It has long been understood, and by cultures too various to list, that salamanders have something of the supernatural about them.
Their name is thought to derive from an ancient Persian vocable meaning 'fire within', and for at least 2,000 years they were believed to be impervious to flames, or even capable of extinguishing them on contact. Aristotle recorded this exceptional characteristic, as did Leonardo da Vinci. The Talmud advises that smearing salamander blood on your skin will confer inflammability. Not so. But the intuition that salamanders possess fantastical powers is not unfounded.
Like earthbound immortals, salamanders regenerate. If you cut off a salamander's tail, or its arm, or its leg, or portions of any of these, it will not form a stump or a scar but will instead replace the lost appendage with a perfect new one, an intricacy of muscle, nerve, bone and the rest. It will sprout like a sapling. Science has been chopping up salamanders for more than 200 years with the aim of simply understanding the mechanics of their marvels, but more recently with the additional aim of someday replicating those marvels in ourselves. Might salamanders be the great hope of regenerative medicine?
The salamander in which regeneration is most often studied is an odd and endearingly unattractive Mexican species known as the axolotl. In addition to its limbs and extremities, the axolotl is known to regrow its lower jaw, its retinae, ovaries, kidneys, heart, rudimentary lungs, spinal cord, and large chunks of its brain. It heals all sorts of wounds without scarring. The axolotl also integrates the body parts of its fellows as if they were its own, without the usual immune response, and this peculiar trait has facilitated some of the more grotesque disfigurements it's endured in the name of science. In experiments after the Second World War, East German scientists grafted small axolotls crosswise through the backs of larger ones. The animals' circulatory systems came to be linked, and the researchers hailed the conjoined mutants as triumphs of collectivism. While the axolotl can rebound from almost any bodily humiliation, it seems that humankind is proving too much for it: we have all but destroyed its natural habitat, and, outside of laboratory aquaria, it is nearly extinct.
In its most common form, which scientists call the white mutant, the axolotl resembles what the translucid foetus of a cross between an otter and a shortfin eel might look like. On the internet, it is celebrated for its anthropoid smile; in Mexico, where the Aztecs once hailed as it as a godly incarnation, it is an insult to say that someone looks like one. Behind its blunt and flattened head extends a distended torso resolving into a long, ichthyic tail. The axolotl can grow to nearly a foot in length; four tiny legs dangle off its body like evolutionary afterthoughts. It wears a collar of what seem to be red feathers behind each cheek, and these ciliated gill stalks float and tremble and gently splay in the water, like the plumage in a burlesque fan. They grow back if you cut them off, too. Precisely how the animal accomplishes this, or any of its feats of regrowth, is not well understood.
Like the axolotl, our evolutionary forebears seem to have been regenerators, and human children can in fact still regrow the tips of their fingers above the final joint, but that's the only complex regeneration we're known to do. We are, instead, a species that scars. Why our lineage lost its regenerative birthright is unclear. From our present evolutionary vantage point, however, it might be nice to get back what we lost. Amputees could recover their limbs; paralytics could walk; degeneration and decline of all sorts might be reversed.
Last year, after a long effort by an international consortium, the axolotl genome 10 times the length of the human genome was finally sequenced. In early 2019, it was mapped onto chromosomes by a team at the University of Kentucky. (It is, for the moment, the longest genome ever sequenced by far.) Jessica Whited, who heads an axolotl lab at Harvard Medical School, told me that, for those who hope to someday make regeneration available to human medicine, the axolotl is a perfect instruction manual. Its language simply needs decoding.
Regeneration is not, however, the axolotl's only biological extravagance, or prime mystery. Another puzzle of the axolotl concerned what it was. Most salamanders begin their lives as aquatic larvae, like tadpoles, before metamorphosing into terrestrial adults, but the axolotl seems to be a lifelong adolescent, the so-called 'Peter Pan of salamanders', remaining in its larval stage even as it arrives at sexual maturity. This retention of juvenile traits, a phenomenon known as neoteny, perplexed taxonomists, and for decades they debated whether it ought to be considered a species of its own or merely the larval form of the common tiger salamander. Confoundingly, on occasion the axolotl could be goaded (under what conditions remains unclear) into a final transformation, absorbing its gills and fins, and walking out of the water. In biological terms, the scale of this change is akin to a middle-aged human one day broadening her shoulders, lurching forward on her hands and loping off to the jungle to be a gorilla. In France, the Grand Dictionnaire Universel du XIXe sicle (1866) declared the axolotl 'the most imperfect, the most degraded of all the amphibians': a fallen creature, but also one that could accede, as if by grace, to a higher state of being.
