header logo image


Page 23«..1020..22232425..»

Archive for the ‘Cell Medicine’ Category

ETEX Corporation to Present at GTC Stem Cell Summit

Thursday, April 19th, 2012

CAMBRIDGE, Mass., April 17, 2012 /PRNewswire/ --ETEX Corporation, an advanced biomaterials company, today announced two presentations at the upcoming Global Technology Community 8th Stem Cell Summit, April 19-20, 2012 at the Hyatt Harborside Hotel in Boston, MA. ETEX will highlight their cell carrier development program in two concurrent tracks: Stem Cell Commercialization & Partnering as well as Stem Cell Research & Regenerative Medicine.

(Logo: http://photos.prnewswire.com/prnh/20080424/NETH117LOGO )

Brian Ennis, President and CEO of ETEX Corporation, will deliver an oral presentation entitled "Orthobiologic Market Dynamics, Vision of the Future" during the Stem Cell Commercialization & Partnering session. Mr. Ennis will highlight key elements of a product lifecycle / replacement technology business model, outlining a new approach to skeletal repair and orthopedic innovation. This approach incorporates the combination of biomaterials and hardware, localized bone treatment with systemic therapy and stem cell delivery.

Dr. David Kaplan, Tufts University and Dr. Jerry Chang, ETEX Corporation scientific team will showcase recent advancements in their Stem Cell Carrier program during the Stem Cell Research & Regenerative Medicine session. The poster & power point presentation is entitled "Calcium Phosphate Combination Biomaterials as Human Mesenchymal Stem Cell (hMSC) Delivery Vehicles for Bone Repair".

Brian Ennis comments, "As a pioneer in growth factor and cell delivery technology, ETEX is excited to participate in this important event. We believe a cell carrier/scaffold is a grossly underestimated critical element for the successful execution of cell therapy in skeletal repair and soft tissue regeneration."

Questions regarding ETEX's participation may be directed to Jerry Chang, PhD., jchang@etexcorp.com or 617-577-7270.

About ETEX Corporation Established in 1989, ETEX Corporation develops, manufactures and commercializes calcium phosphate-based biomaterials for improved orthopedic clinical outcomes. A leader in bioresorbable bone substitute materials, ETEX focuses on expanding applications through combinations with cells, biologics, or therapeutic agents delivered in minimally invasive and easy to use systems. For more information, visit http://www.etexcorp.com.

Read the original post:
ETEX Corporation to Present at GTC Stem Cell Summit

Read More...

Stem cell institute to work with foreign agencies

Sunday, April 1st, 2012

California's $3 billion stem cell agency, now more than 7 years old, has joined research partnerships with science and health agencies in eight foreign countries, the San Francisco institute announced.

The agreements call for collaboration in efforts aimed at speeding stem cell research from the laboratory to the hospital, where researchers hope that basic human cells will be programmed to treat scores of human degenerative diseases.

Research partnerships between American and foreign stem cell scientists are encouraged, but the California institute's funds would only be spent within the state, institute officials said.

Alan Trounson, president of the California Institute for Regenerative Medicine, signed agreements with stem cell funding agencies in Brazil and Argentina last week, he said Thursday.

"Both Brazil and Argentina have strong and robust stem cell research communities in basic science and transitional clinical science, which should create exciting synergies with many scientists in California," Trounson said in a statement.

He has signed similar pacts with stem cell agencies in Canada, Britain, France, Spain, Australia, Japan, China and Indiana.

The California institute was created in 2004 after Proposition 71, a $3 billion bond issue, was approved by California voters at a time when use of federal funds was barred for research into the promising field of embryonic stem cells.

So far the state agency has committed $1.2 billion to scientists and training centers at 56 California institutions, and the rest of the bond money should last until 2020, a spokesman said.

This article appeared on page C - 9 of the SanFranciscoChronicle

Original post:
Stem cell institute to work with foreign agencies

Read More...

Vatican’s Stem-Cell Censorship Sham

Friday, March 30th, 2012

The Catholic Church has never had a particularly easy relationship with science. After all, this is the institution that sentenced Galileo Galilei as a heretic for his theories on the universe during the Roman Inquisition. Two thousand years later, the church forgave Galileo and called the whole misunderstanding a tragic mutual incomprehension but it remains safe to say the Vatican doesnt have a great track record when it comes to empirical open-mindedness.

So onlookers were surprised when the Vatican announced it would be hosting a global conference on the highly controversial issue of stem-cell research in Rome over four days in late April. The church held a similar conference in 2010 and 2011, which focused on its recommendation that stem-cell research should be limited to adult cells that can be harvested from live donors, not embryonic cells that destroy the source. But this years conference schedule featured some of the worlds foremost experts in embryonic research as keynote speakersleading some scientists to think that the Vatican might actually be looking for enlightenment on the topic.

That was not exactly case. Instead, the Vatican seems to have hoped that by including embryonic researchers in the program, it would appear that these scientists actually endorsed the Vaticans stance.

It might have worked to some extent, but after some of the speakers declined to censor their speeches, the Vatican abruptly canceled the conference altogether. According to the conference website, the event was canceled due to serious economic and logistic-organizational reasons that have completely jeopardized the success of the 3rd International Congress on Responsible Stem Cell Research. The scientists who were planning to attend say they are being stifled instead. I think the only interpretation is that we are being censored, Alan Trounson, president of the California Institute for Regenerative Medicine in San Francisco, said in a statement. It is very disappointing that they are unwilling to hear the truth.

