkeys is First of Its Kind

Read More...

Stem cell therapy shows promise for multiple sclerosis

Thursday, May 15th, 2014

In this image, the top row shows the stem cells transplanted into the mouse spinal cord. The lower row shows a close-up of the stem cells (brown). By day 7 post-transplant, the stem cells are no longer detectable. Within this short period of time, the stem cells have sent chemical signals to the mouses own cells, enabling them to repair the nerve damage caused by MS. (image: Lu Chen)

For patients with multiple sclerosis (MS), current treatment options only address early-stage symptoms of the debilitating disease. Now, new research has found a potential treatment that could both stop disease progression and repair existing damage.

In a study published in Stem Cell Reports, researchers utilized a group of paralyzed mice genetically engineered to have an MS-like condition. Initially, the researchers set out to study the mechanisms of stem cell rejection in the mice. However, two weeks after injecting the mice with human neural stem cells, the researchers made the unexpected discovery that the mice had regained their ability to walk.

This had a lot of luck to do with it; right place, right time co-senior author Jeanne Loring, director of the Center for Regenerative Medicine at The Scripps Research Institute in La Jolla, California, told FoxNews.com. [co-senior author Tom Lane] called me up and said, Youre not going to believe this. He sent me a video, and it showed the mice running around the cages. I said, Are you sure these are the same mice?

Loring, whose lab specializes in turning human stem cells into neural precursor cells, or pluripotent cells, collaborated with Tom Lane, a professor of pathology at the University of Utah whose focus is on neuroinflammatory diseases of the central nervous system. The team was interested in stem cell rejection in MS models in order to understand the underlying molecular and cellular mechanisms contributing to rejection of potential stem cell therapies for the disease.

Multiple sclerosis is an autoimmune disease that affects more than 2.3 million people worldwide. For people with MS, the immune system misguidedly attacks the bodys myelin, the insulating coating on nerve fibers.

In a nutshell, its the rubber sheath that protects the electrical wire; the axon that extends from the nerves cell body is insulated by myelin, Lane, who began the study while at the University of California, Irvine, told FoxNews.com

Once the myelin has been lost, nerve fibers are unable to transmit electric signals efficiently, leading to symptoms such as vision and motor skill problems, fatigue, slurred speech, memory difficulties and depression.

The researchers inadvertent treatment appeared to work in two ways. First, there was a decrease of inflammation within the central nervous system of the mice, preventing the disease from progressing. Secondly, the injected cells released proteins that signaled cells to regenerate myelin and repair existing damage.

While the stem cells were rejected in the mice after 10 days, researchers were able to see improvements for up to six months after initial implantation.

See more here:
Stem cell therapy shows promise for multiple sclerosis

Read More...

Stem Cell Therapy Shows Promise for MS in Mouse Model

Thursday, May 15th, 2014

Contact Information

Available for logged-in reporters only

Newswise LA JOLLA, CAMay 15, 2014Mice crippled by an autoimmune disease similar to multiple sclerosis (MS) regained the ability to walk and run after a team of researchers led by scientists at The Scripps Research Institute (TSRI), University of Utah and University of California (UC), Irvine implanted human stem cells into their injured spinal cords.

Remarkably, the mice recovered even after their bodies rejected the human stem cells. When we implanted the human cells into mice that were paralyzed, they got up and started walking a couple of weeks later, and they completely recovered over the next several months, said study co-leader Jeanne Loring, a professor of developmental neurobiology at TSRI.

Thomas Lane, an immunologist at the University of Utah who co-led the study with Loring, said he had never seen anything like it. Weve been studying mouse stem cells for a long time, but we never saw the clinical improvement that occurred with the human cells that Dr. Loring's lab provided, said Lane, who began the study at UC Irvine.

The mices dramatic recovery, which is reported online ahead of print by the journal Stem Cell Reports, could lead to new ways to treat multiple sclerosis in humans.

"This is a great step forward in the development of new therapies for stopping disease progression and promoting repair for MS patients, said co-author Craig Walsh, a UC Irvine immunologist.

Stem Cell Therapy for MS

MS is an autoimmune disease of the brain and spinal cord that affects more than a half-million people in North America and Europe, and more than two million worldwide. In MS, immune cells known as T cells invade the upper spinal cord and brain, causing inflammation and ultimately the loss of an insulating coating on nerve fibers called myelin. Affected nerve fibers lose their ability to transmit electrical signals efficiently, and this can eventually lead to symptoms such as limb weakness, numbness and tingling, fatigue, vision problems, slurred speech, memory difficulties and depression.

Current therapies, such as interferon beta, aim to suppress the immune attack that strips the myelin from nerve fibers. But they are only partially effective and often have significant adverse side effects. Lorings group at TSRI has been searching for another way to treat MS using human pluripotent stem cells, which are cells that have the potential to transform into any of the cell types in the body.

Follow this link:
Stem Cell Therapy Shows Promise for MS in Mouse Model

Read More...

First test of pluripotent stem cell therapy in monkeys is a success

Thursday, May 15th, 2014

PUBLIC RELEASE DATE:

15-May-2014

Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press

Researchers have shown for the first time in an animal that is more closely related to humans that it is possible to make new bone from stem-cell-like induced pluripotent stem cells (iPSCs) made from an individual animal's own skin cells. The study in monkeys reported in the Cell Press journal Cell Reports on May 15th also shows that there is some risk that those iPSCs could seed tumors, but that unfortunate outcome appears to be less likely than studies in immune-compromised mice would suggest.

"We have been able to design an animal model for testing of pluripotent stem cell therapies using the rhesus macaque, a small monkey that is readily available and has been validated as being closely related physiologically to humans," said Cynthia Dunbar of the National Heart, Lung, and Blood Institute. "We have used this model to demonstrate that tumor formation of a type called a 'teratoma' from undifferentiated autologous iPSCs does occur; however, tumor formation is very slow and requires large numbers of iPSCs given under very hospitable conditions. We have also shown that new bone can be produced from autologous iPSCs, as a model for their possible clinical application."

Autologous refers to the fact that the iPSCs capable of producing any tissue typein this case bonewere derived from the very individual that later received them. That means that use of these cells in tissue repair would not require long-term or possibly toxic immune suppression drugs to prevent rejection.

The researchers first used a standard recipe to reprogram skin cells taken from rhesus macaques. They then coaxed those cells to form first pluripotent stem cells and then cells that have the potential to act more specifically as bone progenitors. Those progenitor cells were then seeded onto ceramic scaffolds that are already in use by reconstructive surgeons attempting to fill in or rebuild bone. And, it worked; the monkeys grew new bone.

Importantly, the researchers report that no teratoma structures developed in monkeys that had received the bone "stem cells." In other experiments, undifferentiated iPSCs did form teratomas in a dose-dependent manner.

The researchers say that therapies based on this approach could be particularly beneficial for people with large congenital bone defects or other traumatic injuries. Although bone replacement is an unlikely "first in human" use for stem cell therapies given that the condition it treats is not life threatening, the findings in a primate are an essential step on the path toward regenerative clinical medicine.

"A large animal preclinical model for the development of pluripotent or other high-risk/high-reward generative cell therapies is absolutely required to address issues of tissue integration or homing, risk of tumor formation, and immunogenicity," Dunbar said. "The testing of human-derived cells in vitro or in profoundly immunodeficient mice simply cannot model these crucial preclinical safety and efficiency issues."

Read more here:
First test of pluripotent stem cell therapy in monkeys is a success

Read More...

Stem cell research offers new hope

Wednesday, May 14th, 2014

May 14, 2014, 4 a.m.

STEM cell therapy is the great frontier of todays medical research.

STEM cell therapy is the great frontier of todays medical research.

While still in its infancy, stem cell technology has already moved from being a promising idea to delivering life-saving treatment for conditions such as leukaemia.

Last week about 70 people gathered at the Mid City Motel, Warrnambool, to hear about the advances from one of Australias leading researchers.

Stem cell researcher, Professor Graham Jenkin.

Professor Graham Jenkin, of the department of obstetrics and gynaecology at Monash University, is researching the use of stem cells harvested from umbilical cord blood to treat babies at risk of developing cerebral palsy as the result of oxygen deprivation during birth.

The event was hosted by the Warrnambool branch of the Inner Wheel Club as part of a national fund-raising program by the organisation.

Professor Jenkin, deputy director of The Ritchie Centre, said treating infants deprived of oxygen with cord blood stem cells was showing promising results in preventing the brain damage that leads to cerebral palsy.

We are looking at treating infants within a 24-hour window after birth, Professor Jenkin said. We would be aiming for treatment after about six hours if possible, which is about as soon as the stem cells can be harvested.

Read the rest here:
Stem cell research offers new hope

Read More...

Low back disc pain 3 months after stem cell therapy by Dr Harry Adelson – Video

Sunday, May 11th, 2014


Low back disc pain 3 months after stem cell therapy by Dr Harry Adelson
Brian discusses his results from the bone marrow stem cell injection into his lumbar discs performed by Dr Harry Adelson http://www.docereclinics.com.

By: Harry Adelson, N.D.

Excerpt from:
Low back disc pain 3 months after stem cell therapy by Dr Harry Adelson - Video

Read More...

Page 16«..10..15161718..3040..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick