Theres news today that Bluebird has suspended its gene therapy work on sickle cell disease because of two cases of cancer in its treatment population. Another had been reported in 2018, so that takes us to two cases of myelodysplastic syndrome and one case of myeloid leukemia (which can be a sequel of MDS in some cases). This isnt good. Youll note that all of these are diseases of the bone marrow, and the marrow is where a good deal of the action in this sort of gene therapy takes place.
There are several companies working in this space, and its no coincidence. Sickle cell anemia is the absolute prototype of a genetically linked disorder, famously first identified in 1949 by Linus Pauling and co-workers. That paper termed it a molecular disease, and Pauling certainly deserves the credit he gets as a founder of molecular biology. Both sickle cell and the conceptually related beta-thalassemias are defects in the production of hemoglobin, and it has been obvious for decades that if you could somehow yank the defective gene out of the patients and replace it with a normal sequence that they simply wouldnt have these conditions any more.
There are by now plenty of other genetic disorders that fall into the same category, but these blood-cell based ones have a unique feature that has put them into the forefront of actual attempts at gene therapy. In these cases, all the relevant cells come from the same tissue, the bone marrow. And we actually have ways to kill that off and to swap in new tissue of our choosing: a bone marrow transplant. It is a tough procedure to go through, for sure, but not as tough as living a life of acute sickle cell attacks (or being killed off early by rampaging leukemia, to pick another application).
Contrast that with so many other gene-linked disorders take Huntingtons, for example. We know the gene for that one, and the protein it codes for, and it is equally obvious that if you could magically yank out that gene from a patient and insert the normal one for the Htt protein that they would no longer have the disease. But there is no analogous procedure for killing off the basal ganglia of the brain and replacing it with new neuronal tissue. Not quite. No, bone marrow based disorders are a unique opportunity, and thats why so much effort has gone into this area.
Its a similar situation to the way that therapeutic RNAs have been aimed at liver disorders. In that case, youre not wiping out the old cell population but rather trying to overwhelm it in situ, and the liver is chosen because we dont really know how to make i.v. dosed RNA species accumulate anywhere else. So we make do with what we have and turn the Liver Problem into the Liver Advantage. If we ever get to the point of treating Huntingtons at a genetic level, its surely going to be via a similar rework-things-in-situ method as well, but figuring out to do that in only the desired regions of the brain without causing trouble elsewhere is quite a challenge youve lost the Liver Advantage.
Now, Bluebird. They have been using a lentivirus vector to rewrite the bone marrow transplant tissue, and theres a solid reason for that. Lentiviruses (of which HIV is the most famous/infamous example) insert their genetic payloads into the host cells DNA. Its their key step, and they can do it even on non-dividing cells. Now, when a person hears viral vector these days, the thought is immediately of vaccines, and that takes us to the worry that the vaccines aimed at the COVID-19 pandemic will do things to our DNA. But were not using lentiviruses for the viral-vector vaccines were using adenoviruses, because those explicitly do not work by inserting genes into host DNA. Thats also a feature of the mRNA vaccines: messenger RNA is not incorporated into our DNA. Those two species are constantly working in close proximity in living cells and theres a huge pile of optimized protein machinery to keep them from getting crossed in that fashion. Nor does a messenger RNA sequence get turned back into DNA and inserted that way. Every cell has hundreds of thousands of mRNA molecules in it at any given time, and things would come to a catastrophic halt if these started getting reversed back into DNA sequences. (Our cells do have some RNA-to-DNA machinery in them, but it doesnt work like that).
But for gene therapy, the opposite considerations apply you most certainly want to insert new genes into human DNA, and you want it done quickly, efficiently, and right where you tell it to go. That last part is always the worry with any gene-insertion technique, be it some variety of CRISPR, zinc-finger nucleases, lentivirus vectors or what have you. This is one of the main reasons the human-editing experiment in China was so amazingly irresponsible, because our control over such things in a human embryo is just not acceptable yet. Not even close.
In fact, its tricky enough just in the stem cells pulled out of bone marrow. Thats one possibility for what Bluebird is seeing that when they treated the patients extracted cells with their lentivirus vector, that some of the hemoglobin genetic data got mishandled and plopped into the wrong stretch of DNA, demolishing some other important genes function in the process. You can be sure that theyre sequencing the abnormal blood cells from these patients now to see if this shows up. The MDS patient from 2018 turned out not to have this problem, so its possible that these two just reported dont, either. So whats the problem, if not that?
Well, as mentioned, bone marrow transplantation is a grueling process no matter what. The process of (either mostly or completely) wiping out a persons bone marrow stem cells involves severe treatments mixing chemotherapy with radiation, and one of the compounds used (and used by Bluebird) is called busulfan. The organic chemists in the crowd will find that one interesting: its the bis-mesylate of 1,4-butanediol, nothing more and nothing less, and if the thought of taking a reactive small molecule like that intravenously gives you the shivers, well, welcome to chemotherapy and get ready for some stuff thats even worse. The thing is, busulfan itself is a Class I carcinogen (as one would expect from its structure). Many older chemotherapy agents are. They are destructive to cells, and the only way you would take any of them is if you have a population of cells that you actually want to see destroyed, and you are willing to take your chances that you can bear up under the collateral damage of doing that. So its certainly possible that the leukemia seen in Bluebirds patients is at least partly driven by the bone marrow transplantation procedure rather than the gene alteration part. In case youre wondering, this could well be happening with some bone marrow transplant patients who undergo this whole procedure to treat leukemia itself, in which case it lands silently in the relapsed category. No, you only do bone marrow transplants when theres no alternative.
As that first link in todays post (Adam Feuerstein at STAT) mentions, though, theres ongoing research to make that part of the process less risky. Survival rates for bone marrow transplants in general have steadily improved over the years, and everyone knows that one of the rough parts is the pre-treatment. But that problem might or might not get solved in time to help out Bluebird (or to quell the worries that other gene-therapy outfits might have who are also targeting that hematopoietic tissue). If indeed its the problem in the first place. . .
Read the original here:
Cancer and Gene Therapy | In the Pipeline - Science Magazine
- Gene therapy research offers hope for people with chronic kidney disease - Medical Xpress - January 6th, 2025
- Sangamo Therapeutics to Regain Full Rights to Hemophilia A Gene Therapy Program Following Pfizers Decision to Cease Development of Giroctocogene... - January 6th, 2025
- JCR Pharmaceuticals and Modalis Therapeutics Announce Transition to the Next Phase of Joint Research Agreement for Development of Novel Gene Therapy -... - January 6th, 2025
- Gene therapy targets the retina to treat eye disease - Nature.com - January 6th, 2025
- Sangamos Stock Plummets as Pfizer Axes Hemophilia Gene Therapy Pact - BioSpace - January 6th, 2025
- How Increased Use of Gene Therapy Treatment for Sickle Cell Disease Could Affect the Federal Budget - Congressional Budget Office - January 6th, 2025
- The Future of Regulatory Processes in Cell and Gene Therapy - Pharmaceutical Executive - January 6th, 2025
- CGTLive's 2024 Pillars of Progress: Most-Watched Conference Interviews - CGTLive - January 6th, 2025
- Pfizer cuts losses on near-approval hemophilia gene therapy, adding to troubled Sangamo's woes - Fierce Biotech - January 6th, 2025
- JCR Pharmaceuticals and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- JCR and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- Novartis Gene Therapy Shows Promise in Treating SMA - Yahoo Finance - January 6th, 2025
- Gene Therapy Market to Hit Valuation of US$ 42.26 Billion By 2033 | Astute Analytica - Yahoo Finance - January 6th, 2025
- Novartis gene therapy helps children with rare muscle disorder in study - Reuters - January 6th, 2025
- Capricor Puts Rolling BLA for DMD Cardiomyopathy Cell Therapy Deramiocel in Front of the FDA - CGTLive - January 6th, 2025
- Positive data could expand use of Novartis gene therapy for SMA - Yahoo Finance - January 6th, 2025
- Sangamo spirals after Pfizer halts hemophilia A gene therapy partnership - MM+M Online - January 6th, 2025
- Cell Therapy and Gene Therapy CDMO Market to Reach USD 11.11 Billion by 2030 | Discover Growth Trends and Insights | Valuates Reports - PR Newswire - January 6th, 2025
- Struggling With Adoption, Sickle Cell Gene Therapy Manufacturers Embrace CMS Model - News & Insights - January 6th, 2025
- Sangamo Therapeutics to Regain Rights to Gene Therapy Program from Pfizer - Contract Pharma - January 6th, 2025
- Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ... - December 28th, 2024
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024
- Muscular Dystrophy Association and Coalition to Cure - GlobeNewswire - December 19th, 2024
- Atsena Therapeutics Announces Dosing Completed in Part A of - GlobeNewswire - December 19th, 2024
- 'A milestone moment': Roswell Park celebrates opening New York's first cell and gene therapy hub - WKBW 7 News Buffalo - December 19th, 2024
- Gene therapy to prevent stillbirth and premature delivery developed - News-Medical.Net - December 19th, 2024
- Breaking through the blood-brain barrier - Science - December 19th, 2024
- Cell therapy weekly: partnerships for advancing cell and gene therapies - RegMedNet - December 19th, 2024
- Roswell Park Opens Cell, Gene Therapy Hub - WGRZ.com - December 19th, 2024
- Cartherics gets $300k grant to advance Cell and Gene Therapy development - ETHealthWorld - December 19th, 2024
- ELMCRx Solutions Offers Cell & Gene Therapy Support Through Partnership with Emerging Therapy Solutions (ETS) - Business Wire - December 19th, 2024
- Fueling the Future of Gene Therapies with Manufacturing Innovation, Upcoming Webinar Hosted by Xtalks - PR Web - December 19th, 2024
- Concinnity secures 3M Seed funding to advance AI-driven gene therapy safety - Tech.eu - December 19th, 2024
- Viral Vectors-Based Gene Therapy for Non-Human Primates Market to Reach Over USD 92.76 Million by 2034 - EIN News - December 19th, 2024
- The pharma industry's silence on RFK Jr., and efforts by parents to develop gene therapies for their children - STAT - December 19th, 2024
- Tenaya reports positive early data on heart gene therapy - Investing.com - December 19th, 2024
- Unraveling The Complexity Of Cell Therapy: Advancements And Challenges - Life Science Leader Magazine - November 27th, 2024
- Novartis wagers more than $1B on gene therapies for the nervous system - BioPharma Dive - November 27th, 2024
- Gene therapy for geographic atrophy in age-related macular degeneration: current insights - Nature.com - November 27th, 2024
- Novartis buys gene therapy startup Kate Therapeutics, joining pursuit of muscular dystrophy treatment - STAT - November 27th, 2024
- At MGB's gene therapy institute, effort to win first venture capital investments continues - The Business Journals - November 27th, 2024
- Neurogene reports death of Rett patient left in critical condition by high dose of gene therapy - Fierce Biotech - November 27th, 2024
- Alzheimer Disease Awareness Month 2024: Looking Back at a Year of Progress in Cell and Gene Therapy - CGTLive - November 27th, 2024
- Why This Gene-Therapy Companys Stock Is Rising 228% - Yahoo! Voices - November 27th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 27th, 2024
- RNA editing is the next frontier in gene therapy heres what you need to know - The Conversation - November 27th, 2024
- Assessment of gene therapy viral vectors in RPE cells - News-Medical.Net - November 27th, 2024
- Retinal organoids and RPE models for retinal gene therapy development - News-Medical.Net - November 27th, 2024
- China Vows to Bolster Gene Therapy Research in Key Biotech Hub - Bloomberg - November 27th, 2024
- Gene Therapy - Volume 31 Issue 11-12, November 2024 - Nature.com - November 27th, 2024
- Iovance Biotherapeutics Announces the Promotion of Raj Puri, M.D., Ph.D. to Chief Regulatory Officer - GlobeNewswire - November 27th, 2024
- Patient Dies in Gene Therapy Trial, But FDA Permits Neurogene to Proceed With Low Dose - MedCity News - November 27th, 2024
- New CRISPR system pauses genes, rather than turning them off permanently - Livescience.com - November 27th, 2024
- Liver-targeting gene therapy lowers mice whole-body SMA symptoms - SMA News Today - November 27th, 2024
- Bright breakthroughs: Real stories of beating rare disease - Science - November 27th, 2024
- Sarepta Therapeutics Announces Global Licensing and Collaboration Agreement with Arrowhead Pharmaceuticals for Multiple Clinical and Preclinical siRNA... - November 27th, 2024