Humans are attuned to this sort of qualified possibility. In 1920, the British biologist Julian Huxley found that he could cause axolotls to metamorphose by feeding them bits of sheep thyroid. The Daily Mail declared that Huxley had discovered 'The Elixir of Life'. Huxley's younger brother, the writer Aldous, adopted the axolotl as a metaphor for mankind, its peculiar neoteny an emblem of our incompletion, our frustrated potentiality. A number of his literary contemporaries became neoteny-boosters. Gerald Heard, the philosophising scholar, maintained in 1941 that the survival of mankind would depend upon individuals 'who manage to retain, with full mental stature, the radical originality and freshness of a vigorous child'; John Dewey and Timothy Leary held similar views. More recently, the Mexican sociologist Roger Bartra has proposed the axolotl, in its neotenous indeterminacy, as a symbol of his country's national character.
If the axolotl mirrors us so nicely, it's fitting that we, too, are neotenous. Our flat faces, small noses, hairless bodies and upright postures are all features of infancy in our evolutionary cousins and forebears. We also spend more of our lives in a juvenile state than any other primate. Our brains grow rapidly for a longer period, and are consequently larger; our childhoods are greatly extended, providing occasion for the lengthy training of those brains. We also maintain throughout our lives a 'remarkable persistent juvenile characteristic of investigative curiosity', in the words of the zoologist Konrad Lorenz. 'The constitutive character of man,' Lorenz wrote in 1971, 'is a neotenous phenomenon.'
Some affinity seems to have drawn us to the salamander since well before we fantasised in a serious way of regrowing our bodies how the salamander regrows its own. Perhaps this is what spurred the ancients and the Aztecs to ennoble the animals through mythology. Nowhere has the intuition of kinship been rendered more plainly, though, than in the Argentinian surrealist Julio Cortzar's short story 'Axolotl' (1952). Cortzar writes of one man's quiet obsession with the animals, whom he visits every day at an aquarium. 'After the first minute I knew that we were linked,' the man says, 'that something infinitely lost and distant kept pulling us together.' He watches through the glass tank until, one day, almost imperceptibly, he finds himself suspended in the water beside the creatures, transmuted into one of them, peering out at his former human soma peering in. 'Only one thing was strange: to go on thinking as usual,' the erstwhile man says, 'to know.'
This article was originally published at Aeon and has been republished under Creative Commons. Read the original article.
From Your Site Articles
Related Articles Around the Web
Read this article:
Can the axolotl teach us to regenerate? - Big Think
- Navigating the hope and hype of regenerative medicine - October 14th, 2024
- Cell and Gene Therapy Investment Ticks Up After Hard Few Years - BioSpace - October 14th, 2024
- Crackdowns on Unproven Stem Cell Therapies Worked Abroad - Medpage Today - October 14th, 2024
- How Regenerative Medicine can help you get out of pain without surgery - WJLA - October 14th, 2024
- Regenity Biosciences Receives 510(k) Clearance for RejuvaKnee, a Groundbreaking Regenerative Meniscus Implant Device to Redefine the Standard of Care... - October 14th, 2024
- Buy, Sell, Hold: Cell and Gene Therapy - BioPharm International - October 14th, 2024
- Mayo Clinic offers unique regenerative medicine procedure for knee and ... - September 13th, 2024
- Regenerative Medicine to the Rescue - Cleveland Clinic - September 13th, 2024
- Regenerative medicine applications: An overview of clinical trials - September 13th, 2024
- The Progression of Regenerative Medicine and its Impact on Therapy ... - September 13th, 2024
- Immune cell injection significantly boosts healing of bone, muscle & skin - September 13th, 2024
- Regenerative Medicine Foundation - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT ... - September 13th, 2024
- Tissue engineering and regenerative medicine approaches in colorectal ... - September 13th, 2024
- Tubular scaffolds boost stem cell-driven bone regeneration in skull defects - Phys.org - September 13th, 2024
- Finding the right path(way) to reduce fat accumulation in the liver - Medical University of South Carolina - September 13th, 2024
- NAMRU EURAFCENT Signs Agreement with Egypt Center for Research and Regenerative Medicine - DVIDS - September 13th, 2024
- BridgeBio Receives FDAs Regenerative Medicine Advanced Therapy (RMAT) Designation for BBP-812 Canavan Disease Gene Therapy Program - StockTitan - September 13th, 2024
- BioNexus Gene Lab Corp. Signs Strategic Partnership MOU with Shenzhen Rongguang Group to Advance Cancer Screening, Precision Medicine, and... - September 13th, 2024
- Neurona Therapeutics Receives $3.8 Million CIRM Grant for the Development of Next Generation Neural Cell Therapy Candidate - Yahoo Finance - September 13th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 13th, 2024
- Cellino Awarded $25M in Funding from the Advanced Research Projects Agency for Health (ARPA-H) - Business Wire - September 13th, 2024
- HepaTx Enters Collaboration with Mayo Clinic to Advance Cell Therapy Technology for Liver Disease to Clinical Trials - Longview News-Journal - September 13th, 2024
- Obsidian Therapeutics Receives FDA Regenerative Medicine Advanced Therapy (RMAT) Designation for OBX-115 for the Treatment of Advanced Melanoma -... - September 4th, 2024
- Regenerative Medicine in Orthopedic Surgery: Expanding Our Toolbox - Cureus - September 4th, 2024
- Somite.ai takes pre-seed to $10M as it eyes to become the OpenAI of stem cell biology - CTech - September 4th, 2024
- Longeveron Announces Positive Type C Meeting with U.S. FDA Regarding Pathway to BLA for Lomecel-B in Hypoplastic Left Heart Syndrome (HLHS) - Yahoo... - September 4th, 2024
- Study Explores Potential Of 3D Printed Regenerative Breast Implants - Forbes - September 4th, 2024
- Nikon Announces New Image Analysis Functions to Empower Drug Discovery Research for Cancer, Neurological Disease, and Regenerative Medicine - PR... - September 4th, 2024
- Trinity researcher scores 800,000 to boost regenerative medicine - SiliconRepublic.com - September 4th, 2024
- Seeing the future: Zebrafish regenerates fully functional photoreceptor cells and restores its vision - EurekAlert - September 4th, 2024
- Regenerative Medicine Industry Projected to Surge to USD 73,084.2 Million by 2033, Growing at an 18.5% CAGR - Future Market Insights - September 4th, 2024
- What is regenerative medicine? | Northwell Health - July 2nd, 2024
- Science Saturday: A regenerative reset for aging - July 2nd, 2024
- Science Saturday: A year of new directions and advancements for ... - March 29th, 2024
- Diverse ways regenerative medicine is advancing health care - March 29th, 2024
- Stem cell-based regenerative medicine - PMC - National Center for ... - February 27th, 2024
- Regenerative medicine | NIST - February 10th, 2024
- San Jose blood stem cell donor meets 15-year-old whose life he saved in Los Angeles - The Mercury News - May 17th, 2023
- Regenerative medicine: Current therapies and future directions - April 23rd, 2023
- What Is Regenerative Medicine? | Goals and Applications | ISCRM - April 23rd, 2023
- Important Patient and Consumer Information About Regenerative Medicine ... - April 23rd, 2023
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 23rd, 2023
- About Regenerative Medicine - Center for Regenerative ... - Mayo Clinic - April 7th, 2023
- Regenerative Medicine | National Institutes of Health (NIH) - April 7th, 2023
- Porcine Vaccine Market is estimated to be US$ 4.41 billion by 2030 with a CAGR of 7.50%during the forecast - EIN News - April 7th, 2023
- Advancing Safe and Effective Regenerative Medicine Products - March 21st, 2023
- Active Wound Care Market Rising demand for Skin Substitutes to boost the industry (2023-2033) | CAGR of 5.5% - EIN News - March 21st, 2023