Just what was the Vatican thinking? Inviting embryonic stem-cell researchers to a conference and then denying them the right to talk about their field of expertise was a major gamble. Had the speakers agreed to avoid reference to embryonic research, it would have given the disingenuous impression that they endorse the Holy Sees recommendation on adult stem-cell research only. Did the Vatican really think they could control the scientific community? Apparently so. Father Scott Borgman of the Pontifical Academy for Life, which co-organized the conference, had reportedly asked the speakers to limit their discussions to adult stem-cell research only. George Daly, a leading embryonic researcher with the Childrens Hospital in Boston, says he was actually told not to make embryonic researchhis field of expertisea focal point of his talk. When he told Borgman that he would still be touching on the topic in a historical context, higher-ups in the Vatican reportedly panicked. I had been encouraged to think that the Congress would be a forum for discussion of many areas of common interest to the Vatican and stem cell scientists, regardless of the disagreements over embryonic stem cells, Daly told The Daily Beast. We should all agree that clinical trials of new medical treatments based on stem cells should proceed according to rigorous principles to ensure patients are kept as safe as possible and free from exploitation. And we should all agree that premature claims of therapeutic efficacy and direct marketing of unproven interventions to vulnerable patients is a threat to legitimate attempts to develop experimental stem cell medicines.

Pope Benedict looks on during the mass in solemnity of the chair of St. Peter with new Cardinals in St. Peter's basilica at the Vatican on February 19, 2012. The Vatican stands by its decision to cancel the controversial conference as having a purely business motive. , Alberto Pizzoli, AFP / Getty Images

With the cancelation of the event, discourse between the two diverse entities will not have a venue. One Vatican official told the Catholic News Service that many of the Vaticans leaders were secretly glad the conference failed. I am infinitely relieved that the church has avoided a major blunder which would have confused the faithful for decades to come, the unnamed source said. The Holy Spirit has certainly shown to be present through those faithful members who drew attention to the ambiguity of the choice of speakers. I hope and pray that a review will be affected of the basis on which these congresses are planned.

Some stem-cell researchers are also relieved the conference wont go on. I personally am very uncomfortable with a scientific meeting run by a church, and one at which only certain types of science and scientists are allowed to attend, blogged Paul Knoepfler, an associate professor of Cell Biology and Human Anatomy at UC Davis School of Medicine who blogs about stem cell research at IPCell.com. Also I cant help but wonder, what would be the reaction if someone like Daley spent a few minutes of his talk discussing his embryonic cell research in a very nonconfrontational way? Would he be tasered or drop through some trap door straight to Hell?

Still, Knoepfler was hopeful. I view the canceled Vatican stem-cell meeting as a missed opportunity for a very much needed, open dialogue about stem cells, he told The Daily Beast. More specifically, I believe the reasons for the cancellation reflect an anti-scientific attitude by the highest level of Vatican leaders. More simply put, the attitude might be summed up by the phrase If you do not think like us, you are not welcome at our meeting, and well go so far as to cancel the whole thing to avoid your presence.

Inviting embryonic stem-cell researchers to a conference and then denying them the right to talk about their field of expertise was a major gamble.

Link:
Vatican’s Stem-Cell Censorship Sham

Read More...

Basketball’s influence on stem cell treatments in sports medicine

Thursday, March 29th, 2012

As the basketball frenzy that accompanies March Madness draws to the fever pitch of the Final Four, it brings to mind that basketball is a high contact sport. A quick peek at the NBA injured list reveals a catalog of breaks and tears affecting tendons, ligaments and bones.

The pressure to improve performance and search for quick recoveries has led some celebrity athletes to seek out stem cell treatments overseas and in the U.S. Among NBA players to get stem cell treatments are Jason Kidd, Tracy McGrady, Amar Stoudemire, Allan Houston and Kenyon Martin, according to a Sports Illustrated article.

Advertisement

Dragoo said in a phone interview that the publicity has actually had a negative impact on the development of clinically proven stem cell therapies for orthopedic medicine and how it is perceived.Because of this market pressure, private clinics have been offering stem cells treatments both here in the USA as well as around the world. Often these treatments have not been studied and are not regulated in any way. FDA regulations have also severely limited new clinical trials in stem cell therapy in the USA.

The ethical debate of using embryonic stem cells taken from fetuses has been sidestepped to some extent by the viability of adult stem cells for stem cell therapy. Although the U.S. Food and Drug Administration permits cells being extracted from individuals, transformed into stem cells and re-inserted back into the same person, it requires that the conversion involve no more than water, preservatives and storage products. Anything more than that, the FDA policy goes, would be classified as a drug therapy and need to go through the proper application protocol.

But a much-awaited decision by the U.S. District Court in Washington, DC expected in May that may resolve a four-year old battle between the FDA and Regenerative Science in Colorado could represent a sea change in how autologous adult stem cell treatments are regulated. The FDA is seeking to prevent the company from providing autologous adult stem cell treatment for musculoskeletal and spinal injuries. If the FDA were to lose, anyone with a medical license could develop autologous stem cells and inject them back into patients, without any regulatory oversight, according to a Cell Press article.

Although stem cells there are the focus of numerous clinical trials, they are mainly for cancer and rare diseases, with most being conducted outside the United States. While there have been some developments for sports medicine applications produced by research from academic institutions, there have been no clinical trials for stem cell treatments in sports medicine in the United States because of the U.S. Food and Drug Administrations reservations about using adult stem cells. Despite the laxer regulations in Japan, China and Europe, its not in the financial interest of companies there to spend the money to do clinical trials if they dont have to.

Among the most interesting applications for orthopedic medicine are the restoration of articular cartilage and patching defects in joint cartilage, with the hope of resurfacing arthritic joints in the future, Dragoo said. Stanford is preparing to initiate its own clinical trial next year looking at inducible stem cells.

This technique takes adult cells and make them young again by inserting four genes which makes the cells immature and allows them to be directed into different types of tissues, Dragoo said.

Original post:
Basketball’s influence on stem cell treatments in sports medicine

Read More...

Advanced Cell Technology and PharmAthene Poised to Benefit From Positive Legislation

Wednesday, March 28th, 2012

NEW YORK, NY--(Marketwire -03/28/12)- Biotechnology stocks have been on an impressive run this year as favorable legislation out of Washington is allowing biotech companies of all sizes to more easily navigate regulations. Five Star Equities examines the outlook for companies in the Biotechnology industry and provides equity research on Advanced Cell Technology Inc. (OTC.BB: ACTC.OB - News) and PharmAthene Inc. (AMEX: PIP - News). Access to the full company reports can be found at:

http://www.fivestarequities.com/ACTC http://www.fivestarequities.com/PIP

The Biotechnology Industry Organization (BIO) recently applauded the House Energy and Commerce Committee's passage of the Medicare Decisions Accountability Act, H.R. 452, which would repeal the Independent Payment Advisory Board (IPAB) established in the health care reform law. BIO also issued a press release applauding the Senate on the passage of H.R. 3606, the Jumpstart Our Business Startups (JOBS) Act. The JOBS Act creates an "on-ramp" to the public market for emerging growth companies, allowing them five years to focus on conducting critical research that can lead to cures for debilitating diseases before having to divert funds to costly regulations, BIO reports.

Five Star Equities releases regular market updates on the biotechnology industry so investors can stay ahead of the crowd and make the best investment decisions to maximize their returns. Take a few minutes to register with us free at http://www.fivestarequities.com and get exclusive access to our numerous stock reports and industry newsletters.

Advanced Cell Technology, Inc., a biotechnology company, focuses on the development and commercialization of human embryonic and adult stem cell technology in the field of regenerative medicine. Earlier this month the company filed with the Securities and Exchange Commission a proxy statement containing a shareholder proposal for a reverse split of its common stock. "This reverse stock split, which should better align the company's capital structure with its stage of development, and an accompanying Nasdaq listing application, will represent a significant step toward creating long-term shareholder value and building ACT into a world-class player in the regenerative medicine space," said Gary Rabin, chairman and CEO of ACT.

PharmAthene, Inc., a biodefense company, engages in the development and commercialization of medical countermeasures against biological and chemical weapons in the United States. For the year ended December 31, 2011, PharmAthene recognized revenue of $24.3 million, compared to $21.0 million in 2010.

Five Star Equities provides Market Research focused on equities that offer growth opportunities, value, and strong potential return. We strive to provide the most up-to-date market activities. We constantly create research reports and newsletters for our members. Five Star Equities has not been compensated by any of the above-mentioned companies. We act as an independent research portal and are aware that all investment entails inherent risks. Please view the full disclaimer at: http://www.fivestarequities.com/disclaimer

Link:
Advanced Cell Technology and PharmAthene Poised to Benefit From Positive Legislation

Read More...

Vatican Calls Off Stem-Cell Conference

Tuesday, March 27th, 2012

Nature | Health

A Monsignor and Officer for Studies at the Pontifical Academy for Life called the cancellation a "sad event." Attendees are set to receive an official explanation

March 26, 2012

By Ewen Callaway of Nature magazine

The Vatican has abruptly cancelled a controversial stem-cell conference that was set to be attended by the Pope next month.

The Third International Congress on Responsible Stem Cell Research, scheduled for 25-28 April, was to focus on clinical applications of adult and reprogrammed stem cells. But a number of the invited speakers, including Alan Trounson, president of the California Institute for Regenerative Medicine in San Francisco, and keynote speaker George Daley, a stem-cell scientist at Children's Hospital Boston in Massachusetts, are involved in research using human embryonic stem cells, which the Catholic Church considers unethical. The previous two congresses had also included scientists who worked on such cells, without generating much controversy.

Father Scott Borgman, secretary of the Church's Pontifical Academy for Life, one of the conference organizers, says that logistical, organizational and financial factors forced the cancellation, which was announced on 23 March. The academy weighs in on bioethical and theological issues that are relevant to Church teachings.

The Catholic News Agency, an independent news service based in Englewood, Colorado, quoted an unnamed academy member who called the cancellation an "enormous relief to many members of the Pontifical Academy for Life, who felt that the presence on its program of so many speakers, including the keynote speaker, committed to embryonic stem cell research, was a betrayal of the mission of the Academy and a public scandal".

"I think the only interpretation is that we are being censored. It is very disappointing that they are unwilling to hear the truth," says Trounson. He had hoped to provide a "balanced perspective" on the potential clinical applications of stem cells, both adult and embryonic.

Meanwhile, some European scientists, who had called for a boycott because they believed the conference unfairly maligned embryonic stem cell research, cheered its cancellation.

See the original post:
Vatican Calls Off Stem-Cell Conference

Read More...

Bioheart Labs and Stemlogix Veterinary Products Featured in Media

Friday, March 23rd, 2012

SUNRISE, Fla., March 22, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News), a company focused on developing stem cell therapies for heart disease, previously announced that they entered into an agreement with Stemlogix, LLC, a veterinary regenerative medicine company, to provide additional cellular products and services to the veterinary market. Under this agreement, the companies are offering stem cell banking for veterinary patients (pets). WPLG, channel 10 featured this exciting technology in a news segment which aired in the South Florida area. A small sample of tissue can be obtained from the animals during a routine procedure such as a spay or neuter. The stem cells are isolated and cryopreserved for future use as needed.

"We are excited to bring our expertise in stem cell therapy to the veterinary community," said Mike Tomas, Bioheart's President and CEO. "Stem cell therapies represent new opportunities for various types of patients and the ability to bank a pet's cells when they are young and healthy could be very valuable for future use."

WPLG, Channel 10 in Miami/South Florida featured this new technology in a news segment which aired March 15, 2012. Please see the link below:

http://www.local10.com/thats-life/health/Pet-stem-cells-frozen-banked-for-future-use/-/1717022/9285894/-/apcx9rz/-/index.html

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Stemlogix, LLC

Stemlogix is an innovative veterinary regenerative medicine company committed to providing veterinarians with the ability to deliver the best possible stem cell therapy to dogs, cats and horses at the point-of-care. Stemlogix provides veterinarians with the ability to isolate regenerative stem cells from a patient's own adipose (fat) tissue directly on-site within their own clinic or where a patient is located. Regenerative stem cells isolated from adipose tissue have been shown in studies to be effective in treating animal's suffering from osteoarthritis, joint diseases, tendon injuries, heart disorders, among other conditions. Stemlogix has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. For more information about veterinary regenerative medicine please visit http://www.stemlogix.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

More:
Bioheart Labs and Stemlogix Veterinary Products Featured in Media

Read More...

Research and Markets: Progenitor and Stem Cell Technologies and Therapies Reviews the Range Of Progenitor and Stem …

Friday, March 23rd, 2012

DUBLIN--(BUSINESS WIRE)--

Dublin - Research and Markets (http://www.researchandmarkets.com/research/2fee68d4/progenitor_and_ste) has announced the addition of Woodhead Publishing Ltd's new book "Progenitor and Stem Cell Technologies and Therapies" to their offering.

Progenitor and stem cells have the ability to renew themselves and change into a variety of specialised types, making them ideal materials for therapy and regenerative medicine. "Progenitor and stem cell technologies and therapies" reviews the range of progenitor and stem cells available and their therapeutic application.

Part one reviews basic principles for the culture of stem cells before discussing technologies for particular cell types. These include human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells. Part two discusses wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies. The final part of the book considers the therapeutic use of stem and progenitor cells. Chapters review the use of adipose tissue-derived stem cells, umbilical cord blood (UCB) stem cells, bone marrow, auditory and oral cavity stem cells. Other chapters cover the use of stem cells in therapies in various clinical areas, including lung, cartilage, urologic, nerve and cardiac repair.

With its distinguished editor and international team of contributors, "Progenitor and stem cell technologies and therapies" is a standard reference for both those researching in cell and tissue biology and engineering as well as medical practitioners investigating the therapeutic use of this important technology.

Key Features:

- Reviews the range of progenitor and stem cells available and outlines their therapeutic application

- Examines the basic principles for the culture of stem cells before discussing technologies for particular cell types, including human embryonic, induced pluripotent, amniotic and placental, cord and multipotent stem cells

- Includes a discussion of wider issues such as intellectual property, regulation and commercialisation of stem cell technologies and therapies

For more information visit http://www.researchandmarkets.com/research/2fee68d4/progenitor_and_ste

See the article here:
Research and Markets: Progenitor and Stem Cell Technologies and Therapies Reviews the Range Of Progenitor and Stem ...

Read More...

Proposition 71 stem cell research funds drying up

Thursday, March 22nd, 2012

SACRAMENTO (KABC) -- Eight years ago voters agreed to fund California's stem cell agency, hoping it would yield new treatments for various conditions. Now the agency is running out of funds and any practical cures are still years away.

The California Institute for Regenerative Medicine (CIRM) is about to enter a crucial stage in stem cell research: going to clinical trials. The most promising experiments could cure diabetes, HIV, sickle-cell anemia and blindness in the elderly.

"You don't really get to find out whether the potential of the treatment is really going to be effective until you start to treat the patients," said Alan Trounson, president of the California Institute for Regenerative Medicine.

CIRM's board is discussing how much to allocate for that trial phase. Through voter-approved bonds under Proposition 71 (The California Stem Cell Research and Cures Act), it has already given out or spent half of the $3 billion, but despite the medical promise, there's little to show for it beyond basic research and several high-tech laboratories.

But the agency says the breakthroughs will come over the next few years, way ahead of the rest of the world.

"This would all be happening in California, all driven by this Proposition 71 money," said Trounson.

The bond money is expected to last only several more years. One option is to ask voters to approve more bonds, something taxpayer groups oppose.

"When people think about bond financing, they think about a bridge, a school, a canal," said Jon Coupal, president of the Howard Jarvis Taxpayers Association. "But stem cell research is just kind of out there."

Rancher Diana Souza says it would be a shame to stop public funding of stem cell research. Through trials at UC Davis Medical Center not financed by Prop. 71 money, she says stem cells helped restore full use of her severely fractured arm.

"I hope they can continue doing this because it is a miracle. It does work. And I have a good arm to prove it," said Souza.

Read the original post:
Proposition 71 stem cell research funds drying up

Read More...

California institute fights to continue stem cell research

Thursday, March 22nd, 2012

Written by Nannette Miranda, ABC7

SACRAMENTO, CA - The California Institute for Regenerative Medicine, CIRM, is about to enter a crucial stage in stem cell research: going to clinical trials.

The most promising experiments could cure: diabetes, HIV, sickle cell and blindness in the elderly.

"You don't really get to find out whether the potential of the treatment is really going to be effective until you start with patients, the human subjects," CIRM's Alan Trounson said.

CIRM's board is discussing how much to allocate for that trial phase.

Through voter-approved bonds under Proposition 71, it has already given out or spent half of the $3 billion, but despite the medical promise, there's little to show for it beyond basic research and several high-tech labs.

But the agency said the breakthroughs will come over the next few years, way ahead of the rest of the world.

"This would all be happening in California, all driven by this Proposition 71 money," Trounson said.

The bond money is expected to last only several more years.

One option is to ask voters to approve more bonds, something taxpayer groups oppose.

Excerpt from:
California institute fights to continue stem cell research

Read More...

California’s stem cell agency ponders a future without taxpayer support

Monday, March 19th, 2012

LOS ANGELES, Calif. - The creation of California's stem cell agency in 2004 was greeted by scientists and patients as a turning point in a field mired in debates about the destruction of embryos and hampered by federal research restrictions.

The taxpayer-funded institute wielded the extraordinary power to dole out $3 billion in bond proceeds to fund embryonic stem cell work with an eye toward treatments for a host of crippling diseases. Midway through its mission, with several high-tech labs constructed, but little to show on the medicine front beyond basic research, the California Institute for Regenerative Medicine faces an uncertain future.

Is it still relevant nearly eight years later? And will it still exist when the money dries up?

The answers could depend once again on voters and whether they're willing to extend the life of the agency.

Several camps that support stem cell research think taxpayers should not pay another cent given the state's budget woes.

"It would be so wrong to ask Californians to pony up more money," said Marcy Darnovsky of the Center for Genetics and Society, a pro-stem cell research group that opposed Proposition 71, the state ballot initiative that formed CIRM.

Last December, CIRM's former chairman, Robert Klein, who used his fortune and political connections to create Prop 71, floated the possibility of another referendum.

CIRM leaders have shelved the idea of going back to voters for now, but may consider it down the road. The institute recently submitted a transition plan to Gov. Jerry Brown and the Legislature that assumes it will no longer be taxpayer-supported after the bond money runs out. CIRM is exploring creating a non-profit version of itself and tapping other players to carry on its work.

"The goal is to keep the momentum going," board Chairman Jonathan Thomas said in an interview.

So far, CIRM has spent some $1.3 billion on infrastructure and research. At the current pace, it will earmark the last grants in 2016 or 2017. Since most are multi-year awards, it is expected to stay in business until 2021.

Read more from the original source:
California's stem cell agency ponders a future without taxpayer support

Read More...

Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading …

Monday, March 19th, 2012

CLEARWATER, FL--(Marketwire -03/19/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of Perinatologist Sanford M. Lederman, MD to its Scientific and Medical Board of Advisors (SAMBA).

As Chairman of the Department of Obstetrics and Gynecology at New York Methodist Hospital in Brooklyn, Dr. Lederman is consistently recognized by New Yorker Magazine's list of "Top Doctors" in New York. A specialist in high-risk pregnancy issues, Dr. Lederman has authored a number of scientific papers and is a highly regarded public speaker. He adds a very important dimension to the Biostem Scientific and Medical Board of Advisors by bringing specialized knowledge regarding the potential use of stem cell applications for the health of women and children.

Biostem President Dwight Brunoehler said, "Dr. Lederman is one of the most highly respected Obstetric and Gynecological physicians in the country. Sandy and I have worked together very actively on stem cell projects for over 18 years, including setting up a cord blood stem cell national donation system where all expectant moms have a chance to donate their baby's cord blood to benefit others."

Dr. Lederman stated, "Biostem's expansion plans mesh well with my personal interest in developing and advancing the use of non-controversial stem cells to improve the health of women and children. I have a particular interest in increasing the use of cord blood stem cells for in-utero transplant procedures, where stem cells are used to cure a potential life threatening disease such as sickle cell or thalassemia and other selective genetic disorders in a baby before it is even born."

Prior to accepting his current position with New York Methodist Hospital, Dr. Lederman was Residency Program Director and Vice Chairman of the Department of Obstetrics and gynecology at Long Island College Hospital in Brooklyn. At various times, he has served as a partner at Brooklyn Women's Health Care, President at Genetics East and Clinical Associate Professor at the State University of New York. He has served on the medical advisory board of several companies. He previously was Medical Director of Women's Health USA and was a founding member of the Roger Freeman Perinatal Society.

A graduate of Hunter College in New York, he received his initial medical training at Universidad Autonoma de Guadalajara School of Medicine. His initial internship was at New York Medical College in the Bronx. During the course of his career, Dr. Lederman has served and studied in various capacities at Long Island College Hospital in the Bronx, North Shore University Hospital in New York, Kings County Medical Center in Brooklyn, Long Beach Memorial Medical Center in California and the University of California at Irvine.

About Biostem U.S., CorporationBiostem U.S., Corporation (OTCQB: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Here is the original post:
Biostem U.S., Corporation Continues Building Its Scientific and Medical Board of Advisors With Appointment of Leading ...

Read More...

California’s stem cell agency ponders its future

Sunday, March 18th, 2012

LOS ANGELES (AP) The creation of California's stem cell agency in 2004 was greeted by scientists and patients as a turning point in a field mired in debates about the destruction of embryos and hampered by federal research restrictions.

The taxpayer-funded institute wielded the extraordinary power to dole out $3 billion in bond proceeds to fund embryonic stem cell work with an eye toward treatments for a host of crippling diseases. Midway through its mission, with several high-tech labs constructed, but little to show on the medicine front beyond basic research, the California Institute for Regenerative Medicine faces an uncertain future.

Is it still relevant nearly eight years later? And will it still exist when the money dries up?

The answers could depend once again on voters and whether they're willing to extend the life of the agency.

Several camps that support stem cell research think taxpayers should not pay another cent given the state's budget woes.

"It would be so wrong to ask Californians to pony up more money," said Marcy Darnovsky of the Center for Genetics and Society, a pro-stem cell research group that opposed Proposition 71, the state ballot initiative that formed CIRM.

Last December, CIRM's former chairman, Robert Klein, who used his fortune and political connections to create Prop 71, floated the possibility of another referendum.

CIRM leaders have shelved the idea of going back to voters for now, but may consider it down the road. The institute recently submitted a transition plan to Gov. Jerry Brown and the Legislature that assumes it will no longer be taxpayer-supported after the bond money runs out. CIRM is exploring creating a nonprofit version of itself and tapping other players to carry on its work.

"The goal is to keep the momentum going," board Chairman Jonathan Thomas said in an interview.

So far, CIRM has spent some $1.3 billion on infrastructure and research. At the current pace, it will earmark the last grants in 2016 or 2017. Since most are multi-year awards, it is expected to stay in business until 2021.

Here is the original post:
California's stem cell agency ponders its future

Read More...

Bioheart and Ageless Partner to Advance Stem Cell Field With Laboratory Training Programs

Thursday, March 15th, 2012

SUNRISE, Fla., March 15, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (BHRT.OB) announced today that it has successfully conducted a laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine. The attendees participated in hands on, in depth training in laboratory practices in stem cell science.

"We had students from all over the world attend this first course including physicians, laboratory technicians and students," said Mike Tomas, Bioheart's President and CEO. "Bioheart is pleased to be able to share our 13 years of experience in stem cell research and help expand this growing life science field."

The course included cell culture techniques and quality control testing such as flow cytometry and gram stain. In addition, participants learned how to work in a cleanroom operating according to FDA cGMP standards, regulations used in the manufacture of pharmaceuticals, food and medical devices. Aseptic techniques were also taught as well as cleanroom gowning, environmental monitoring and maintenance.

Future courses are open to physicians, laboratory technicians and students. After graduating the course, attendees are prepared to pursue research and careers in the field of stem cells and regenerative medicine. For more information about the course, contact info@agelessregen.com.

About Bioheart, Inc.

Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.

Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.

About Ageless Regenerative Institute, LLC

The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.

Forward-Looking Statements: Except for historical matters contained herein, statements made in this press release are forward-looking statements. Without limiting the generality of the foregoing, words such as "may," "will," "to," "plan," "expect," "believe," "anticipate," "intend," "could," "would," "estimate," or "continue" or the negative other variations thereof or comparable terminology are intended to identify forward-looking statements.

Follow this link:
Bioheart and Ageless Partner to Advance Stem Cell Field With Laboratory Training Programs

Read More...

TEDMED 2012 Conference Offers $2 Million in Scholarships to Health and Medicine Leaders and Innovators; Free National …

Tuesday, March 13th, 2012

WASHINGTON, March 13, 2012 /PRNewswire/ -- TEDMED, http://www.TEDMED.com, the annual gathering where science, medical and technology leaders focus on "imagination, innovation and inspiration" to advance the art of health and medicine, today announced two new programs that will vastly increase the size and scope of its audience.

TEDMED is the world's only TED-licensed event focused solely on innovation and breakthrough thinking across all of health and medicine. It will be held at the John F. Kennedy Center for the Performing Arts in Washington, D.C., April 10 - 13.

Speakers, attendee-Delegates and participants will range from biologists (Dr. E.O. Wilson) and writers (Ben Goldacre), to physicists (Albert-Laszlo Barabasi) and public health leaders like the director of the National Institutes of Health (Dr. Francis Collins). Topics to be explored by TEDMED speakers will include neuroscience, microbiology, surgery, oncology, stem cell therapy, bad science, Alzheimer's, robotics, game science, wearable tech, disease evolution, patient choice, virtual anatomy models, the nature of imagination, and dozens more.

For the first time this year, TEDMED will offer a free simulcast, TEDMEDLive, to teaching hospitals, medical schools, research institutions, university life science departments, state and federal government agencies, health-oriented corporations and non-profits across the nation. Participants, forecasted at more than 50,000, will be able to view a high-definition live stream of each presentation and performance. Using the TEDMED Connect mobile app, remote participants can also ask questions of the speakers in real time, which may be answered directly from the TEDMED stage.

Over 2,000 TEDMEDLive simulcast locations will participate, including institutions such as: Case Western Reserve University, Harvard University, University of California (Davis and Irvine), University of Pennsylvania, University of Washington, University of Virginia, Tulane University, Vanderbilt University and Yale University.

Another new TEDMED initiative is the Front-Line Scholarship Program, which offers up to $2 million in half- and full-fee scholarships to those leaders and innovators who are on the front lines of health and medicine. It assists those who would both contribute to the TEDMED conference as attendees, and would greatly benefit from joining the conference in Washington, D.C. in person as a Delegate. The Front-Line Scholarship Program is underwritten by the TEDMED Patron Fund, whose major contributors include Humana and The California Endowment.

"TEDMED is for everyone who is passionate about the future of health and medicine," said Jay Walker, curator of TEDMED."Accordingly, TEDMED is committed to bringing even more expertise and perspective to the table for a national discussion of health and medicine, regardless of ability to pay through our Front-Line Scholarship program. Front-Line Scholarships will permit the broadest possible group of healthcare providers, first responders and other contributors to attend so they can share even more ideas that will save lives."

More than 1,200 TEDMED onsite attendees including researchers, physicians, technologists and policy experts will foster cross-disciplinary collaboration and learning at the Kennedy Center this April. Institutions of excellence represented by speakers and attendees will include The American Cancer Society, The American Red Cross, Biodigital Systems, The Boulis Laboratory, Brandeis University, Brigham and Women's Hospital, The California Institute of Technology, Center for Complex Network Research, The Centers for Disease Control and Prevention, Duke University, Emory University, Harvard University, mc10, Methodist Institute for Technology, Innovation, and Education, The National Institutes of Health, New York University, Penn State University, Quest Diagnostics, The Center for Alzheimer Research and Treatment, Reuters Health, Children's Hospital Boston, The U.S. Department of Health and Human Services, and the Young Professionals Chronic Disease Network.

TEDMED Speaker List (as of 3/12/2012)

Additional speakers will be announced prior to the conference start date.

See the original post here:
TEDMED 2012 Conference Offers $2 Million in Scholarships to Health and Medicine Leaders and Innovators; Free National ...

Read More...

Correcting human mitochondrial mutations

Tuesday, March 13th, 2012

Public release date: 12-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears March 12, 2012 in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad Stem Cell Research Center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

See more here:
Correcting human mitochondrial mutations

Read More...

Repairing mutations in human mitochondria

Tuesday, March 13th, 2012

LOS ANGELES Researchers at the UCLA stem cell center and the departments of chemistry and biochemistry and pathology and laboratory medicine have identified, for the first time, a generic way to correct mutations in human mitochondrial DNA by targeting corrective RNAs, a finding with implications for treating a host of mitochondrial diseases.

Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects and aging. There currently are no methods to successfully repair or compensate for these mutations, said study co-senior author Dr. Michael Teitell, a professor of pathology and laboratory medicine and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Between 1,000 and 4,000 children per year in the United States are born with a mitochondrial disease and up to one in 4,000 children in the U.S. will develop a mitochondrial disease by the age of 10, according to Mito Action, a nonprofit organization supporting research into mitochondrial diseases. In adults, many diseases of aging have been associated with defects of mitochondrial function, including diabetes, Parkinson's disease, heart disease, stroke, Alzheimer's disease and cancer.

"I think this is a finding that could change the field," Teitell said. "We've been looking to do this for a long time and we had a very reasoned approach, but some key steps were missing. Now we have developed this method and the next step is to show that what we can do in human cell lines with mutant mitochondria can translate into animal models and, ultimately, into humans."

The study appears today in the peer-reviewed journal Proceedings of the National Academy of Sciences.

The current study builds on previous work published in 2010 in the peer-reviewed journal Cell, in which Teitell, Carla Koehler, a professor of chemistry and biochemistry and a Broad stem cell research center scientist, and their team uncovered a role for an essential protein that acts to shuttle RNA into the mitochondria, the energy-producing "power plant" of a cell.

Mitochondria are described as cellular power plants because they generate most of the energy supply within a cell. In addition to supplying energy, mitochondria also are involved in a broad range of other cellular processes including signaling, differentiation, death, control of the cell cycle and growth.

The import of nucleus-encoded small RNAs into mitochondria is essential for the replication, transcription and translation of the mitochondrial genome, but the mechanisms that deliver RNA into mitochondria have remained poorly understood.

The study in Cell outlined a new role for a protein called polynucleotide phosphorylase (PNPASE) in regulating the import of RNA into mitochondria. Reducing the expression or output of PNPASE decreased RNA import, which impaired the processing of mitochondrial genome-encoded RNAs. Reduced RNA processing inhibited the translation of proteins required to maintain the mitochondrial electron transport chain that consumes oxygen during cell respiration to produce energy. With reduced PNPASE, unprocessed mitochondrial-encoded RNAs accumulated, protein translation was inhibited and energy production was compromised, leading to stalled cell growth.

The findings from the current study provide a form of gene therapy for mitochondria by compensating for mutations that cause a wide range of diseases, said study co-senior author Koehler.

See the rest here:
Repairing mutations in human mitochondria

Read More...

UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Monday, March 12th, 2012

Public release date: 11-Mar-2012 [ | E-mail | Share ]

Contact: Kim Irwin kirwin@mednet.ucla.edu 310-206-2805 University of California - Los Angeles Health Sciences

UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their "stemness," said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

"We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells," Banerjee said. "Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders."

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjee's lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

"Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone," Shim said. "All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there."

Link:
UCLA scientists find insulin, nutrition prevent blood stem cell differentiation in fruit flies

Read More...

Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Monday, March 12th, 2012

Newswise UCLA stem cell researchers have shown that insulin and nutrition keep blood stem cells from differentiating into mature blood cells in Drosophila, the common fruit fly, a finding that has implications for studying inflammatory response and blood development in response to dietary changes in humans.

Keeping blood stem cells, or progenitor cells, from differentiating into blood cells is important as they are needed to create the blood supply for the adult fruit fly.

The study found that the blood stem cells are receiving systemic signals from insulin and nutritional factors, in this case essential amino acids, that helped them to maintain their stemness, said study senior author Utpal Banerjee, professor and chairman of the molecular, cell and developmental biology department in Life Sciences and a researcher with the Eli and Edythe Broad Center of Regenerative Medicine at UCLA.

We expect that this study will promote further investigation of possible direct signal sensing mechanisms by mammalian blood stem cells, Banerjee said. Such studies will probably yield insights into chronic inflammation and the myeloid cell accumulation seen in patients with type II diabetes and other metabolic disorders.

The study appears March 11, 2012 in the peer-reviewed journal Nature Cell Biology.

In the flies, the insulin signaling came from the brain, which is an organ similar to the human pancreas, which produces insulin. That insulin was taken up by the blood stem cells, as were amino acids found in the fly flood, said Ji Won Shim, a postdoctoral fellow in Banerjees lab and first author of the study.

Shim studied the flies while in the larval stage of development. To see what would happen to the blood stem cells, Shim placed the larvae into a jar with no food - they usually eat yeast or cornmeal and left them for 24 hours. Afterward, she checked for the presence of blood stem cells using specific chemical markers that made them visible under a confocal microscope.

Once the flies were starved and not receiving the insulin and nutritional signaling, all the blood stem cells were gone, Shim said. All that were left were differentiated mature blood cells. This type of mechanism has not been identified in mammals or humans, and it will be intriguing to see if there are similar mechanisms at work there.

In the fruit fly, the only mature blood cells present are myeloid cells, Shim said. Diabetic patients have many activated myeloid cells that could be causing disease symptoms. It may be that abnormal activation of myeloid cells and abnormal metabolism play a major role in diabetes.

Metabolic regulation and immune response are highly integrated in order to function properly dependent on each other. Type II diabetes and obesity, both metabolic diseases, are closely associated with chronic inflammation, which is induced by abnormal activation of blood cells, Shim said. However, no systemic study on a connection between blood stem cells and metabolic alterations had been done. Our study highlights the potential linkage between myeloid-lineage blood stem cells and metabolic disruptions.

See the original post here:
Insulin, Nutrition Prevent Blood Stem Cell Differentiation in Fruit Flies

Read More...

Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of …

Monday, March 12th, 2012

CLEARWATER, FL--(Marketwire -03/12/12)- Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, announced today the addition of cardiothoracic surgeon Thomas W. Prendergast, M.D. to its Scientific and Medical Board of Advisors (SAMBA).

Biostem CEO, Dwight Brunoehler stated, "The Company is now positioned for growth and international expansion. Adding a world class team of clinical, laboratory, and regulatory experts for our Scientific and Medical Board of Advisors to guide our pursuits is essential. Dr. Prendergast brings a wealth of experience not only in the scientific aspects of stem cell use in regenerative medicine, but also in forging research and international economic development opportunities."

Dr. Prendergast is a busy clinical cardiothoracic surgeon, who performs 200-250 open-heart operations and 5 to 15 heart transplants each year. He is deeply involved in numerous clinical and research activities associated with stem cells and heart repair. He is presently Director of Cardiac Transplantation at Robert Wood Johnson University Hospital in New Brunswick, New Jersey where he holds an Associate Professorship of Surgery at the University of Medicine and Dentistry of New Jersey. In addition to being an active participant in stem cell research program development and teaching medical students and residents, his other interests include medical research funding and humanitarian development of programs for Disabled American Veterans.

Dr. Prendergast received his undergraduate degrees in biophysics and Psychology, as well as his medical degree, at Pennsylvania State University. His general surgery residency was for five years at the University of Massachusetts Medical School. His cardiothoracic surgery training was at the University of Southern California School of Medicine, including the Los Angeles County Medical Center. Subsequent fellowship training included pediatric cardiac surgery at Children's Hospital of LA, along with thoracic transplant fellowships at University of Southern California in Los Angeles and at Temple University Hospital in Philadelphia. He spent three years at the University of Kansas establishing thoracic transplant programs until returning to Temple University Hospital as one of their staff heart and lung transplant surgeons. Subsequent to his time at Temple, he joined up with Newark Beth Israel/St. Barnabas Hospitals, where he assumed directorship as the Chief of Cardiac Transplantation and Mechanical Assistance.

Regarding his appointment to the Biostem U.S. Scientific and Medical Board of Advisors, Dr. Prendergast said, "I am looking forward with excitement to working again with Dwight at Biostem. The expansion plan is sound, well paced, and will afford improved quality of life opportunities to many people around the world."

About Biostem U.S., Corporation

Biostem U.S., Corporation (OTCQB: BOSM.PK - News) (Pinksheets: BOSM.PK - News) is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered around providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.

More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Kerry D'Amato, Marketing Director at 727-446-5000.

Read more here:
Biostem U.S., Corporation Appoints Heart Surgeon, Thomas W. Prendergast, M.D. to Its Scientific and Medical Board of ...

Read More...

Page 23«..1020..22232425..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick