header logo image


Page 79«..1020..76777879

Archive for the ‘Arthritis’ Category

TiGenix : completes patient enrollment in Phase IIa rheumatoid arthritis study

Wednesday, August 8th, 2012

Regulated information August 8, 2012

TiGenix completes patient enrollment in Phase IIa rheumatoid arthritis study

Leuven (BELGIUM), Madrid (SPAIN) - August 8, 2012 - TiGenix (NYSE Euronext: TIG), the European leader in cell therapy, announced today the completion of patient enrollment in the Company`s Phase IIa study of Cx611, a suspension of expanded allogeneic adult stem cells, in rheumatoid arthritis. The Phase IIa clinical trial is a 53-subject, multicenter, placebo-controlled study in 3 cohorts with different dosing regimens, designed to assess safety, feasibility, tolerance, and optimal dosing. The study is being conducted at 23 centers. The Company believes that this clinical trial can set the stage not only for the further development of Cx611 in RA, but also in a wide range of other autoimmune disorders.

"In addition to the primary endpoints of safety and optimal dosing, we expect this trial to yield a first indication of the duration of the efficacy of Cx611 in this very difficult patient population: the enrolled patients have previously failed to respond to at least two biologicals," said Eduardo Bravo, CEO of TiGenix. "In the trial patients are treated with three injections of Cx611. The six-month follow-up without further dosing should provide us with a truly meaningful result. This is the most advanced stem cell therapy trial in RA in the world, and completing the enrollment on time confirms our leadership position in the field. We anticipate reporting the results of the study no later than April 2013."

About Cx611 for rheumatoid arthritis Cx611 is a suspension of expanded allogeneic adult stem cells derived from human adipose (fat) tissue (expanded Adipose derived Stem Cells or `eASCs`) that is delivered through intra-venous injection for the treatment of rheumatoid arthritis. The objective of the Phase IIa trial is to determine safety, feasibility, tolerance, and optimal dosing. This multicentre, placebo-controlled study has enrolled 53 patients, divided in 3 cohorts with different dosing regimens. There are 23 centers open and the company expects the final results to be available in the first half of 2013.

For more information: Eduardo Bravo Chief Executive Officer eduardo.bravo@tigenix.com

Claudia D`Augusta Chief Financial Officer claudia.daugusta@tigenix.com Hans Herklots Director Investor & Media Relations hans.herklots@tigenix.com +32 16 39 60 97

About TiGenix

TiGenix NV (NYSE Euronext Brussels: TIG)is a leading European cell therapy companywith a marketed product for cartilage repair, ChondroCelect, and a strongpipeline with clinical stage allogeneic adult stem cell programsfor the treatment ofautoimmune and inflammatory diseases.TiGenixis based out of Leuven (Belgium) and has operations in Madrid (Spain), and Sittard-Geleen (theNetherlands). For more information please visitwww.tigenix.com.

Forward-looking information

Go here to read the rest:
TiGenix : completes patient enrollment in Phase IIa rheumatoid arthritis study

Read More...

San Rafael dog gets arthritis relief from stem cell treatment

Monday, August 6th, 2012

Emma, a snow-white German shepherd, has been plagued with arthritis for two years, limping and sometimes crying out in pain. But an innovative new procedure using her own stem cells has helped, her veterinarian and owner say.

"Her joint mobility has improved. I can move her elbows into a flexed position now," said Kristina Hansson, a veterinarian with San Rafael's Northbay Animal Hospital. Hansson injected Emma's own stem cells into 10 of her joints three months ago in a yet-unproven procedure that cost about $2,000, promoted by MediVet America, a Kentucky company.

"We're very pleased," said Arthur Latno of San Rafael, owner of the 9-year-old, 80-pound dog. "She doesn't limp any more and she doesn't cry."

Latno

He is apparently one of the first Marin pet owners to do so. Though there are some practitioners in Marin who use stem cell therapy, it is not yet widespread, according to Andrew Lie, a veterinarian at the East San Rafael Veterinary Clinic and president of the Marin County Veterinary Medical Association.

Lie himself doesn't use the therapy. "Personally, I think I would wait to see more research and studies come out. I think it's a little early

"This (the stem cell procedure) is incredibly promising, but on the other hand there is a lot of homework that needs to be done to determine whether these are valid therapeutic measures," said John Peroni, an associate professor at the University of Georgia College of Veterinary Medicine.

Peroni also chairs the North American Veterinary Regenerative Medicine Association. Peroni himself, along with colleagues at other universities including the University of California at Davis, is engaged in controlled clinical trials involving stem cells and animals. When such trials, peer-reviewed work and long-term studies are published, the effectiveness of the procedures will be easier to determine.

Dogs aren't the only mammals getting stem cell therapy for arthritis. The treatment is being used on humans as well. One example is the Centeno-Schultz Clinic in Broomfield, Colo, which offers a treatment called Regenexx that has received a good deal of media coverage. As with the animal procedure, it involves using a patient's own stem cells.

When the term "stem cells" is used, it brings to mind controversial procedures involving human embryos. In the MediVet procedure, however, the stem cells come from the animal's own body.

Go here to see the original:
San Rafael dog gets arthritis relief from stem cell treatment

Read More...

Tulsa Arthritis walk set for Saturday

Thursday, May 17th, 2012

About 67 million people are expected to have the disease by 2030, he said.

"This is a crisis that's going to get worse," he said.

The local chapter of the Arthritis Foundation will host the 2012 Arthritis Walk on Saturday at the University of Tulsa.

Klippel said prevention is a key part of the foundation's message.

People need walkable cities, parks and biking and jogging lanes available to them if they are going to stay healthy and avoid chronic diseases such as arthritis.

Maintaining a healthy weight is also important to avoiding the disease, he said.

Research into inherited forms of arthritis is ongoing, and researchers also are looking at the use of stem cells to treat the disease, Klippel said.

"The biotech industry is going to be really, really important as we move forward," he said.

The Arthritis Foundation continues to raise awareness of the disease and some of the health access problems that keep people, particularly those in minority populations, from treating it properly, Klippel said.

"There are a lot of people in this country, like Native Americans, that aren't getting the care they need for their arthritis," he said.

See the article here:
Tulsa Arthritis walk set for Saturday

Read More...

Mechanism found connecting metastatic breast cancer and arthritis

Monday, April 2nd, 2012

Public release date: 1-Apr-2012 [ | E-mail | Share ]

Contact: James Hathaway jbhathaw@uncc.ed 704-687-5743 University of North Carolina at Charlotte

New research shows it may be no accident when doctors observe how patients suffering from both breast cancer and arthritis seem to have more aggressive cancer. However, the new-found interaction between the two diseases may also suggest a possible treatment.

A potential relationship between metastatic breast cancer and autoimmune arthritis, as suggested by past epidemiological studies, has led researchers from the University of North Carolina at Charlotte to perform a series of mouse model experiments that appear to confirm the connection.

"Epidemiological studies have implied that breast cancer survival is significantly lower in patients who also had autoimmune arthritis," noted Pinku Mukherjee, Irwin Belk Distinguished Scholar of Cancer Research at UNC Charlotte, whose lab conducted the experiments. "As there is no obvious reason this should be so, we were interested in exploring possible cancer mechanisms that might explain why."

The experiments point to an intimate relationship between mast cells immune system cells that are located in various tissues and that can cause inflammation and metastatic tumors.

In previously published studies, UNC Charlotte cancer researcher Lopamudra Das Roy and her mentor Mukherjee established that breast cancer associated metastases were significantly higher in arthritic mice, with a threefold increase in lung metastases and a twofold increase in bone metastases.

In their most recent work, the researchers found that mast cells and their associated inflammation are present in larger numbers in the bones and lungs of arthritic mice than they are in non-arthritic mice. Their findings point to a relationship between the cKit receptor found on mast cells and the transmembrane stem cell factor (SCF) ligand found on metastatic breast cancer cells. The interaction between SCF and cKit appears to play a critical role in facilitating metastasis.

"We confirmed the relationship we suspected between autoimmune disease and metastastic breast cancer cells," Mukherjee said. "This is an exciting result for us because it confirms an interesting interdependence between cancer metastasis and a specific component of the immune system."

The study results will be presented by Lopamudra Das Roy, Research Assistant Professor at UNC Charlotte, and Mukherjee at the 2012 American Association for Cancer Research Annual Meeting in Chicago at a press conference on April 1.

View original post here:
Mechanism found connecting metastatic breast cancer and arthritis

Read More...

Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine …

Wednesday, March 21st, 2012

SAN DIEGO, CA--(Marketwire -03/21/12)- Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News)

Entest BioMedical Inc. (OTCQB: ENTB.PK - News) (Pinksheets: ENTB.PK - News) and RenovoCyte LLC announced they have treated 8 canine patients of a 10 dog pilot study utilizing Canine Endometrial Regenerative Cells (CERC) licensed from Medistem Inc. (Pinksheets: MEDS.PK - News) in the treatment of canine osteoarthritis.

Previously, Entest announced the treatment of the first canine patient on November 18, 2011. Since that time Entest's McDonald Animal Hospital has treated 8 dogs in its 10 Dog Pilot Study with RenovoCyte. To date, all of the dogs participating in this study have shown dramatic improvement in their mobility and apparent reduction of pain.

Dr. Greg McDonald, Chief Veterinarian at McDonald Animal Hospital, said, "50 million CERC stem cells have been injected intravenously into eight dogs. Each dog selected for this study showed signs of arthritis. Follow-up blood tests, urinalysis and physical exams are now being scheduled for the patients that have already been treated. So far, all these canine patients have shown improvement."

Entest BioMedical Chairman David Koos stated, "Osteoarthritis is considered one of the most common causes of lameness in dogs, occurring in up to 30% of all dogs. It is caused by a deterioration of joint cartilage, followed by pain and loss of range of motion of the joint. We expect this treatment to relieve these animals from the pain associated with arthritis. This has extraordinary possibilities for dogs and may lead the way for human treatment of arthritic pain."

The CERC is a "universal donor" stem cell product that does not require matching with the recipient allowing for the generation of standardized products that can be delivered to the office of the veterinarian ready for injection. This is in stark contrast to current stem cell therapies utilized in veterinary applications which require the extraction, manipulation, and subsequent implantation of tissue from the animal being treated. CERC is the canine equivalent of Medistem's Endometrial Regenerative Cell (ERC). Medistem was recently granted approval from the FDA to initiate a clinical trial in human patients using its ERCs.

"We are extremely pleased with our research relationship with Entest BioMedical. This study of canine pets suffering from naturally occurring osteoarthritis is a better test model than laboratory induced disease because it will give us the opportunity for long term follow up of these patients. RenovoCyte sees this study as part of the supporting documentation that will be needed to obtain FDA approval for widespread usage of this therapy," said Shelly Zacharias, DVM, Director of Veterinary Operations, RenovoCyte, LLC.

A spokesperson for Entest noted the Company is also currently conducting a 10 dog safety study on its immune-therapeutic cancer vaccine for dogs, having treated 3 dogs so far.

About Entest BioMedical Inc.:Entest BioMedical Inc. (http://www.entestbio.com) is a veterinary biotechnology company focused on developing therapies that harness the animal's own reparative / immunological mechanisms. The Company's products include an immuno-therapeutic cancer vaccine for canines (ImenVax). ImenVax is less invasive and less traumatic in treating cancer. Additionally, the Company serves as the contract research organization conducting a pilot study on a stem cell based canine osteoarthritis treatment (developed by RenovoCyte LLC) utilizing a 'universal donor' stem cell. Entest is also building a network of veterinary hospitals (with its initial location in Santa Barbara, CA and anticipates acquiring other veterinary hospitals in California) -- which serve as distribution channels for its products.

DisclaimerThis news release may contain forward-looking statements. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking statements. The risks and uncertainties to which forward-looking statements are subject include, but are not limited to, the effect of government regulation, competition and other material risks.

Go here to read the rest:
Entest BioMedical Excited With Progress on 10 Dog Pilot Study of "Universal Donor" Stem Cell Treatment for Canine ...

Read More...

VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences

Wednesday, March 21st, 2012

SOUTH SAN FRANCISCO, CA--(Marketwire -03/21/12)- VistaGen Therapeutics, Inc. (OTC.BB: VSTA.OB - News) (OTCQB: VSTA.OB - News), a biotechnology company applying stem cell technology for drug rescue and cell therapy, and Vala Sciences, Inc., a biotechnology company developing and selling next-generation cell image-based instruments, reagents and analysis software tools, have entered into a strategic collaboration. Their goal is to advance drug safety screening methodologies in the most clinically relevant human in vitro bioassay systems available to researchers today.

Cardiomyocytes are the muscle cells of the heart that provide the force necessary to pump blood throughout the body, and as such are the targets of most of the drug toxicities that directly affect the heart. Many of these drug toxicities result in either arrhythmia (irregular, often fatal, beating of the heart) or reduced ability of the heart to pump the blood necessary to maintain normal health and vigor.

"Our collaboration with Vala directly supports the core drug rescue applications of our Human Clinical Trials in a Test Tube platform," said Shawn K. Singh, JD, VistaGen's Chief Executive Officer. "Our high quality human cardiomyocytes combined with Vala's high throughput electrophysiological assessment capabilities is yet another example of how we are applying our stem cell technology platform within a strategic ecosystem of complementary leading-edge companies and technologies. We seek to drive our drug rescue programs forward and generate a pipeline of new, cardiosafe drug candidates."

Through the collaboration, Vala will use its Kinetic Image Cytometer platform to demonstrate both the suitability and utility of VistaGen's human pluripotent stem cell derived-cardiomyocytes for screening new drug candidates for potential cardiotoxicity over conventional in vitro screening systems and animal models. VistaGen's validated human cardiomyocyte-based bioassay system, CardioSafe 3D, will permit Vala to demonstrate the quality, resolution, applicability and ease of use of its new instrumentation and analysis software to make information-rich, high throughput measurements and generate fundamentally new insights into heart cell drug responses. Accurate, sensitive and reproducible measurement of electrophysiological responses of stem cell-derived cardiomyocytes to new drug candidates is a key element of VistaGen's CardioSafe 3D drug rescue programs. VistaGen's strategic collaboration with Vala is directed towards this goal.

About VistaGen Therapeutics

VistaGen is a biotechnology company applying human pluripotent stem cell technology for drug rescue and cell therapy. VistaGen's drug rescue activities combine its human pluripotent stem cell technology platform, Human Clinical Trials in a Test Tube, with modern medicinal chemistry to generate new chemical variants (Drug Rescue Variants) of once-promising small-molecule drug candidates. These are drug candidates discontinued due to heart toxicity after substantial development by pharmaceutical companies, the U.S. National Institutes of Health (NIH) or university laboratories. VistaGen uses its pluripotent stem cell technology to generate early indications, or predictions, of how humans will ultimately respond to new drug candidates before they are ever tested in humans, bringing human biology to the front end of the drug development process.

Additionally, VistaGen's small molecule drug candidate, AV-101, is in Phase 1b development for treatment of neuropathic pain. Neuropathic pain, a serious and chronic condition causing pain after an injury or disease of the peripheral or central nervous system, affects approximately 1.8 million people in the U.S. alone. VistaGen is also exploring opportunities to leverage its current Phase 1 clinical program to enable additional Phase 2 clinical studies of AV-101 for epilepsy, Parkinson's disease and depression. To date, VistaGen has been awarded over $8.5 million from the NIH for development of AV-101.

About Vala Sciences

Vala Sciences is a San Diego-based biotechnology company that develops and sells cell-image-based instrumentation, reagents and analysis software tools to academic, pharmaceutical and biotechnology scientists. Vala's IC 200 class of instrumentation, and CyteSeer Automated Image Cytometry software convert labor-intensive qualitative observations of biological changes that can take from days to months, into accurate measurements delivered automatically in minutes.

Cautionary Statement Regarding Forward Looking Statements

Visit link:
VistaGen Therapeutics Enters Strategic Drug Screening Collaboration With Vala Sciences

Read More...

Skin cells turned into neural precusors, bypassing stem-cell stage

Tuesday, January 31st, 2012

ScienceDaily (Jan. 30, 2012) — Mouse skin cells can be converted directly into cells that become the three main parts of the nervous system, according to researchers at the Stanford University School of Medicine. The finding is an extension of a previous study by the same group showing that mouse and human skin cells can be directly converted into functional neurons.

The multiple successes of the direct conversion method could refute the idea that pluripotency (a term that describes the ability of stem cells to become nearly any cell in the body) is necessary for a cell to transform from one cell type to another. Together, the results raise the possibility that embryonic stem cell research and another technique called "induced pluripotency" could be supplanted by a more direct way of generating specific types of cells for therapy or research.

This new study, published online Jan. 30 in the Proceedings of the National Academy of Sciences, is a substantial advance over the previous paper in that it transforms the skin cells into neural precursor cells, as opposed to neurons. While neural precursor cells can differentiate into neurons, they can also become the two other main cell types in the nervous system: astrocytes and oligodendrocytes. In addition to their greater versatility, the newly derived neural precursor cells offer another advantage over neurons because they can be cultivated to large numbers in the laboratory -- a feature critical for their long-term usefulness in transplantation or drug screening.

In the study, the switch from skin to neural precursor cells occurred with high efficiency over a period of about three weeks after the addition of just three transcription factors. (In the previous study, a different combination of three transcription factors was used to generate mature neurons.) The finding implies that it may one day be possible to generate a variety of neural-system cells for transplantation that would perfectly match a human patient.

"We are thrilled about the prospects for potential medical use of these cells," said Marius Wernig, MD, assistant professor of pathology and a member of Stanford's Institute for Stem Cell Biology and Regenerative Medicine. "We've shown the cells can integrate into a mouse brain and produce a missing protein important for the conduction of electrical signal by the neurons. This is important because the mouse model we used mimics that of a human genetic brain disease. However, more work needs to be done to generate similar cells from human skin cells and assess their safety and efficacy."

Wernig is the senior author of the research. Graduate student Ernesto Lujan is the first author.

While much research has been devoted to harnessing the pluripotency of embryonic stem cells, taking those cells from an embryo and then implanting them in a patient could prove difficult because they would not match genetically. An alternative technique involves a concept called induced pluripotency, first described in 2006. In this approach, transcription factors are added to specialized cells like those found in skin to first drive them back along the developmental timeline to an undifferentiated stem-cell-like state. These "iPS cells" are then grown under a variety of conditions to induce them to re-specialize into many different cell types.

Scientists had thought that it was necessary for a cell to first enter an induced pluripotent state or for researchers to start with an embryonic stem cell, which is pluripotent by nature, before it could go on to become a new cell type. However, research from Wernig's laboratory in early 2010 showed that it was possible to directly convert one "adult" cell type to another with the application of specialized transcription factors, a process known as transdifferentiation.

Wernig and his colleagues first converted skin cells from an adult mouse to functional neurons (which they termed induced neuronal, or iN, cells), and then replicated the feat with human cells. In 2011 they showed that they could also directly convert liver cells into iN cells.

"Dr. Wernig's demonstration that fibroblasts can be converted into functional nerve cells opens the door to consider new ways to regenerate damaged neurons using cells surrounding the area of injury," said pediatric cardiologist Deepak Srivastava, MD, who was not involved in these studies. "It also suggests that we may be able to transdifferentiate cells into other cell types." Srivastava is the director of cardiovascular research at the Gladstone Institutes at the University of California-San Francisco. In 2010, Srivastava transdifferentiated mouse heart fibroblasts into beating heart muscle cells.

"Direct conversion has a number of advantages," said Lujan. "It occurs with relatively high efficiency and it generates a fairly homogenous population of cells. In contrast, cells derived from iPS cells must be carefully screened to eliminate any remaining pluripotent cells or cells that can differentiate into different lineages." Pluripotent cells can cause cancers when transplanted into animals or humans.

The lab's previous success converting skin cells into neurons spurred Wernig and Lujan to see if they could also generate the more-versatile neural precursor cells, or NPCs. To do so, they infected embryonic mouse skin cells -- a commonly used laboratory cell line -- with a virus encoding 11 transcription factors known to be expressed at high levels in NPCs. A little more than three weeks later, they saw that about 10 percent of the cells had begun to look and act like NPCs.

Repeated experiments allowed them to winnow the original panel of 11 transcription factors to just three: Brn2, Sox2 and FoxG1. (In contrast, the conversion of skin cells directly to functional neurons requires the transcription factors Brn2, Ascl1 and Myt1l.) Skin cells expressing these three transcription factors became neural precursor cells that were able to differentiate into not just neurons and astrocytes, but also oligodendrocytes, which make the myelin that insulates nerve fibers and allows them to transmit signals. The scientists dubbed the newly converted population "induced neural precursor cells," or iNPCs.

In addition to confirming that the astrocytes, neurons and oligodendrocytes were expressing the appropriate genes and that they resembled their naturally derived peers in both shape and function when grown in the laboratory, the researchers wanted to know how the iNPCs would react when transplanted into an animal. They injected them into the brains of newborn laboratory mice bred to lack the ability to myelinate neurons. After 10 weeks, Lujan found that the cells had differentiated into oligodendroytes and had begun to coat the animals' neurons with myelin.

"Not only do these cells appear functional in the laboratory, they also seem to be able to integrate appropriately in an in vivo animal model," said Lujan.

The scientists are now working to replicate the work with skin cells from adult mice and humans, but Lujan emphasized that much more research is needed before any human transplantation experiments could be conducted. In the meantime, however, the ability to quickly and efficiently generate neural precursor cells that can be grown in the laboratory to mass quantities and maintained over time will be valuable in disease and drug-targeting studies.

"In addition to direct therapeutic application, these cells may be very useful to study human diseases in a laboratory dish or even following transplantation into a developing rodent brain," said Wernig.

In addition to Wernig and Lujan, other Stanford researchers involved in the study include postdoctoral scholars Soham Chanda, PhD, and Henrik Ahlenius, PhD; and professor of molecular and cellular physiology Thomas Sudhof, MD.

The research was supported by the California Institute for Regenerative Medicine, the New York Stem Cell Foundation, the Ellison Medical Foundation, the Stinehart-Reed Foundation and the National Institutes of Health.

Recommend this story on Facebook, Twitter,
and Google +1:

Other bookmarking and sharing tools:

Story Source:

The above story is reprinted from materials provided by Stanford University Medical Center. The original article was written by Krista Conger.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

E. Lujan, S. Chanda, H. Ahlenius, T. C. Sudhof, M. Wernig. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1121003109

Note: If no author is given, the source is cited instead.

Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.

More here:
Skin cells turned into neural precusors, bypassing stem-cell stage

Read More...

HIV/AIDS: Advancing Stem Cell Therapies: 2011 CIRM Grantee Meeting – Video

Sunday, January 15th, 2012

09-11-2011 13:11 Paula Cannon speaks at the 2011CIRM Grantee Meeting about a stem cell-based therapy for HIV/AIDS. Cannon is a co-principle investigator on a disease team that has the goal of engineering a person's own bone marrow to make the cells resistant to HIV

See the rest here:
HIV/AIDS: Advancing Stem Cell Therapies: 2011 CIRM Grantee Meeting - Video

Read More...

Platelet Rich Plasma for hair loss with or without Hair Transplant – Video

Wednesday, November 23rd, 2011

Dr Michael Markou, DO is interviewed by the news about utilizing platelet rich plasma containing stem cells for hair restoration in clearwater florida. 1877414HAIR http://www.markoumedical.com

The rest is here:
Platelet Rich Plasma for hair loss with or without Hair Transplant - Video

Read More...

Stem cell treatment by Adiva Health Care India after Spinal Cord Injury – Video

Wednesday, November 23rd, 2011

Shareef Danish, Country- Bahrain, My name is Shareef Danish, 29 years old. I had a car accident in 2009, April. I broke my Spinal cord and I lost my sensation and movement in the legs.

Read the rest here:
Stem cell treatment by Adiva Health Care India after Spinal Cord Injury - Video

Read More...

Treating Adult Artritis with Stem Cells Shows Incredible Promise

Tuesday, June 29th, 2010

Arthritis Patient Successfully Treated With Fat Stem Cells Tells His Story

SAN DIEGO, CA--(Marketwire - June 28, 2010) - Medistem Inc. (PINKSHEETS: MEDS). Medistem collaborator Dr. Jorge Paz Rodriquez was invited to give a talk at Del Mar College in Texas by arthritis patient Dusty Durrill. The patient described a profound recovery after treatment with stem cells from his own fat tissue. Mr Durrill underwent a procedure in which a small amount of fat tissue was extracted by liposuction, stem cells where purified, and subsequently injected intravenously.

This procedure has been used successfully to treat thousands of animals suffering from arthritis in the United States (www.vet-stem.com). Use of patient's own stem cells is currently being performed in the United States (www.regenexx.com). Recently Dr. Paz published a paper describing scientific mechanisms of this treatment in collaboration with scientists from the University of California San Diego, University of Western Ontario, and Medistem Inc (Ichim et al. Autologous stromal vascular fraction cells: A tool for facilitating tolerance in rheumatic disease. Cell Immunol. 2010 Apr 8).

"I had treatment for my arthritis, I was not wheelchair bound but I was getting there... after stem cell treatment my arthritis symptoms disappeared," stated Mr. Durrill.

More than 200 people attended the lecture including the general public, patients and medical doctors. The lecture was focused on US and European clinical trials supporting the use of adult stem cells in conditions ranging from multiple sclerosis, to heart failure, to diabetes. A video of part of the lecture is available at http://www.kiiitv.com/younews/97165699.html.

Dr. Paz commented, "Mr. Durrill suffered from arthritis for more than ten years with severe pain in both knees and hips. He had difficulty standing and limited mobility. After stem cell therapy he started showing significant reduction in pain. Now about a month after therapy he is pain free and can move around easily."

Drs. Robert Harman, CEO of Vet-Stem and Thomas Ichim, CEO of Medistem, recently released a video discussing their publication on fat stem cell therapy for arthritis. The video is available at http://www.youtube.com/watch?v=3QQrwtp-KQQ.

About Medistem Inc.

Medistem Inc. is a biotechnology company developing technologies related to adult stem cell extraction, manipulation, and use for treating inflammatory and degenerative diseases. The company's lead product, the endometrial regenerative cell (ERC), is a "universal donor" stem cell being developed for critical limb ischemia. A publication describing the support for use of ERC for this condition may be found at http://www.translational-medicine.com/content/pdf/1479-5876-6-45.pdf

Cautionary Statement

This press release does not constitute an offer to sell or a solicitation of an offer to buy any of our securities. This press release may contain certain forward-looking statements within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements are inherently subject to risks and uncertainties, some of which cannot be predicted or quantified. Future events and actual results could differ materially from those set forth in, contemplated by, or underlying the forward-looking information. Factors which may cause actual results to differ from our forward-looking statements are discussed in our Form 10-K for the year ended December 31, 2007 as filed with the Securities and Exchange Commission.

Read More...

Page 79«..1020..76777879


2024 © StemCell Therapy is proudly powered by WordPress
Entries (RSS) Comments (RSS) | Violinesth by Patrick