- Veterinary Orthopedic Implants Market is estimated to be 421.3 Million by 2029 with a CAGR of 5.3% - By PMI - EIN News - March 21st, 2023
- ASKA Pharmaceutical : February 7 2023 EME and ASKA Announce Collaboration Agreement on Creating Novel PharmaLogical VHH to address an unmet medical... - February 8th, 2023
- A Look At Some Of The Companies Innovating In the Cutting-Edge Regenerative Medicine Field - Yahoo Finance - October 15th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 15th, 2022
- The Alliance for Regenerative Medicine Announces Election of 2023 Officers, Executive Committee, and Board of Directors - GlobeNewswire - October 15th, 2022
- Mathematical model could bring us closer to effective stem cell therapies - Michigan Medicine - October 15th, 2022
- 'We have to find a way': FDA seeks solutions to aid bespoke gene therapy - BioPharma Dive - October 15th, 2022
- American Academy of Stem Cell Physicians to Offer Licensed Physicians Board Examination in Regenerative Medicine - GlobeNewswire - October 15th, 2022
- Discover Medical Advances in Cellular Therapy Research Using Cord Blood for Cancer, HIV, Cerebral Palsy and Autism During World Cord Blood Day 2022 -... - October 15th, 2022
- The Risk-Reward Proposition for CGT Clinical Trials - Applied Clinical Trials Online - October 15th, 2022
- Cell therapy weekly: Ray Therapeutics and Forge Biologics expand partnership - RegMedNet - October 15th, 2022
- FDA Expands Oversight of Cell and Gene Therapies - Pharmaceutical Technology Magazine - October 15th, 2022
- Frequency Therapeutics Completes Enrollment of Phase 2b Study of FX-322 for the Treatment of Sensorineural Hearing Loss - Business Wire - October 15th, 2022
- The Health Benefits Of Sea Moss, According To Experts - Forbes - October 15th, 2022
- ProKidney Announces Multiple Abstracts Selected for Presentation at the American Society of ... - The Bakersfield Californian - October 15th, 2022
- Pain Management & Regenerative Medicine Specialists DFW - September 4th, 2022
- Tissue Engineering and Regenerative Medicine - National Institute of ... - September 4th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry AMD - National Institutes of Health (.gov) - September 4th, 2022
- International Stem Cell and Regenerative Medicine Research and Therapeutic Center in Egypt - Construction Review - September 4th, 2022
- Regenerative Medicine Market to Garner Bursting Revenues [+USD 27.29 Billion] with Top Growing Companies During 2022-2029 - eTurboNews | eTN - September 4th, 2022
- Immusoft Takes First-Ever Engineered B Cell Therapy into Clinic - BioSpace - September 4th, 2022
- Addressing Diversity Barriers to Regenerative Medicine Free Press of Jacksonville - Jacksonville Free Press - September 4th, 2022
- TikoMed's ILB mobilizes and modulates key growth factors that trigger a cascade of neuroprotective mechanisms able to target all... - September 4th, 2022
- Frequency Therapeutics to Participate in September Investor and Medical Conferences - Business Wire - September 4th, 2022
- Can the immortal jellyfish teach us how to reverse aging? - Earth.com - September 4th, 2022
- Applied StemCell Announces the Expansion of its cGMP Manufacturing Facility to Support Cell and Gene Therapy - Business Wire - September 4th, 2022
- Omega Therapeutics Announces Appointment of Rainer Boehm to its Board of Directors - PR Newswire - September 4th, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 4th, 2022
- Regenerative Medicine Partnering 2015 to 2022: Terms and Agreements Entered Into by the Leading Companies Worldwide - ResearchAndMarkets.com -... - August 19th, 2022
- Pain Relief Treatments: The Benefits of Regenerative Medicine From Head to Toe - 30Seconds.com - August 19th, 2022
- FDA Issues Draft Guidance to Facilitate Development of Human Gene Therapy, CAR T Cell, and Regenerative Medicine Products - Wilson Sonsini Goodrich... - August 19th, 2022
- Marco Quarta to present at the 9th Aging Research & Drug Discovery Meeting 2022 - EurekAlert - August 19th, 2022