header logo image


Page 24«..1020..23242526..»

Archive for the ‘Cell Medicine’ Category

New Industry Partnership to Strengthen Regenerative Medicine Industry in Canada

Friday, March 9th, 2012

TORONTO, ONTARIO--(Marketwire -03/09/12)- The newest player in the regenerative medicine (RM) field in Canada is taking a collaborative approach to commercializing stem cell and biomaterials products. The Centre for Commercialization of Regenerative Medicine (CCRM) has created an industry consortium that is working together to address real-life bottlenecks in their RM product pipelines.

CCRM's scientific leadership is recognized by the global RM community as being world-leading. According to Michael May, CEO of CCRM, partnering with industry completes the puzzle. "By working with industry, CCRM captures business expertise that informs product development and commercialization. We already had access to some of the best scientific minds in the field and now we have access to seasoned industry experts. This is key to our success and will accelerate product development."

The members of the industry consortium represent the key sectors of the RM industry: therapeutics, devices, reagents, and cells as tools. CCRM has built three core development platforms: reprogramming, cell manufacturing, and biomaterials and tissue mimetics. The intellectual property and infrastructure of CCRM's six research institution partners and support from 20 leading RM companies will enhance Canada's already strong leadership role in the RM field.

"CCRM is uniquely positioned to meet the needs of industry and academia," explains Greg Bonfiglio, Chair of CCRM's Board of Directors. "CCRM boasts scientific expertise and state-of-the-art resources in its development lab and this combination will benefit the regenerative medicine community that can capitalize on our ability to complete projects quickly and cost competitively."

The industry consortium members are as follows:

About the Centre for Commercialization of Regenerative Medicine (CCRM)

CCRM, a Canadian not-for-profit organization funded by the Government of Canada's Networks of Centres of Excellence program and six academic partners, supports the development of technologies that accelerate the commercialization of stem cell- and biomaterials-based technologies and therapies. A network of academics, industry and entrepreneurs, CCRM aims to translate scientific discoveries into marketable products for patients. CCRM launched in Toronto's Discovery District on June 14, 2011.

Here is the original post:
New Industry Partnership to Strengthen Regenerative Medicine Industry in Canada

Read More...

Fly research gives insight into human stem cell development and cancer

Thursday, March 8th, 2012

Public release date: 8-Mar-2012 [ | E-mail | Share ]

Contact: Phyllis Edelman pedelman@genetics-gsa.org 301-351-0896 Genetics Society of America

CHICAGO, IL March 8, 2012 Stem cells provide a recurring topic among the scientific presentations at the Genetics Society of America's 53rd Annual Drosophila Research Conference, March 7-11 at the Sheraton Chicago Hotel & Towers. Specifically, researchers are trying to determine how, within organs, cells specialize while stem cells maintain tissues and enable them to repair damage and respond to stress or aging. Four talks, one on Thursday morning and three on Sunday morning, present variations on this theme.

For a fertilized egg to give rise to an organism made up of billions or trillions of cells, a precise program of cell divisions must unfold. Some divisions are "asymmetric": one of the two daughter cells specializes, yet the other retains the ability to divide. Chris Q. Doe, Ph.D., professor of biology at the University of Oregon, compares this asymmetric cell division to splitting a sundae so that only one half gets the cherry. The "cherries" in cells are the proteins and RNA molecules that make the two cells that descend from one cell different from each other. This collecting of different molecules in different regions of the initial cell before it divides is termed "cell polarity."

Dr. Doe and his team are tracing the cell divisions that form a fly's nervous system. "Producing the right cells at the right time is essential for normal development, yet it's not well understood how an embryonic precursor cell or stem cell generates a characteristic sequence of different cell types," he says. Dr. Doe and his team traced the cell lineages of 30 neuroblasts (stem cell-like neural precursors), each cell division generating a daughter cell bound for specialization as well as a self-renewing neuroblast. The dance of development is a matter of balance. Self-renew too much, and a tumor results; not enough, and the brain shrinks.

Tracing a cell lineage is a little like sketching a family tree of cousins who share a great-grandparent except that the great-grandparent (the neuroblast) continually produces more cousins. "The offspring will change due to the different environments they are born into," says Dr. Doe.

Julie A. Brill, Ph.D., a principal investigator at The Hospital for Sick Children (SickKids) in Toronto, investigates cell polarity in sperm cells. These highly specialized elongated cells begin as more spherical precursor cells. Groups of developing sperm elongate, align, condense their DNA into tight packages, expose enzyme-containing bumps on their tips that will burrow through an egg's outer layers, form moving tails, then detach and swim away.

The Brill lab studies a membrane lipid called PIP2 (phosphatidylinositol 4,5-bisphosphate) that establishes polarity in developing male germ cells in Drosophila. "Reducing levels of PIP2 leads to defects in cell polarity and failure to form mature, motile sperm," Dr. Brill says. These experiments show that localization of the enzyme responsible for PIP2 production in the growing end of elongating sperm tails likely sets up cell polarity. Since loss of this polarity is implicated in the origin and spread of cancer, defects in the regulation of PIP2 distribution may contribute to human cancer progression, she adds.

Stephen DiNardo, Ph.D., professor of cell and developmental biology at the Institute for Regenerative Medicine at the University of Pennsylvania, is investigating how different varieties of stem cells in the developing fly testis give rise to germ cells and epithelial cells that ensheathe the germ cells, as well as being able to self-renew. For each of these roles, stem cells are guided by their environment, known as their "niche."

In the fly testis, we know not only the locations of the two types of stem cells whose actions maintain fertility, but of neighboring cells. "We study how these niche cells are first specified during development, how they assemble, and what signals they use. Elements of what we and others learn about this niche may well apply to more complex niches in our tissues," Dr. DiNardo explains.

Read the original post:
Fly research gives insight into human stem cell development and cancer

Read More...

Stem cell research allows for mismatched kidney transplants

Wednesday, March 7th, 2012

Donating a kidney may save a person's life - but only if the conditions are precise.

Kidney donors must be related and immunologically matched to their donors and even then, the recipient must take a lifetime of anti-rejection medications, which dont guarantee the organ won't be rejected.

But a new clinical trial from Northwestern Memorial Hospital in Chicago, Ill. has shown how stem cells can be used to trick a recipients immune system into believing the new organ has been part of that persons body all along.

The breakthrough has the potential to eliminate both the risks associated with kidney transplantation and the need for anti-rejection medications within one year after surgery.

Its the holy grail of transplantation, said lead author Dr. Joseph Leventhal, transplant surgeon at Northwestern Memorial Hospital and associate professor of surgery and director of kidney and pancreas transplantation at Northwestern University Feinberg School of Medicine in Chicago, Ill. This notion of being able to achieve tolerance through donor derived cells has been around for more than 50 years, but its translation to the clinic has been quite elusive. This article details the first successful attempt of this in mismatched and unrelated kidney recipients.

The research was published Wednesday in the journal Science Translational Medicine, and it is the first study of its kind in which the donor and recipient were not related and did not have to be immunologically matched. Only 25 percent of siblings are immunologically identical, severely limiting the possibility of being a kidney donor.

The procedure worked by extracting a little bit more from the kidney donor than just their kidney. They also donated part of their immune system. About one month before surgery, bone marrow stem cells were collected from the donor and then enriched with facilitating cells becoming stem cells that will ultimately fool the donors immune system allowing the transplant to succeed.

One day after the kidney transplant occurs, the facilitating cell-enriched stem cells are also transplanted in the recipient, which then prompts the formation of stem cells in the bone marrow. This then causes specialized immune cells similar to the donors immune cells to develop, creating a dual bone marrow system environment, so both the donors immune system and the recipients immune system function inside the persons body.

Leventhal said that the ultimate goal is for the recipient to initially take anti-rejection medications but then slowly wean off of them within a year. According to Leventhal, the drugs come with their own share of negative side effects.

The foundation of clinical transplantation revolves around the use of medicines and suppressive drugs to control the immune system, Leventhal said. These drugs have been very successful in reducing the rates of loss of organs due to acute rejection where side effects include increase risk of infection and cancer, and metabolic side effects, such as the increase risk of hypertension and bone disease. But the drugs themselves are potentially harmful to the organs we transplant. Despite our ability to reduce rates of acute rejection, most individuals go on to lose organs because of chronic (long-term) rejection.

See the rest here:
Stem cell research allows for mismatched kidney transplants

Read More...

Internationally Recognized Leukemia Physician and Researcher to Lead Sylvester Comprehensive Cancer Center

Wednesday, March 7th, 2012

MIAMI--(BUSINESS WIRE)--

Stephen D. Nimer, M.D., one of the worlds premier leukemia and stem cell transplant researchers and clinicians, has been named the new director of the Sylvester Comprehensive Cancer Center.

Nimer, the Alfred P. Sloan Chair in Cancer Research at Memorial Sloan-Kettering Cancer Center, will assume the key University of Miami Miller School of Medicine and UHealth-University of Miami Health System post this spring, bringing 30 years of pioneering research and clinical experience and an unquenchable passion for improving the lives of patients with cancer, and their families.

The focus will not be solely on taking care of the cancer, it will be on taking care of the patient, said Nimer, whose patient-centered philosophy has won him as much acclaim as his clinical and laboratory accomplishments. That means trying to understand as fully as possible each patients cancer the biology driving the cancer, and the impact of the cancer on the patients life in order to develop a personalized therapeutic approach suited to each individual.

Pascal J. Goldschmidt, M.D., Senior Vice President for Medical Affairs and Dean of the Miller School, and CEO of UHealth, said Nimer, who headed the Division of Hematologic Oncology at Sloan-Kettering for a dozen years, is the ideal physician-scientist to lead Sylvester into its third decade and to designation as one of the nations official comprehensive cancer centers by the NIHs National Cancer Institute.

Stephen possesses a unique combination of outstanding clinical skills and visionary scientific acumen in cancer research that will lead Sylvester to become the next top comprehensive cancer center in the U.S., Dean Goldschmidt said. He brings a true patient-centered approach to clinical care and leading-edge research that makes a real difference for our fellow humans. Cancer patients across South Florida and around the world will benefit from his expertise and leadership.

Dr. Nimer will be a spectacular leader for the Sylvester Comprehensive Cancer Center, said UM President Donna E. Shalala.This is a momentous development for the Miller School, the University of Miami, and all of South Florida.

Joseph Rosenblatt, M.D., who has served as interim director of Sylvester, said Dr. Nimers arrival will allow Sylvester to find its rightful place among the worlds premier cancer centers, and his leadership will usher in a new era for our cancer center, which I and our faculty anticipate with great enthusiasm.

Nimer, currently vice chair for faculty development at Sloan-Ketterings Department of Medicine, plans to develop and expand a number of services at Sylvester, including programs for breast cancer, lung cancer, prostate cancer and hematological malignancies, among others. He also plans to recruit more than 30 new scientists and physicians, develop key core facilities and expand the clinical and laboratory research capabilities.

He specifically hopes to recruit experts in areas such as bone marrow transplantation, mouse models of human cancer, and molecular diagnostics, as well as additional surgeons skilled in complex, curative and restorative procedures, such as breast reconstruction. He also will expand efforts in cancer prevention, screening and early diagnosis and in identifying those factors that predispose people to develop cancer.

See more here:
Internationally Recognized Leukemia Physician and Researcher to Lead Sylvester Comprehensive Cancer Center

Read More...

Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Wednesday, March 7th, 2012

A new type of stem cell-seeded patch has shown promising results in promoting healing after a heart attack, according to a study released today in the journal STEM CELLS Translational Medicine.

Durham, NC (PRWEB) March 07, 2012

Ischemic heart disease, caused by vessel blockage, is a leading cause of death in many western countries. Studies have shown the potential of stem cells in regenerating heart tissue damaged during an attack. But even as the list of candidate cells for cardiac regeneration has expanded, none has emerged as the obvious choice, possibly because several cell types are needed to regenerate both the hearts muscles and its vascular components.

Aside from the choice of the right cell source for tissue regeneration, the best way to deliver the stem cells is up for debate, too, as intravenous delivery and injections can be inefficient and possibly harmful. While embryonic stem cells have shown great promise for heart repairs due to their ability to differentiate into virtually any cell type, less than 10 percent of injected cells typically survive the engraftment and of that number generally only 2 percent actually colonize the heart.

In order for this type of treatment is to be clinically effective, researchers need to find ways to deliver large numbers of stem cells in a supportive environment that can help cells survive and differentiate.

In the current cardiopatch study, conducted by researchers from the Faculty of Medicine of the Geneva University in collaboration with colleagues at the Ecole Polytechnique Federale de Lausanne (EPFL), cardiac-committed mouse embryonic stem cell (mESC) were committed toward the cardiac fate using a protein growth factor called BMP2 and then embedded into a fibrin hydrogel that is both biocompatible and biodegradable. The cells were loaded with superparamagnetic iron oxide nanoparticles so they could be tracked using magnetic resonance imaging, which also enabled the researchers to more accurately assess regional and global heart function.

The patches were engrafted onto the hearts of laboratory rats that had induced heart attacks. Six weeks later, the hearts of the animals receiving the mESC-seeded patches showed significant improvement over those receiving patches loaded with iron oxide nanoparticles alone. The patches had degraded, the cells had colonized the infarcted tissue and new blood vessels were forming in the vicinity of the transplanted patch. Improvements reached beyond the part of the heart where the patch had been applied to manifest globally.

Marisa Jaconi, PhD, of the Geneva University Department of Pathology and Immunology, and Jeffrey Hubbell, PhD, professor of bioengineering at the EPFL, were leaders on the investigative team. Their findings could make a significant impact on how heart patients are treated in the future. Altogether our data provide evidence that stem-cell based cardiopatches represent a promising therapeutic strategy to achieve efficient cell implantation and improved global and regional cardiac function after myocardial infarction, said Jaconi.

###

The full article, Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats, can be accessed at: http://www.stemcellstm.com/content/early/recent.

Go here to see the original:
Stem Cell-Seeded Cardiopatch Could Deliver Results for Damaged Hearts

Read More...

Influencing stem cell fate: New screening method helps scientists identify key information rapidly

Wednesday, March 7th, 2012

ScienceDaily (Mar. 6, 2012) Northwestern University scientists have developed a powerful analytical method that they have used to direct stem cell differentiation. Out of millions of possibilities, they rapidly identified the chemical and physical structures that can cue stem cells to become osteocytes, cells found in mature bone.

Researchers can use the method, called nanocombinatorics, to build enormous libraries of physical structures varying in size from a few nanometers to many micrometers for addressing problems within and outside biology.

Those in the fields of chemistry, materials engineering and nanotechnology could use this invaluable tool to assess which chemical and physical structures -- including size, shape and composition -- work best for a desired process or function.

Nanocombinatorics holds promise for screening catalysts for energy conversion, understanding properties conferred by nanostructures, identifying active molecules for drug discovery or even optimizing materials for tissue regeneration, among other applications.

Details of the method and proof of concept is published in the Proceedings of the National Academy of Sciences.

"With further development, researchers might be able to use this approach to prepare cells of any lineage on command," said Chad A. Mirkin, who led the work. "Insight into such a process is important for understanding cancer development and for developing novel cancer treatment methodologies."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology (IIN).

The new analytical method utilizes a technique invented at Northwestern called polymer pen lithography, where basically a rubber stamp having as many as 11 million sharp pyramids is mounted on a transparent glass backing and precisely controlled by an atomic force microscope to generate desired patterns on a surface. Each pyramid -- a polymeric pen -- is coated with molecules for a particular purpose.

In this work, the researchers used molecules that bind proteins found in the natural cell environment, such as fibronectin, which could then be attached onto a substrate in various patterns. (Fibronectin is a protein that mediates cell adhesion.) The team rapidly prepared millions of textured features over a large area, which they call a library. The library consisted of approximately 10,000 fibronectin patterns having as many as 25 million features ranging in size from a couple hundred nanometers to several micrometers.

To make these surfaces, they intentionally tilt the stamp and its array of pens as the stamp is brought down onto the substrate, each pen delivering a spot of molecules that could then bind fibronectin. The tilt results in different amounts of pressure on the polymeric pens, which dictates the feature size of each spot. Because the pressure varies across a broad range, so does the feature size.

Read more:
Influencing stem cell fate: New screening method helps scientists identify key information rapidly

Read More...

Influencing stem cell fate

Wednesday, March 7th, 2012

Public release date: 6-Mar-2012 [ | E-mail | Share ]

Contact: Megan Fellman fellman@northwestern.edu 847-491-3115 Northwestern University

Northwestern University scientists have developed a powerful analytical method that they have used to direct stem cell differentiation. Out of millions of possibilities, they rapidly identified the chemical and physical structures that can cue stem cells to become osteocytes, cells found in mature bone.

Researchers can use the method, called nanocombinatorics, to build enormous libraries of physical structures varying in size from a few nanometers to many micrometers for addressing problems within and outside biology.

Those in the fields of chemistry, materials engineering and nanotechnology could use this invaluable tool to assess which chemical and physical structures -- including size, shape and composition -- work best for a desired process or function.

Nanocombinatorics holds promise for screening catalysts for energy conversion, understanding properties conferred by nanostructures, identifying active molecules for drug discovery or even optimizing materials for tissue regeneration, among other applications.

Details of the method and proof of concept is published in the Proceedings of the National Academy of Sciences.

"With further development, researchers might be able to use this approach to prepare cells of any lineage on command," said Chad A. Mirkin, who led the work. "Insight into such a process is important for understanding cancer development and for developing novel cancer treatment methodologies."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He also is the director of Northwestern's International Institute for Nanotechnology (IIN).

The new analytical method utilizes a technique invented at Northwestern called polymer pen lithography, where basically a rubber stamp having as many as 11 million sharp pyramids is mounted on a transparent glass backing and precisely controlled by an atomic force microscope to generate desired patterns on a surface. Each pyramid -- a polymeric pen -- is coated with molecules for a particular purpose.

Read more:
Influencing stem cell fate

Read More...

Cord Blood Registry’s Leading Science and Research Team – Video

Tuesday, March 6th, 2012

05-03-2012 11:59 Learn more about cord blood stem cells here http://www.cordblood.com Cord Blood Registry's Scientific and Medical Affairs team, led by Heather Brown Vice President of Scientific and Medical Affairs, is dedicated to helping understand, communicate and advance stem cell medicine. Her team's focus is on helping find new uses for cord blood, including supporting research that is looking for treatments for conditions that have no treatment today. Our company was founded on the belief that saving newborn stem cells can change the future of medicine. Whether it's providing newborn stem cell banking at no cost to a family with a medical need or partnering with world-class researchers for first-of-their-kind clinical trials, we are committed to advancing stem cell medicine and finding new cures.

Continued here:
Cord Blood Registry's Leading Science and Research Team - Video

Read More...

Penn Medicine Science Educator Recognized by Society for Developmental Biology

Tuesday, March 6th, 2012

PHILADELPHIA Jamie Shuda, EdD, director of life science outreach at the University of Pennsylvania's Institute for Regenerative Medicine (IRM), and coordinator of life science education at the Netter Center for Community Partnerships also at Penn, along with Steve Farber, PhD, Investigator, Embryology Department, Carnegie Institution for Science, Baltimore, have been awarded the Hamburger Outstanding Educator Prize from the Society for Developmental Biology (SBD).

Shuda and Farber run Project BioEYES, a K-12 science education program that provides classroom-based, hands-on learning using live zebrafish to teach about how cells and animals develop. The program is located within the Perelman School of Medicine, Penn; the Carnegie Institution; Notre Dame University in South Bend, IN; and Monash University in Melbourne, Australia, among others, and reaches over 9,000 students per year.

"I am honored that the Society for Developmental Biology has chosen me and Dr. Farber as the 2012 recipients of the Viktor Hamburger prize," says Shuda. "Project BioEYES exemplifies how scientists and educators can come together to teach cutting edge, exciting science to students of all ages. Collaboration across disciplines is greatly supported by Penn and the IRM and it is wonderful that the university is being recognized for their public engagement. Viktor Hamburger was a pioneer in both science and teaching and I hope our education programs inspire more scientists just like him."

With over 10 years of experience in public education, Dr. Shuda has worked with teachers, students, and university staff to develop innovative science curricula. Her research focuses on the role informal science education plays in developing an effective science curriculum in K-12 schools and the characteristics of successful university and community partnerships to enhance science education at the undergraduate level. At the University of Pennsylvania, Dr. Shuda teaches Stem Cell Science in Schools: History, Ethics, and Education, which provides university and high school students with the opportunity to learn the science of stem cells while becoming deeply engaged with social and ethical issues relevant to everyday life. Dr. Shuda holds an MS.Ed and teaching certification from Drexel University and an Ed.D in education policy from Temple University.

Established in 2002 by the SDB Board of Directors in honor of Dr. Viktor Hamburger and sponsored by the Professional Development and Education Committee, this Hamburger award recognizes individuals who have made outstanding contributions to developmental biology education. The recipients deliver a lecture at the Education Symposium of the SDB Annual Meetings.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Go here to see the original:
Penn Medicine Science Educator Recognized by Society for Developmental Biology

Read More...

New Stem Cell Research Shows Promising Results — Advanced Cell Tech and NeoStem Poised to Benefit

Tuesday, March 6th, 2012

NEW YORK, NY--(Marketwire -03/05/12)- February was a challenging month for stem cell stocks. TickerSpy's Stem Cell Stocks Index (RXSTM) has slipped nearly 13 percent over the last month -- underperforming the S&P 500 by close to 17 percent over that time frame. Despite the drop in investor optimism, new research continues to propel the industry forward. Five Star Equities examines the outlook for companies in the Biotechnology industry and provides equity research on Advanced Cell Technology, Inc. (OTC.BB: ACTC.OB - News) and NeoStem, Inc. (AMEX: NBS - News). Access to the full company reports can be found at:

http://www.fivestarequities.com/ACTC

http://www.fivestarequities.com/NBS

A new study at Johns Hopkins University has shown that stem cells from patients' own cardiac tissue can be used to heal scarred tissue after a heart attack. "This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it," Eduardo Marban, director of the Cedars-Sinai Heart Institute and one of the study's co-authors, said in a statement. "The effects are substantial."

In another study, researchers led by Jonathan Tilly, director of the Vincent Center for Reproductive Biology at Massachusetts General Hospital, argue they've discovered the ovaries of young women harbor very rare stem cells capable of producing new eggs.

Five Star Equities releases regular market updates on the biotechnology industry so investors can stay ahead of the crowd and make the best investment decisions to maximize their returns. Take a few minutes to register with us free at http://www.fivestarequities.com and get exclusive access to our numerous stock reports and industry newsletters.

Advanced Cell Technology, Inc., a biotechnology company, focuses on the development and commercialization of human embryonic and adult stem cell technology in the field of regenerative medicine. The Company recently issued a press release stating that it utilized $13.6 million in cash for operations during 2011, compared to $8.8 million in the year-earlier period. The increase in cash utilization resulted primarily from ACT's ongoing clinical activities in the US and Europe.

NeoStem, Inc., a biopharmaceutical company, engages in the development and manufacture of cellular therapies for oncology, immunology, and regenerative medicines in the United States and China. In January, Amorcyte, LLC, a NeoStem, Inc. company, announced the enrollment of the first patient in the Amorcyte PreSERVE Phase 2 trial for acute myocardial infarction.

Five Star Equities provides Market Research focused on equities that offer growth opportunities, value, and strong potential return. We strive to provide the most up-to-date market activities. We constantly create research reports and newsletters for our members. Five Star Equities has not been compensated by any of the above-mentioned companies. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at: http://www.fivestarequities.com/disclaimer

See original here:
New Stem Cell Research Shows Promising Results -- Advanced Cell Tech and NeoStem Poised to Benefit

Read More...

Histogen Signs License Agreement with Suneva Medical for Cell Conditioned Media-based Aesthetic Products

Tuesday, March 6th, 2012

SAN DIEGO, March 5, 2012 /PRNewswire/ --Histogen Inc., a regenerative medicine company, and Suneva Medical, a privately-held aesthetics company, today announced that they have entered into a license agreement for physician-dispensed aesthetic products containing Histogen's proprietary multipotent cell conditioned media (CCM).

Under the terms of this license agreement, Suneva Medical has acquired exclusive U.S. licensing rights to Histogen's multipotent CCM and the ReGenica branded line of products for topical applications in the licensed market. Suneva Medical will manufacture the ReGenica product line and market it to aesthetic practitioners throughout the U.S. Histogen will receive a transfer price on the CCM, as well as royalties on future sales of ReGenica and product line extensions.

"First, let me say that, as the first step in expanding our business, we are very excited about this particular opportunity as the advent of regenerative medicine is upon us. One of our key business objectives is to find novel products that complement our rapidly growing dermal filler business. We believe Histogen's innovative technology coupled with our proven experience of developing and marketing aesthetic products is a winning combination as it enables us to offer our customers a differentiated product line," stated Nicholas Teti, Chairman and Chief Executive Officer of Suneva Medical.

Through Histogen's technology process, which mimics the embryonic environment including conditions of low oxygen and suspension, cells are triggered to become multipotent, and naturally produce proteins associated with skin renewal and scarless healing. The result is a soluble cell conditioned media containing cell-signaling proteins such as KGF, follistatin, stem cell factor, collagens and laminins, which support the epidermal stem cells that renew skin throughout life. In addition, factors associated with scarring, such as TGF-beta, are decreased or nonexistent.

"The applications for this proprietary multipotent CCM within the field of medical aesthetics are numerous and, based upon the way the proteins within the complex signal the body's own stem cells to rejuvenate and regenerate skin, potentially groundbreaking," said Dr. Gail K. Naughton, CEO and Chairman of the Board at Histogen. "This recognition from Suneva's expert team, with a rich background in developing and marketing aesthetics, validates Histogen's technology and supports the fact that it is different from anything currently in the market."

About Histogen Histogen, launched in 2007, seeks to redefine regenerative medicine by developing a series of high value products that do not contain embryonic stem cells or animal components. Through Histogen's proprietary bioreactors that mimic the embryonic environment, including low oxygen and suspension, newborn cells are encouraged to naturally produce the vital proteins and growth factors from which the Company has developed its rich product portfolio. Histogen has two product families a proprietary cell conditioned media, and a human Extracellular Matrix (ECM) material. For more information, please visit http://www.histogen.com.

About Suneva Medical Suneva Medical, Inc. is a privately-held aesthetics company focused on developing, manufacturing and commercializing novel, differentiated products for the dermatology, plastic and cosmetic surgery markets. The Company's long-lasting injectable product is marketed as Artefill in the U.S. and Bellafill in Canada to correct facial wrinkles. For more information visit http://www.sunevamedical.com.

Contacts:

For Histogen Inc.:

Eileen Brandt Phone: (858) 200-9520 ebrandt@histogeninc.com

Read the rest here:
Histogen Signs License Agreement with Suneva Medical for Cell Conditioned Media-based Aesthetic Products

Read More...

BioTime and Aastrom Biosciences — Stem Cell Research Making Breakthroughs

Tuesday, March 6th, 2012

NEW YORK, NY--(Marketwire -03/05/12)- February was a challenging month for stem cell stocks. TickerSpy's Stem Cell Stocks Index (RXSTM) has slipped nearly 13 percent over the last month -- underperforming the S&P 500 by close to 17 percent over that time frame. Despite the drop in investor optimism, new and promising research continues to propel the industry forward. Five Star Equities examines the outlook for companies in the Biotechnology industry and provides equity research on BioTime, Inc. (AMEX: BTX - News) and Aastrom Biosciences, Inc. (NASDAQ: ASTM - News). Access to the full company reports can be found at:

http://www.fivestarequities.com/BTX

http://www.fivestarequities.com/ASTM

A new study at Johns Hopkins University has shown that stem cells from patients' own cardiac tissue can be used to heal scarred tissue after a heart attack. "This has never been accomplished before, despite a decade of cell therapy trials for patients with heart attacks. Now we have done it," Eduardo Marban, director of the Cedars-Sinai Heart Institute and one of the study's co-authors, said in a statement. "The effects are substantial."

In another study, researchers led by Jonathan Tilly, director of the Vincent Center for Reproductive Biology at Massachusetts General Hospital, argue they've discovered the ovaries of young women harbor very rare stem cells capable of producing new eggs.

Five Star Equities releases regular market updates on the biotechnology industry so investors can stay ahead of the crowd and make the best investment decisions to maximize their returns. Take a few minutes to register with us free at http://www.fivestarequities.com and get exclusive access to our numerous stock reports and industry newsletters.

Aastrom Biosciences, Inc., a regenerative medicine company, engages in developing autologous cell therapies for the treatment of severe and chronic cardiovascular diseases.

BioTime, Inc. primarily focuses on regenerative medicine, which refers to therapies based on human embryonic stem (hES) cell and induced pluripotent stem (iPS) cell technology designed to rebuild cell and tissue function lost due to degenerative disease or injury. The company recently elected to market progenitors of muscle stem cells bearing hereditary diseases. BioTime will produce the products from five human embryonic stem (hES) cell lines from Reproductive Genetics Institute (RGI) of Chicago, Illinois.

Five Star Equities provides Market Research focused on equities that offer growth opportunities, value, and strong potential return. We strive to provide the most up-to-date market activities. We constantly create research reports and newsletters for our members. Five Star Equities has not been compensated by any of the above-mentioned companies. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at: http://www.fivestarequities.com/disclaimer

Read more here:
BioTime and Aastrom Biosciences -- Stem Cell Research Making Breakthroughs

Read More...

The Alliance for Regenerative Medicine Statement on Use of Cell Therapies Not Approved by the Federal Drug …

Tuesday, March 6th, 2012

WASHINGTON, DC--(Marketwire -03/05/12)- The Alliance for Regenerative Medicine issued the following statement today: "An article about stem cell treatments taking place in Texas published by Nature last week is extremely troubling. The article suggests that patients are being administered stem cell treatments that have not been systematically demonstrated to be safe and effective therapies through the established FDA regulatory process.

"Cell therapy treatments, including those using adult stem cells, hold the promise of providing patients with treatments and cures for numerous diseases and disabilities. However, FDA regulation is key to ensuring that the treatments available to patients are safe and effective.

"The Alliance for Regenerative Medicine (ARM), a non-profit organization whose mission is to promote increased funding and development of regenerative medicine products, believes cell therapy and regenerative medicine products, including autologous cell therapy products, must go through the rigorous safety testing that is part of the FDA regulatory process before they can be marketed to the public. These regulations are designed to promote safe collection, manufacture, storage, and use of human cells, and cellular and tissue based products. ARM members comply with these rules because they know that FDA oversight helps to prevent patients from exposure to potentially unsafe products.

"We urge all companies developing stem cell treatments to follow FDA rules governing research and product development. ARM remains committed to working with all stakeholders to ensure that safe and effective products reach patients as soon as possible."

About The Alliance for Regenerative Medicine (ARM) The Alliance for Regenerative Medicine (ARM) is a Washington, DC-based non-profit organization that promotes legislative, regulatory, reimbursement, and financing initiatives necessary to facilitate access to life-giving advances in regenerative medicine. ARM also works to increase public understanding of the field and its potential to transform human healthcare, and provides services to support the growth of its member companies and organizations. To learn more about ARM or to become a member, visit http://www.alliancerm.org.

Go here to see the original:
The Alliance for Regenerative Medicine Statement on Use of Cell Therapies Not Approved by the Federal Drug ...

Read More...

Cell find boosts liver disease hope

Sunday, March 4th, 2012

Boosting the production of certain cells could help treat liver disease, new research has suggested.

Researchers at the Medical Research Council (MRC) Centre for Regenerative Medicine at the University of Edinburgh said they have discovered how to enhance the production of key cells needed to repair damaged liver tissue. The research could help develop treatments for diseases such as cirrhosis or chronic hepatitis.

Scientists hope their work could eventually ease the pressure on waiting lists for liver transplants. Researchers said that when the liver is damaged it produces too many bile duct cells and not enough cells called hepatocytes, which the liver needs to repair damaged tissue.

They found they could increase the number of hepatocyte cells - which detoxify the liver - by encouraging these cells to be produced instead of bile duct cells. Understanding how liver cells are formed could help to develop drugs to encourage the production of hepatocytes to repair liver tissue.

Professor Stuart Forbes, associate director at the MRC, who is a consultant hepatologist and was the academic leader of the study, said: "Liver disease is on the increase in the UK and is one of the top five killers. Increasing numbers of patients are in need of liver transplants, but the supply of donated organs is not keeping pace with the demand.

"If we can find ways to encourage the liver to heal itself then we could ease the pressure on waiting lists for liver transplants."

The production of hepatocyte cells was increased by altering the expression of certain genes in early stage liver cells. The university said that liver disease is the fifth biggest killer in the UK with almost 500 people waiting for a liver transplant, compared with just over 300 five years ago.

Dr Rob Buckle, head of regenerative medicine at the MRC, said: "Liver transplants have saved countless lives over the years, but demand will inevitably outstrip supply and in the long term we need to look beyond replacing damaged tissues to exploiting the regenerative potential of the human body.

"The MRC continues to invest heavily across the breadth of approaches that might deliver the promise of regenerative medicine, and this study opens up the possibility of applying our increasing knowledge of stem cell biology to stimulate the body's own dormant repair processes as a basis for future therapy."

The study is published in the journal Nature Medicine. It was carried out in collaboration with the University's MRC Centre for Inflammation Research, the Beatson Institute for Cancer Research in Glasgow and the KU Leuven in Belgium.

Excerpt from:
Cell find boosts liver disease hope

Read More...

Planarian genes that control stem cell biology identified

Friday, March 2nd, 2012

ScienceDaily (Mar. 1, 2012) Despite their unassuming appearance, the planarian flatworms in Whitehead Institute Member Peter Reddien's lab are revealing powerful new insights into the biology of stem cells -- insights that may eventually help such cells deliver on a promising role in regenerative medicine.

In this week's issue of the journal Cell Stem Cell, Reddien and scientists in his lab report on their development of a novel approach to identify and study the genes that control stem cell behavior in planarians. Intriguingly, at least one class of these genes has a counterpart in human embryonic stem cells.

"This is a huge step forward in establishing planarians as an in vivo system for which the roles of stem cell regulators can be dissected," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Early Career Scientist. "In the grand scheme of things for understanding stem cell biology, I think this is a beginning foray into seeking general principles that all animals utilize. I'd say we're at the beginning of that process."

Planarians (Schmidtea mediterranea) are tiny freshwater flatworms with the ability to reproduce through fission. After literally tearing themselves in half, the worms use stem cells, called cNeoblasts, to regrow any missing tissues and organs, ultimately forming two complete planarians in about a week.

Unlike muscle, nerve, or skin cells that are fully differentiated, certain stem cells, such as cNeoblasts and embryonic stem cells are pluripotent, having the ability to become almost cell type in the body. Researchers have long been interested in harnessing this capability to regrow damaged, diseased, or missing tissues in humans, such as insulin-producing cells for diabetics or nerve cells for patients with spinal cord injuries.

Several problems currently confound the therapeutic use of stem cells, including getting the stem cells to differentiate into the desired cell type in the appropriate location and having such cells successfully integrate with surrounding tissues, all without forming tumors. To solve these issues, researchers need a better understanding of how stem cells tick at the molecular level, particularly within the environment of a living organism. To date, a considerable amount of embryonic stem cell research has been conducted in the highly artificial environment of the Petri dish.

With its renowned powers of regeneration and more than half of its genes having human homologs, the planarian seems like a logical choice for this line of research. Yet, until now, scientists have been unable to efficiently find the genes that regulate the planarian stem cell system.

Postdoctoral researcher Dan Wagner, first author of the Cell Stem Cell paper, and Reddien devised a clever method to identify potential genetic regulators and then determine if those genes affect the two main functions of stem cells: differentiation and renewal of the stem cell population.

After identifying genes active in cNeoblasts, Wagner irradiated the planarians, leaving a single surviving cNeoblast in each planarian. Left alone, each cNeoblast can form colonies of new cells at very specific rates of differentiation and stem cell renewal.

The researchers knocked down each of the active genes, one per planarian, and observed how the surviving cNeoblasts responded. By comparing the rate of differentiation and stem cell renewal to that of normal cNeoblasts, they could determine the role of each gene. Thus, if a colony containing a certain knocked down gene were observed to have fewer stem cells than the controls, it could be concluded that gene in question plays a role in the process of stem cell renewal. And if the colony had fewer differentiated cells than normal, the knocked down gene could be associated with differentiation.

Excerpt from:
Planarian genes that control stem cell biology identified

Read More...

Cord Blood Registery Helps Families Use Stem Cells – Video

Friday, March 2nd, 2012

29-02-2012 17:57 Learn more at http://www.cordblood.com CBR's team of dedicated professionals is prepared to guide you through every step of the banking process and beyond. Meet Sherry, CBR's transplant coordinator. As Sherry says, her employer is CBR, but she works for the families who need newborn stem cell medicine. She is the voice parents hear over the phone when they need to use their stored cord blood stem cells. Sherry's dedication and passion to deliver exceptional customer service to clients is one example of the many people at Cord Blood Registry who are committed to helping families live longer, healthier lives.

The rest is here:
Cord Blood Registery Helps Families Use Stem Cells - Video

Read More...

UCLA Scientists Identify Cell and Signaling Pathway that Regulates the Placental Blood Stem Cell Niche

Friday, March 2nd, 2012

Newswise UCLA stem cell researchers have discovered a critical placental niche cell and signaling pathway that prevent blood precursors from premature differentiation in the placenta, a process necessary for ensuring proper blood supply for an individuals lifetime.

The placental niche, a stem cell safe zone, supports blood stem cell generation and expansion without promoting differentiation into mature blood cells, allowing the establishment of a pool of precursor cells that provide blood cells for later fetal and post-natal life, said study senior author Dr. Hanna Mikkola, an associate professor of molecular cell and developmental biology and a researcher at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Mikkola and her team found that PDGF-B signaling in trophoblasts, specialized cells of the placenta that facilitate embryo implantation and gas and nutrient exchanges between mother and fetus, is vital to maintaining the unique microenvironment needed for the blood precursors. When PDGF-B signaling is halted, the blood precursors differentiate prematurely, creating red blood cells in the placenta, Mikkola said.

The study, done in mouse models, appears March 1, 2012, in the peer-reviewed journal Developmental Cell.

We had previously discovered that the placenta provides a home for a large supply of blood stem cells that are maintained in an undifferentiated state. We now found that, by switching off one signaling pathway, the blood precursors in the placenta start to differentiate into red blood cells, Mikkola said. We learned that the trophoblasts act as powerful signaling centers that govern the niche safe zone.

The study found that the PDGF-B signaling in the trophoblasts is suppressing production of Erythropoietin (EPO), a cytokine that controls red blood cell differentiation.

When PDGF-B signaling is lost, excessive amounts of EPO are produced in the placenta, which triggers differentiation of red blood cells in the placental vasculature, said Akanksha Chhabra, study first author and a post-doctoral fellow in Mikkolas lab.

Mikkola and Chhabra used mouse models in which the placental structure was disrupted so they could observe what cells and signaling pathways were important components of the niche.

The idea was, if we mess up the home where the blood stem cells live, how do these cells respond to the altered environment, Chhabra said. We found that it was important to suppress EPO where blood stem cell expansion is desired and to restrict its expression to areas where red blood cell differentiation should occur.

The finding, Chhabra said, was exciting in that one single molecular change was enough to change the function of an important blood stem cell niche.

Continued here:
UCLA Scientists Identify Cell and Signaling Pathway that Regulates the Placental Blood Stem Cell Niche

Read More...

Cell and signaling pathway that regulates the placental blood stem cell niche identified

Friday, March 2nd, 2012

ScienceDaily (Mar. 1, 2012) UCLA stem cell researchers have discovered a critical placental niche cell and signaling pathway that prevent blood precursors from premature differentiation in the placenta, a process necessary for ensuring proper blood supply for an individual's lifetime.

The placental niche, a stem cell "safe zone," supports blood stem cell generation and expansion without promoting differentiation into mature blood cells, allowing the establishment of a pool of precursor cells that provide blood cells for later fetal and post-natal life, said study senior author Dr. Hanna Mikkola, an associate professor of molecular cell and developmental biology and a researcher at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Mikkola and her team found that PDGF-B signaling in trophoblasts, specialized cells of the placenta that facilitate embryo implantation and gas and nutrient exchanges between mother and fetus, is vital to maintaining the unique microenvironment needed for the blood precursors. When PDGF-B signaling is halted, the blood precursors differentiate prematurely, creating red blood cells in the placenta, Mikkola said.

The study, done in mouse models, appears March 1, 2012, in the peer-reviewed journal Developmental Cell.

"We had previously discovered that the placenta provides a home for a large supply of blood stem cells that are maintained in an undifferentiated state. We now found that, by switching off one signaling pathway, the blood precursors in the placenta start to differentiate into red blood cells," Mikkola said. "We learned that the trophoblasts act as powerful signaling centers that govern the niche safe zone."

The study found that the PDGF-B signaling in the trophoblasts is suppressing production of Erythropoietin (EPO), a cytokine that controls red blood cell differentiation.

"When PDGF-B signaling is lost, excessive amounts of EPO are produced in the placenta, which triggers differentiation of red blood cells in the placental vasculature," said Akanksha Chhabra, study first author and a post-doctoral fellow in Mikkola's lab.

Mikkola and Chhabra used mouse models in which the placental structure was disrupted so they could observe what cells and signaling pathways were important components of the niche.

"The idea was, if we mess up the home where the blood stem cells live, how do these cells respond to the altered environment," Chhabra said. "We found that it was important to suppress EPO where blood stem cell expansion is desired and to restrict its expression to areas where red blood cell differentiation should occur."

The finding, Chhabra said, was exciting in that one single molecular change "was enough to change the function of an important blood stem cell niche."

See more here:
Cell and signaling pathway that regulates the placental blood stem cell niche identified

Read More...

UCLA scientists identify crucial cell and signaling pathway in placental blood stem cell niche

Friday, March 2nd, 2012

Public release date: 1-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have discovered a critical placental niche cell and signaling pathway that prevent blood precursors from premature differentiation in the placenta, a process necessary for ensuring proper blood supply for an individual's lifetime.

The placental niche, a stem cell "safe zone," supports blood stem cell generation and expansion without promoting differentiation into mature blood cells, allowing the establishment of a pool of precursor cells that provide blood cells for later fetal and post-natal life, said study senior author Dr. Hanna Mikkola, an associate professor of molecular cell and developmental biology and a researcher at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Mikkola and her team found that PDGF-B signaling in trophoblasts, specialized cells of the placenta that facilitate embryo implantation and gas and nutrient exchanges between mother and fetus, is vital to maintaining the unique microenvironment needed for the blood precursors. When PDGF-B signaling is halted, the blood precursors differentiate prematurely, creating red blood cells in the placenta, Mikkola said.

The study, done in mouse models, appears March 1, 2012, in the peer-reviewed journal Developmental Cell.

"We had previously discovered that the placenta provides a home for a large supply of blood stem cells that are maintained in an undifferentiated state. We now found that, by switching off one signaling pathway, the blood precursors in the placenta start to differentiate into red blood cells," Mikkola said. "We learned that the trophoblasts act as powerful signaling centers that govern the niche safe zone."

The study found that the PDGF-B signaling in the trophoblasts is suppressing production of Erythropoietin (EPO), a cytokine that controls red blood cell differentiation.

"When PDGF-B signaling is lost, excessive amounts of EPO are produced in the placenta, which triggers differentiation of red blood cells in the placental vasculature," said Akanksha Chhabra, study first author and a post-doctoral fellow in Mikkola's lab.

Mikkola and Chhabra used mouse models in which the placental structure was disrupted so they could observe what cells and signaling pathways were important components of the niche.

Continued here:
UCLA scientists identify crucial cell and signaling pathway in placental blood stem cell niche

Read More...

Advanced Cell Technology Announces 2011 Financial Results

Friday, March 2nd, 2012

MARLBOROUGH, Mass.--(BUSINESS WIRE)--

Advanced Cell Technology, Inc. (ACT, OTCBB: ACTC), a leader in the field of regenerative medicine, today announced year-end results for the year ended December 31, 2011. The Company utilized $13.6 million in cash for operations during the year, compared to $8.8 million in the year-earlier period. The increase in cash utilization resulted primarily from ACTs ongoing clinical activities in the US and Europe. ACT ended the year with cash and cash equivalents of $13.1 million, compared to $15.9 million in cash and cash equivalents in the year-earlier period.

Some of the 2011 highlights included:

2011 was a very important and successful year for ACT as we began our Phase 1/2 trials for the treatment of macular degeneration, said Gary Rabin, chairman and CEO of ACT. We are very excited about the preliminary Phase 1/2 clinical data from our dry-AMD and Stargardts disease trials, which were published in The Lancet earlier this year. The data demonstrated the safety of ACTs human embryonic stem cell (hESC)-derived retinal pigment epithelium (RPE) cells for the treatment of both diseases. The vision of both patients appears to have improved after transplantation, and no adverse safety issues have been observed. We look forward to validating these early findings as we expand these clinical activities throughout this year. Additionally, we made significant progress in advancing our scientific platform, expanding our board of directors and management team and strengthening our balance sheet.

The Company also announced today that it expects to shortly file a preliminary proxy statement with the Securities and Exchange Commission in which it will seek shareholder approval for a reverse split of between 1-for 20 and 1-for 80 shares. The Company is pursuing the reverse split for the sole purpose of meeting the requirements necessary for a listing on the Nasdaq Global Market. The Company believes that a listing on a national change will allow it to expand its shareholder base and improve the marketability of its common stock by attracting a broader range of investors.

Conference Call

The Company will hold a conference call at 9:00 a.m. EST tomorrow, during which it will discuss 2011 results and provide an update on clinical activities. Interested parties should dial (888)264-3177 followed by the reference conference ID number: 57426004. The call will be available live and for replay by webcast at: http://us.meeting-stream.com/advancedcelltechnology030212

About Advanced Cell Technology, Inc.

Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visitwww.advancedcell.com.

Forward-Looking Statements

See the article here:
Advanced Cell Technology Announces 2011 Financial Results

Read More...

Page 24«..1020..23242526..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick