header logo image


Page 16«..10..15161718..»

Archive for the ‘Cell Medicine’ Category

Nature study discovers chromosome therapy to correct a severe chromosome defect

Monday, January 13th, 2014

PUBLIC RELEASE DATE:

12-Jan-2014

Contact: Jessica Studeny jessica.studeny@case.edu 216-368-4692 Case Western Reserve University

Geneticists from Ohio, California and Japan joined forces in a quest to correct a faulty chromosome through cellular reprogramming. Their study, published online today in Nature, used stem cells to correct a defective "ring chromosome" with a normal chromosome. Such therapy has the promise to correct chromosome abnormalities that give rise to birth defects, mental disabilities and growth limitations.

"In the future, it may be possible to use this approach to take cells from a patient that has a defective chromosome with multiple missing or duplicated genes and rescue those cells by removing the defective chromosome and replacing it with a normal chromosome," said senior author Anthony Wynshaw-Boris, MD, PhD, James H. Jewell MD '34 Professor of Genetics and chair of Case Western Reserve School of Medicine Department of Genetics and Genome Sciences and University Hospitals Case Medical Center.

Wynshaw-Boris led this research while a professor in pediatrics, the Institute for Human Genetics and the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UC, San Francisco (UCSF) before joining the faculty at Case Western Reserve in June 2013.

Individuals with ring chromosomes may display a variety of birth defects, but nearly all persons with ring chromosomes at least display short stature due to problems with cell division. A normal chromosome is linear, with its ends protected, but with ring chromosomes, the two ends of the chromosome fuse together, forming a circle. This fusion can be associated with large terminal deletions, a process where portions of the chromosome or DNA sequences are missing. These deletions can result in disabling genetic disorders if the genes in the deletion are necessary for normal cellular functions.

The prospect for effective counter measures has evaded scientistsuntil now. The international research team discovered the potential for substituting the malfunctioning ring chromosome with an appropriately functioning one during reprogramming of patient cells into induced pluripotent stem cells (iPSCs). iPSC reprogramming is a technique that was developed by Shinya Yamanaka, MD, PhD, a co-corresponding author on the Nature paper. Yamanaka is a senior investigator at the UCSF-affiliated Gladstone Institutes, a professor of anatomy at UCSF, and the director of the Center for iPS Cell Research and Application (CiRA) at the Institute for Integrated Cell-Material Sciences (iCeMS) in Kyoto University. He won the Nobel Prize in Medicine in 2012 for developing the reprogramming technique.

Marina Bershteyn, PhD, a postdoctoral fellow in the Wynshaw-Boris lab at UCSF, along with Yohei Hayashi, PhD, a postdoctoral fellow in the Yamanaka lab at the Gladstone Institutes, reprogrammed skin cells from three patients with abnormal brain development due to a rare disorder called Miller Dieker Syndrome, which results from large terminal deletions in one arm of chromosome 17. One patient had a ring chromosome 17 with the deletion and the other two patients had large terminal deletions in one of their chromosome 17, but not a ring. Additionally, each of these patients had one normal chromosome 17.

The researchers observed that, after reprogramming, the ring chromosome 17 that had the deletion vanished entirely and was replaced by a duplicated copy of the normal chromosome 17. However, the terminal deletions in the other two patients remained after reprogramming. To make sure this phenomenon was not unique to ring chromosome 17, they reprogrammed cells from two different patients that each had ring chromosomes 13. These reprogrammed cells also lost the ring chromosome, and contained a duplicated copy of the normal chromosome 13.

Here is the original post:
Nature study discovers chromosome therapy to correct a severe chromosome defect

Read More...

Stem cell research identifies new gene targets in patients with Alzheimer’s disease

Wednesday, January 8th, 2014

PUBLIC RELEASE DATE:

8-Jan-2014

Contact: David McKeon DMckeon@nyscf.org 212-365-7440 New York Stem Cell Foundation

NEW YORK, NY (January 8, 2014) Scientists at The New York Stem Cell Foundation (NYSCF) Research Institute in collaboration with scientists at the Icahn School of Medicine at Mount Sinai (ISMMS) successfully generated a stem cell model of familial Alzheimer's disease (FAD). Using this stem cell model, researchers identified fourteen genes that may be implicated in the disease and one gene in particular that shows the importance that inflammation may play in the brain of Alzheimer's patients.

In this study, published today in PLOS ONE, the team of scientists produced stem cells and neural precursor cells (NPCs), representing early neural progenitor cells that build the brain, from patients with severe early-onset AD with mutations in the Presenilin 1 (PSEN1) gene. These NPCs had elevated Abeta42/Abeta40 ratios, indicating elevation of the form of amyloid found in the brains of Alzheimer's patients. These levels were greater than those in adult cells that did not have the PSEN1mutation. This elevated ratio showed that these NPCs grown in the petri dish were accurately reflecting the cells in the brains of FAD patients.

"Our ability to accurately recapitulate the disease in the petri dish is an important advance for this disease. These genes provide us with new targets to help elucidate the cause of sporadic forms of the disease as well provide targets for the discovery of new drugs," said Susan L. Solomon, Chief Executive Officer of The New York Stem Cell Foundation.

"The gene expression profile from Noggle's familial Alzheimer's stem cells points to inflammation which is especially exciting because we would not usually associate inflammation with this particular Alzheimer's gene. The greatest breakthroughs come with 'unknown unknowns', that is, things that we don't know now and that we would never discover through standard logic," said Sam Gandy, MD, PhD, Professor of Neurology and Psychiatry and Director of the Center for Cognitive Health at the Icahn School of Medicine at Mount Sinai and a co-author on the study. Gandy is also Associate Director of the NIH-Designated Mount Sinai Alzheimer's Disease Research Center.

The researchers generated induced pluripotent stem (iPS) cells from affected and unaffected individuals from two families carrying PSEN1 mutations. After thorough characterization of the NPCs through gene expression profiling and other methods, they identified fourteen genes that behaved differently in PSEN1 NPCs relative to NPCs from individuals without the mutation. Five of these targets also showed differential expression in late onset Alzheimer's disease patients' brains. Therefore, in the PSEN1 iPS cell model, the researchers reconstituted an essential feature in the molecular development of familial Alzheimer's disease.

Although the majority of Alzheimer's disease cases are late onset and likely result from a mixture of genetic predisposition and environmental factors, there are genetic forms of the disease that affect patients at much earlier ages. PSEN1 mutations cause the most common form of inherited familial Alzheimer's disease and are one hundred percent penetrant, resulting in all individuals with this mutation getting the disease.

The identification of genes that behaved differently in patients with the mutation provides new targets to further study and better understand their effects on the development of Alzheimer's disease. One of these genes, NLRP2, is traditionally thought of as an inflammatory gene.

Excerpt from:
Stem cell research identifies new gene targets in patients with Alzheimer's disease

Read More...

2014 30 Under 30: Science & Healthcare

Wednesday, January 8th, 2014

Cofounder of Stem Cell Theranostics and StartX Med Divya Nag is attacking one of medicine's biggest problems: the fact that most types of human cellslike those in the heart or liverdie when you keep them in a petri dish. This makes testing new drugs a risky, costly and time-consuming business: 90% of medicines that start clinical trials turn out to be too unsafe or ineffective to market. But a new technology, the induced pluripotent stem cell, may help. Nag's company, Stem Cell Theranostics, was created from technology funded by a $20 million grant from the California Institute of Regenerative Medicine and is closing a venture round. It turns cellsusually from a piece of skininto embryonic-like stem cells, then uses them to create heart cells. These cells can live in petri dishes and be used to test new drugs. Someday they might even replace heart tissue that dies during a heart attack. Three large pharmaceutical companies are customers, though revenues are small. Nag, who was already publishing in prestigious scientific journals when she was an undergraduate, dropped out of Stanford to pursue her dream. No regrets: "Our technology was so promising and I was so passionate about it that nothing else made sense to me," she says. "It was very clear this was what I wanted to do."

Continued here:
2014 30 Under 30: Science & Healthcare

Read More...

Breakthrough Research Provides Valuable Insight On Cause Of Alzheimer’s

Wednesday, January 8th, 2014

New York, NY (PRWEB) January 08, 2014

A stem cell model of familial Alzheimers disease (FAD) was successfully generated, allowing researchers to identify 14 genes potentially implicated in the disease. One gene in particular demonstrates the important role inflammation may play in the brain of Alzheimers patients. The study was completed by scientists at The New York Stem Cell Foundation (NYSCF) Research Institute in collaboration with scientists at the Icahn School of Medicine at Mount Sinai (ISMMS) and funded in part by the Cure Alzheimers Fund(CAF).

In the study published today in PLOS ONE, a team of scientists produced stem cells and neural precursor cells (NPCs), representing early neural progenitor cells that build the brain from patients with severe early-onset AD with mutations in the Presenilin 1 (PSEN1) gene. These NPCs had elevated Abeta42/Abeta40 ratios, indicating elevation of the form of amyloid found in the brains of Alzheimers patients. These levels were greater than those in adult cells that did not have the PSEN1 mutation. This elevated ratio shows that the NPCs grown in the petri dish accurately reflected the cells in the brains of FAD patients.

"The gene expression profile from the familial Alzheimers stem cells points to inflammation, which is especially exciting because we would not usually associate inflammation with this particular Alzheimer's gene," said Sam Gandy, MD, PhD, Professor of Neurology and Psychiatry and Director of the Center for Cognitive Health at the Icahn School of Medicine at Mount Sinai and a co-author on the study. Gandy is also Associate Director of the NIH-Designated Mount Sinai Alzheimers Disease Research Center and leader of the Cure Alzheimers Fund Stem Cell Consortium.

"This is the kind of innovative science that will help us better understand the cause of Alzheimers and how to approach the disease with effective therapies," said Tim Armour, President and CEO of Cure Alzheimers Fund (CAF). "It also showcases how targeted investment of critical resources can make a difference in finding solutions to this debilitating disease."

The researchers generated induced pluripotent stem (iPS) cells from affected and unaffected individuals from two families carrying PSEN1 mutations. After thorough characterization of the NPCs through gene expression profiling and other methods, they identified 14 genes that behaved differently in PSEN1 NPCs relative to NPCs from individuals without the mutation. Five of these targets also showed differential expression in late onset Alzheimers disease patients brains. Therefore, in the PSEN1 iPS cell model, the researchers reconstituted an essential feature in the molecular development of familial Alzheimers disease.

The studys co-lead authors Sam Gandy, MD, PhD and Scott Noggle, PhD are both members of CAFs Stem Cell Consortium, which supported this research. The Stem Cell Consortium is an international group of scientists collaborating on innovative research that investigates, for the first time, the brain cells from individuals with the common form of Alzheimers disease. Other members of the Consortium include Kevin Eggan, PhD, of Harvard University, Marc Tessier-Lavigne, PhD, of Rockefeller University, Doo Kim, PhD, of Harvard Medical School, and Tamir Ben-Hur, MD, PhD, of Hadassah University.

Stem cells are the least mature cells in the body. This means they can be treated with a defined cocktail of factors that can cause maturation of cells along discrete cell types. With iPS cells, which are cells that can become any cell type in the body, it now is possible to take skin cells from adults and return them to an immature state. By redirecting skin cells from Alzheimers patients and turning them into nerve cells, investigators are able to study adult Alzheimers neurons (nerve cells) in the lab.

Although the majority of Alzheimers disease cases are late onset and likely result from a mixture of genetic predisposition and environmental factors, there are genetic forms of the disease that affect patients at much earlier ages. PSEN1 mutations cause the most common form of inherited familial Alzheimers disease and are one hundred percent penetrant, resulting in all individuals with this mutation getting the disease.

Identifying genes that behaved differently in patients with the mutation provides new targets to further study and better understand their effects on the development of Alzheimers disease. One of these genes, NLRP2, is traditionally thought of as an inflammatory gene.

See more here:
Breakthrough Research Provides Valuable Insight On Cause Of Alzheimer’s

Read More...

ICMS International Cell Medicine Society

Friday, January 3rd, 2014

T he International Cellular Medicine Society (ICMS) is an international non-profit dedicated to patient safety through strict evaluation of protocols and rigorous oversight of clinics and facilities engaged in the translation of point-of-care cell-based treatments.As a Professional Medical Association, the ICMS represents Physiciansand Researchersfrom over 35 countries who share a mission to provide Scientifically Credible and Medically Appropriate Treatments to Informed Patients.Join the ICMS.

The ICMS Works Tirelessly for the Clincial Translation of Field of Cell-Based Point-of-Care Treatments through:

Comprehensive Medical Standards and Best Practice Guidelines for Cell Based Medicine,

Strict Evaluation and Rigerous Oversight of Stem Cell Clinics and Facilities through aGlobal Accreditation Process,

Physician Education through daily updates on the latest Research on Stem Cells, the monthly Currents In Stem Cell Medicine and the annual International Congress for Regenerative and Stem Cell Medicine.

Join the ICMSto receive the latest news and research from cell-based medicne, including the bi-monthly publication, Currents in Stem Cell Medicine.

Link:
ICMS International Cell Medicine Society

Read More...

Public Opinion Generally Supports Stem Cell Research

Friday, January 3rd, 2014

January 3, 2014

Rebekah Eliason for redOrbit.com Your Universe Online

Early reports indicate that lay opinions regarding stem cell research with stem cells made from skin or other tissues, known as induced pluripotent stem cells (iPSCs), are generally positive, despite several ethical concerns.

Regardless of personal benefit, most patients indicated during focus group discussions that they would be will to participate in iPSC. When considering donating tissue, patients raised concern regarding consent, privacy and transparency. Jeremy Sugarman, senior author and the Harvey M. Meyerhoff Professor of Bioethics and Medicine at the John Hopkins Berman Institute of Bioethics, said, Bioethicists, as well as stem cell researchers and policy-makers, have discussed the ethical issues of induced pluripotent stem cells at length, but we didnt have any systematic information about what patients think about these issues, and that is a huge part of the equation if the potential of this research is to be fully realized.

Somewhat taking the edge off of the controversy is the fact that iPSCs do not require the destruction of a human embryo. Using iPSCs in research is extremely valuable in the development of new drugs, disease study and may help develop medical treatments. Although still far off, Sugarman explained that there is hope that iPSCs could eventually be used in the development of organs for transplantation that the bodys immune system will not attack since they can be formed from the persons own cells.

In all five of the focus groups, consent for iPSC research by the patient was highly important. Several of the patients believed that properly informed consent could alleviate other concerns about privacy, the immortalization of cells, and the commercialization of stem cells.

The report noted a strong desire among participants to have full disclosure of the anticipated uses. Some of the participants expressed a desire to be able to veto some of the uses of their cells. Although the authors recognize the practical difficulties of this request, they hope their study will help to prompt investigation into creative approaches to meeting these desires.

The study exposed an additional side to some patients selfless motivations in research participation in relation to eventual commercialization. One participant from the report is quoted as saying, It wont be just taken to become a money maker and the very people who need it the most will no longer be able to benefit from it and another, it was a donation. Its a humanitarian effort.

Unique characteristics of the small study that could influence results were noted by the authors. For example, since the study was conducted in Baltimore, Maryland with patients who have received care at Johns Hopkins, which is home to the first immortal cell line produced from tumor cells that were taken from cancer patient Henrietta Lacks in 1951, related stem cell issues are at the forefront of various focus groups. The report stated, The idea that donated cells would potentially liveforever was unnerving to some participants. In particular, the story about the creation of the HeLa cell line from Henrietta Lacks cervical cancer tissue, taken without consent, was raised in four out of the five focus groups.

In addition, the report suggested that a patients opinion may be affected by their own health and whether they had any personal experience with a debilitating illness. It seems fair to say that everyone experiences serious illness in their lives, whether themselves or through someone they know and care about, and this influences their opinions of healthcare and research, Sugarman says. This study is a first step in getting crucial information about what values are factored into a decision to participate in iPSC research, and what those participants expect from the experience. This study was reported in the journal Stem Cells.

See the original post here:
Public Opinion Generally Supports Stem Cell Research

Read More...

Study finds patients give ‘broad endorsement’ to stem cell research

Thursday, January 2nd, 2014

PUBLIC RELEASE DATE:

2-Jan-2014

Contact: Leah Ramsay lramsay@jhu.edu 202-642-9640 Johns Hopkins Medicine

In an early indication of lay opinions on research with induced pluripotent stem cells (iPSCs), which are stem cells made from skin or other tissues, a new study by bioethicists at Johns Hopkins University indicates that despite some ethical concerns, patients give the research "broad endorsement".

During focus group discussions patients were largely in favor of participating in iPSC research even if personal benefit was unlikely, though they raised concerns about consent, privacy and transparency when considering donating tissue for this research. The bioethicists report their findings in the journal Cell Stem Cell.

"Bioethicists, as well as stem cell researchers and policy-makers, have discussed the ethical issues of induced pluripotent stem cells at length, but we didn't have any systematic information about what patients think about these issues, and that is a huge part of the equation if the potential of this research is to be fully realized," says Jeremy Sugarman, the senior author of the report and the Harvey M. Meyerhoff Professor of Bioethics and Medicine at the Johns Hopkins Berman Institute of Bioethics.

Unlike human embryonic stem cells, iPSCs are derived without destroying a human embryo. Research with human iPSCs is valuable for developing new drugs, studying disease, and perhaps developing medical treatments. Sugarman explains that, while far off, scientists are hopeful that iPSCs could someday be used to develop organs for transplantation that the body's immune system will not attack, because they can be created from the person's own cells.

The study reveals the importance of prior informed consent for those asked to participate in it. According to the report, consent was highly important for patients in all five of the focus groups that were convened. Some patients even suggested that proper informed consent could compensate for other concerns they had about privacy, the "immortalization" of cells, and the commercialization of stem cells.

There was a "strong desire among participants to have full disclosure of the anticipated uses," the report notes, with some participants wanting to be able to veto certain uses of their cells. The authors acknowledge the "practical difficulties" of this request but hope that their findings will "prompt investigation into creative approaches to meeting these desires."

The study also revealed another side to some patients' selfless motivations to participate in research as they might relate to eventual commercialization. The report quotes one participant as saying, "It won't be just taken to become a money maker and the very people who need it the most will no longer be able to benefit from it" and another, "it was a donation. It's a humanitarian effort."

Read the original:
Study finds patients give 'broad endorsement' to stem cell research

Read More...

Ask a Sports Medicine Doc: Fact and fiction of stem cells

Tuesday, December 31st, 2013

Q: I have been hearing a lot about stem cell injections and was wondering if this would help my painful, arthritic knee?

There is a lot of exciting research and great interest in tissue engineering and regenerative medicine. However, there is also a lot of hype and misinformation out there. Tissue engineering is defined as the application of biological, chemical and engineering principles toward the repair, restoration, or regeneration of living tissues using biomaterials, cells, and factors, alone or in combination.1

The goal of tissue engineering is to regenerate damaged tissue. Tissue Engineering has three primary goals: Harvesting and isolating mesenchymal stem cells (MSCs), providing a scaffold onto which these cells are seeded so that their growth is organized and structured in an effort to duplicate a given tissue that is damaged, and assisting and promoting the growth of these MSCs with growth factors that cause the MSCs to ultimately become the tissue of interest.

There are two types of stem cells: embryonic stem cells, which are derived from fetuses and postnatal stem cells derived from adults. Embryonic stem cells have the ability to proliferate indefinitely in a test tube and the ability to produce all tissue types such as bone, cartilage or muscle. However, in the clinical setting they can cause an immune response in the recipient and can also cause tumors to grow. Furthermore, there are significant ethical concerns with harvesting embryonic stem cells as they are derived from human embryos. Currently in the U.S., the only research that can be performed on embryonic stem cells is that using stem cell lines that were in existence before 2009.

Adult stem cells have the advantage of not having these ethical concerns as they are harvested from the patient. Moreover, there is no immunogenic response as they come from you and also do not cause tumors to develop. However, they do not develop into various tissues as easily as embryonic stem cells do. Adult stem cells can be harvested from a variety of tissues: fat, blood, bone marrow, muscle and other tissue types. The number of stem cells seems to correlate with how much blood flow there is to a given tissue.

MSCs derived from fat or adipose tissue have been primarily used by proponents of regenerative medicine as adipose tissue is easily harvested and has a reasonable concentration of MSCs compared to other sources. Bone cells actually have more potential to differentiate into multiple cell types than fat cells, but harvesting cells from bone is more painful and invasive than harvesting fatty tissue, which most of us would be happy to donate. Anyone who has had a bone marrow biopsy can attest to the pain involved.

Patients who see me in the office with knee pain or knee arthritis often ask me if they would benefit from a stem cell injection. Currently, there is no good evidence in the orthopedic literature to recommend this. Insurance companies do not pay for this procedure, as again, there is no good evidence showing it to be efficacious. Thus, patients have to pay thousands of dollars out of pocket for this procedure. Given the lack of evidence to support it and the cost and possible risks, I do not recommend it. When injecting stem cells harvested from fatty tissue into an arthritic knee for example, these cells are not directed to grow cartilage nor are they directed to grow cartilage in the areas where your knee lacks it. Instead, these stem cells could equally differentiate into fat, bone, scar tissue or cartilage. In turn, you could grown bone on your own remaining cartilage, you could grow scar tissue on your ligaments, etc.

Tissue engineering is an evolving field with many possible exciting applications whose day will come, but unfortunately its clinical applications continue to be quite limited at the current time.

1 Laurencin CT, Ambrosio AM, Borden MD, Cooper JA Jr.: Tissue engineering: Orthopedic applications. Annu Rev Biomed Eng 1999; 1:19-46.

Dr. Rick Cunningham is a Knee and Shoulder Sports Medicine Specialist with Vail-Summit Orthopaedics. He is a Physician for the US Ski Team and Chief of Surgery at Vail Valley Medical Center. Do you have a sports medicine question youd like him to answer in this column? Visit his website at http://www.vailknee.com to submit your topic idea. For more information about Vail-Summit Orthopaedics, visit http://www.vsortho.com.

See original here:
Ask a Sports Medicine Doc: Fact and fiction of stem cells

Read More...

Dormant Adult Stem Cells Suppress Cancer

Saturday, December 28th, 2013

A release from the University of California-Los Angleles written by Shaun Mason reports that researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism by which certain adult stem cells suppress their ability to initiate skin cancer during their dormant phase an understanding that could be exploited for better cancer-prevention strategies. The study, led by Andrew White and William Lowry, was published online Decemeber 15th 2013 in the journal Nature Cell Biology.

The release notes that hfollicle stem cells, the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma, a common skin cancer. These stem cells cycle between periods of activation during which they can grow and quiescence (when they remain dormant).

White and Lowry applied known cancer-causing genes to hair follicle stem cells of laboratory mice and found that during the cells dormant phase, they could not initiate skin cancer. Once the cells were in their active period, however, they began growing cancer.

The release quotes White as saying, "We found that this tumor suppression via adult stem cell quiescence was mediated by PTEN, a gene important in regulating the cell's response to signaling pathways. Therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and PTEN must be present for the suppression to work."

The team believes that understanding cancer suppression through quiescence could better inform preventative strategies for certain patients, such as organ transplant recipients, who are particularly susceptible to squamous cell carcinoma, and for those taking the drug vemurafenib for melanoma, another type of skin cancer. The study also may reveal parallels between squamous cell carcinoma and other cancers in which stem cells have a quiescent phase.

The rest is here:
Dormant Adult Stem Cells Suppress Cancer

Read More...

Give the Gift of Quality of Life to Your Pet This Holiday Season

Friday, December 27th, 2013

Poway, California (PRWEB) December 26, 2013

Vet-Stem, Inc., the leading regenerative veterinary medicine company, out of San Diego County, California offers horse and pet owners the ability to give the gift of Quality of Life this holiday season and in the New Year. Vet-Stems services include banking of small amounts of a pet or horses stem cells, with the ability to grow additional cells as stem cell doses may be needed. Stem cells are commonly used for arthritis, joint issues, and tendon or ligament injury.

The New Year brings an onslaught of puppies, gifted through the holidays, coming in for vaccines and health checks. Most owners are not thinking about a few years down the road when their pet slows with age, or stops enjoying activities due to pain, injury, and inflammation. Injury and arthritis can cause decreased ability and motivation, which can decrease a pets Quality of Life. Stem cells are a natural, non-prescription way to provide relief from the pain of injury, inflammation and arthritis. Owners can enjoy the security of banking stem cells for future use much like new parents invest in banking cord blood for their childs future.

Puppies receiving spay or neuter services can have a small, grape size, amount of fat collected for Vet-Stems StemInsure service. The fat is shipped overnight to Vet-Stems lab and processed, extracting the stem cells for banking and the possibility of future Cell Culture. Puppies are not the only ones that can have a fat collection done during anesthesia services, but pets scheduled for dental cleanings as well as pets receiving orthopedic or arthroscopic surgeries.

All can benefit from Vet-Stems Cell Culture process. This provides a lifetime of therapeutic doses from a small amount of stem cells, by growing them, without having to collect more fat or have additional surgery. For more uses and expected results of Vet-Stem Regenerative Cell Therapies in animals, visit http://www.vet-stem.com/owners.php.

About Vet-Stem, Inc. Vet-Stem, Inc. was formed in 2002 to bring regenerative medicine to the veterinary profession. The privately held company is working to develop therapies in veterinary medicine that apply regenerative technologies while utilizing the natural healing properties inherent in all animals. As the first company in the United States to provide an adipose-derived stem cell service to veterinarians for their patients, Vet-Stem, Inc. pioneered the use of regenerative stem cells in veterinary medicine. The company holds exclusive licenses to over 50 patents including world-wide veterinary rights for use of adipose derived stem cells. In the last decade over 10,000 animals have been treated using Vet-Stem, Inc.s services, and Vet-Stem is actively investigating stem cell therapy for immune-mediated and inflammatory disease, as well as organ disease and failure. For more on Vet-Stem, Inc. and Veterinary Regenerative Medicine visit http://www.vet-stem.com or call 858-748-2004.

Read more:
Give the Gift of Quality of Life to Your Pet This Holiday Season

Read More...

Adult stem cells suppress cancer while dormant

Sunday, December 22nd, 2013

Los Angeles, Dec 21 : Researchers at UCLA's (University of California, Los Angeles') Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism by which certain adult stem cells suppress their ability to initiate skin cancer during their dormant phase an understanding that could be exploited for better cancer-prevention strategies.

The study, which was led by UCLA postdoctoral fellow Andrew White and William Lowry, an associate professor of molecular, cell and developmental biology who holds the Maria Rowena Ross Term Chair in Cell Biology in the UCLA College of Letters and Science, was published online Dec. 15 in the journal Nature Cell Biology.

Hair follicle stem cells, the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma, a common skin cancer. These stem cells cycle between periods of activation (during which they can grow) and quiescence (when they remain dormant).

Using mouse models, White and Lowry applied known cancer-causing genes to hair follicle stem cells and found that during their dormant phase, the cells could not be made to initiate skin cancer. Once they were in their active period, however, they began growing cancer.

"We found that this tumor suppression via adult stem cell quiescence was mediated by PTEN, a gene important in regulating the cell's response to signaling pathways," White said.

"Therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and PTEN must be present for the suppression to work."

Understanding cancer suppression through quiescence could better inform preventative strategies for certain patients, such as organ transplant recipients, who are particularly susceptible to squamous cell carcinoma, and for those taking the drug vemurafenib for melanoma, another type of skin cancer.

The study also may reveal parallels between squamous cell carcinoma and other cancers in which stem cells have a quiescent phase.

The research was supported by the California Institute of Regenerative Medicine, the University of California Cancer Research Coordinating Committee and the National Institutes of Health.

--IBNS (Posted on 21-12-2013)

Read the rest here:
Adult stem cells suppress cancer while dormant

Read More...

Adult Stem Cells Found to Suppress Cancer While Dormant

Wednesday, December 18th, 2013

Contact Information

Available for logged-in reporters only

Newswise Researchers at UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have discovered a mechanism in adult stem cells by which the cells suppress their ability to initiate cancer during their dormant phase, an understanding that could be exploited for better cancer prevention strategies. The study was led by Andrew White, post-doctoral fellow, and William Lowry, associate professor of molecular, cell and developmental biology in the life sciences and the Maria Rowena Ross Term Chair in Cell Biology.

The study was published online ahead of print in Nature Cell Biology on December 15, 2013.

Hair follicle stem cells (HFSC), the tissue-specific adult stem cells that generate the hair follicles, are also the cells of origin for cutaneous squamous cell carcinoma (SCC), a common skin cancer. These HFSCs cycle between periods of activation, during which they can grow, and quiescence, when they remain dormant.

Using mouse models, White and Lowry applied known cancer-causing genes (oncogenes) to HFSCs and found that during cell quiescence, the cells could not be made to initiate SCC. Once the HFSC were in their active period, they began growing cancer.

We found that this tumor suppression via adult stem cell quiescence was mediated by Pten, a gene important in regulating the cells response to signaling pathways, White said, therefore, stem cell quiescence is a novel form of tumor suppression in hair follicle stem cells, and Pten must be present for the suppression to work.

Understanding cancer suppression through quiescence could better inform preventative strategies in patients susceptible to SCC, such as organ transplant patients, or those taking the drug vemurafenib for melanoma, another type of skin cancer. This study also may reveal parallels between SCC and other cancers in which stem cells have a quiescent phase. This research was supported by the California Institute of Regenerative Medicine (CIRM), University of California Cancer Research Coordinating Committee (CRCC) and National institutes of Health (NIH).

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLAs Jonsson Comprehensive Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Read more here:
Adult Stem Cells Found to Suppress Cancer While Dormant

Read More...

UCLA stem cell scientists first to track joint cartilage development in humans

Friday, December 13th, 2013

PUBLIC RELEASE DATE:

12-Dec-2013

Contact: Shaun Mason smason@mednet.ucla.edu 310-206-2805 University of California - Los Angeles

Stem cell researchers from UCLA have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and damage from osteoarthritis.

Such transformative therapies could reach clinical trials within three years, said the scientists from UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research.

The study, led by Dr. Denis Evseenko, an assistant professor of orthopedic surgery and head of UCLA's Laboratory of Connective Tissue Regeneration, was published online Dec. 12 in the journal Stem Cell Reports and will appear in a forthcoming print edition.

Articular cartilage, a highly specialized tissue formed from cells called chondrocytes, protects the bones of joints from forces associated with load-bearing and impact and allows nearly frictionless motion between the articular surfaces the areas where bone connects with other bones in a joint.

Cartilage injury and a lack of cartilage regeneration often lead to osteoarthritis, which involves the degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the U.S., making joint-surface restoration a major priority in modern medicine.

While scientists have studied the ability of different cell types to generate articular cartilage, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.

For the current study, Evseenko and his colleagues used complex molecular biology techniques to determine which cells grown from embryonic stem cells, which can become any cell type in the body, were the progenitors of cartilage cells, or chondrocytes. They then tested and confirmed the growth of these progenitor cells into cartilage cells and monitored their growth progress, observing and recording important genetic features, or landmarks, that indicated the growth stages of these cells as they developed into the cartilage cells.

Continue reading here:
UCLA stem cell scientists first to track joint cartilage development in humans

Read More...

UCLA Scientists First to Track Joint Cartilage Development in Humans

Friday, December 13th, 2013

Contact Information

Available for logged-in reporters only

Newswise Stem cell researchers from UCLAs Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have published the first study to identify the origin cells and track the early development of human articular cartilage, providing what could be a new cell source and biological roadmap for therapies to repair cartilage defects and osteoarthritis. These revolutionary therapies could reach clinical trials within three years.

Led by Dr. Denis Evseenko, assistant professor of orthopedic surgery and head of UCLAs Laboratory of Connective Tissue Regeneration, the study was published online ahead of print in Stem Cell Reports on December 12, 2013.

Articular cartilage is a highly specialized tissue formed from cells called chondrocytes that protect the bones of joints from forces associated with load bearing and impact, and allows nearly frictionless motion between the articular surfaces. Cartilage injury and lack of cartilage regeneration often lead to osteoarthritis involving degradation of joints, including cartilage and bone. Osteoarthritis currently affects more than 20 million people in the United States alone, making joint surface restoration a major priority in modern medicine.

Different cell types have been studied with respect to their ability to generate articular cartilage. However, none of the current cell-based repair strategies including expanded articular chondrocytes or mesenchymal stromal cells from adult bone marrow, adipose tissue, sinovium or amniotic fluid have generated long-lasting articular cartilage tissue in the laboratory.

By bridging developmental biology and tissue engineering, Evseenkos discoveries represent a critical missing link providing scientists with checkpoints to tell if the cartilage cells (called chondrocytes) are developing correctly.

We began with three questions about cartilage development, Evseenko said, we wanted to know the key molecular mechanisms, the key cell populations, and the developmental stages in humans. We carefully studied how the chondrocytes developed, watching not only their genes, but other biological markers that will allow us to apply the system for the improvement of current stem cell-based therapeutic approaches.

This research was also the first attempt to generate all the key landmarks that allow generation of clinically relevant cell types for cartilage regeneration with the highest animal-free standards. This means that the process did not rely on any animal components, thus therapeutic products such as stem-cell serums can be produced that are safe for humans.

Evseenko added that in a living organism more than one cell type is responsible for the complete regeneration of tissue, so in addition to the studies involving generation of articular cartilage from human stem cells, he and his team are now trying different protocols using different combinations of adult progenitor cells present in the joint to regenerate cartilage until the best one is found for therapeutic use.

Excerpt from:
UCLA Scientists First to Track Joint Cartilage Development in Humans

Read More...

Stem Cells | ICMS — Advancing Stem Cell Treatments, Stem Cell …

Saturday, November 16th, 2013

T he International Cellular Medicine Society (ICMS) is an international non-profit dedicated to patient safety through strict evaluation of protocols and rigorous oversight of clinics and facilities engaged in the translation of point-of-care cell-based treatments.As a Professional Medical Association, the ICMS represents Physiciansand Researchersfrom over 35 countries who share a mission to provide Scientifically Credible and Medically Appropriate Treatments to Informed Patients.Join the ICMS.

The ICMS Works Tirelessly for the Clincial Translation of Field of Cell-Based Point-of-Care Treatments through:

Comprehensive Medical Standards and Best Practice Guidelines for Cell Based Medicine,

Strict Evaluation and Rigerous Oversight of Stem Cell Clinics and Facilities through aGlobal Accreditation Process,

Physician Education through daily updates on the latest Research on Stem Cells, the monthly Currents In Stem Cell Medicine and the annual International Congress for Regenerative and Stem Cell Medicine.

Join the ICMSto receive the latest news and research from cell-based medicne, including the bi-monthly publication, Currents in Stem Cell Medicine.

See more here:
Stem Cells | ICMS -- Advancing Stem Cell Treatments, Stem Cell ...

Read More...

Journal of Stem cells & Regenerative Medicine; JSRM- ISSN Number …

Saturday, November 2nd, 2013

The Journal of Stem cells and Regenerative Medicine (JSRM) is a fully free access exclusive Online Journal covering areas of Basic Research, Translational work and Clinical studies in the specialty of Stem Cells and Regenerative Medicine including allied specialities such as Biomaterials and Nano technology relevant to the core subject. This has also been endorsed by the German Society for Stem Cell Research(GSZ).

The JSRM issues are published regularly and articles pertaining to Stem cells and Regenerative Medicine as well as related fields of research are considered for publication

This Online Journal conceived and run by Clinicians and Scientists, originally started for the student community with reputed members in the advisory/editorial boards, has now been accepted to be the official organ of GSZ is reaching millions of Researchers, Cliniciansand Students all over the world, as it is a FREE Journal

Current activities of JSRM

1. Journal issues: will be published online and to subscribers (FREE) extracts will be sent by email 2. Weekly updates on happenings in the Stem Cell World with email updates to subscribers.

NEWS

Read the original post:
Journal of Stem cells & Regenerative Medicine; JSRM- ISSN Number ...

Read More...

Editorial: Philippine Society for Stem Cell Medicine and Philippine Medical Association 1st Midyear Convention to be …

Monday, August 12th, 2013

Two organizations of Filipino medical practitioners - the Philippine Medical Association (PMA) and the Philippine Society for Stem Cell Medicine (PSSCM) - are partnering to come up with ideas to help professionalize and organize the practice of stem cell therapy in the Philippines during their 1st Midyear Convention at the Historic Landmark Manila Hotel on August 12-13, 2013.

With the theme ''Current Status of the Practice of Stem Cell Therapy in the Philippines,'' the convention is expected to take up various issues surrounding stem cell therapy, which, despite the controversies, is increasingly becoming popular for treatment of certain illnesses. Among the scheduled topics for discussion in the convention are Food and Drug Administration Circular on Stem Cell Products, DOH Stem Cell Guidelines, Current Trends on Stem Cell Therapy, Clinical Use of Autologous, Adipose Derived Stem Cells, Photo-Activated Platelet-Rich Plasma for Orthopedic and Rehabilitation Applications, Umbilical Cord Blood and Cord Tissue for Stem Cell Therapy, Stem Cell Therapy in the Philippines other than for Cancer Rejuvenation, and Quality Control in Cell Transplantation.

Administrative Order 2013-0012 issued by the Department of Health (DOH) rules on the practice of stem cell, cell-based therapy, and accreditation of health facilities engaging in the treatment in the Philippines. The Professional Regulation Commission Board of Medicine (PRCBOM) requires foreign doctors wishing to practice stem cell therapy in the country to get a special temporary permit, citing their education, training, and clinical experience.

The PMA, the country's premier medical organization, has 70,000 members in 118 component medical societies, eight specialty divisions, 73 specialty and subspecialty societies, and 39 affiliate societies all over the archipelago, who advocate professional advancement and promote public health. The newly founded PSSCM is composed of physicians doing stem cell therapy and transplant. It is working closely with DOH, PRCBOM, and PMA to regulate the practice of Stem Cell therapy and protect patients.

We congratulate the Philippine Medical Association, headed by its President Dr. Leo O. Olarte, and the Philippine Society for Stem Cell Medicine, led by Dr. Rey Melchor F. Santos, in their coordinative efforts to educate and inform the public on the status of stem cell treatment as a novel medical approach in the Republic of the Philippines. CONGRATULATIONS AND MABUHAY!

Original post:
Editorial: Philippine Society for Stem Cell Medicine and Philippine Medical Association 1st Midyear Convention to be ...

Read More...

Philippine-based group warns on stem cell medicine

Monday, February 25th, 2013

Manila: A Philippine-based group has aired concern over the dangers of stem cell treatment as it warned of the possibility that materials being used for such procedures could have been extracted from hapless donors, particularly human foetuses.

Dr Leo Olarte, spokesman of the Philippine Society for Stem Cell Medicine, said they were alarmed over reports coming locally and from abroad that some stem cell materials were being taken from the unborn.

At the same time he called on the Department of Health to carefully watch stem cell treatment practitioners. The Catholic Church, he said, should unite with health practitioners and put an end to such practices.

Olarte was quoted as saying in reports that allogenic stem cells from aborted foetuses of humans were being exported to the Philippines.

Article continues below

We cannot stand by and merely watch how they exploit people in poverty just to profit while allowing others who are economically well off to benefit from this, he said.

He said there were reports that human stem cells from foetuses and female egg cells were being used in anti-ageing procedures and other medical treatments.

Olarte is also concerned over the sale of supposedly stem cell products that come in the form of injectibles and even soaps.

Dont patronise those products. An example is the stem cell soap. It is unfair that stem cell therapy becomes a quackery, he said.

Earlier, Department of Health Secretary Enrique Ona led a national convention participated in by doctors to discuss the truth behind stem cell therapy.

Read the original post:
Philippine-based group warns on stem cell medicine

Read More...

Welcome to Hillside Animal Hospital – Scottsdale, AZ – Video

Friday, December 28th, 2012


Welcome to Hillside Animal Hospital - Scottsdale, AZ
hillsidepets.com - Call us today at (480) 391-7297. At Hillside Animal Hospital, we are committed to providing the best quality patient care available. We are a full service animal hospital and specialize in General Veterinary Care, Surgical, and Stem Cell Medicine. In addition our facility is equipped with Ultrasound, Digital X-Ray, Endoscopy, and Laprascopic Equipment. Our office is located in Scottsdale, AZ and serves the surrounding communities of Paradise Valley and Fountain Hills.From:HillsideAHViews:0 0ratingsTime:01:35More inPets Animals

Excerpt from:
Welcome to Hillside Animal Hospital - Scottsdale, AZ - Video

Read More...

Hillside Animal Hospital – Short | Scottsdale, AZ – Video

Friday, December 28th, 2012


Hillside Animal Hospital - Short | Scottsdale, AZ
hillsidepets.com - Call us today at (480) 391-7297. At Hillside Animal Hospital, we specialize in Surgical, General Veterinary Care, and Stem Cell Medicine. In addition our facility is equipped with Endoscopy, Digital X-Ray, Ultrasound, and Laprascopic Equipment. We are located in Scottsdale, AZ and serve the surrounding communities of Paradise Valley and Fountain Hills.From:HillsideAHViews:0 0ratingsTime:00:16More inPets Animals

Go here to read the rest:
Hillside Animal Hospital - Short | Scottsdale, AZ - Video

Read More...

Page 16«..10..15161718..»


2025 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick