ScienceDaily (Feb. 3, 2012) — Immune cells from healthy individuals can be the new immune cure for cancer. This treatment can kill cancer cells without destroying neighbouring cells. The hope is to eradicate cancer for ever. Today's cancer vaccines are unfortunately not a cure.
"The vaccines are based on stimulating the patient's own defence system to attack the tumour. In spite of the tremendous research efforts over the last decades by researchers all around the world, the results have been limited," comments Professor Johanna Olweus at the Immunology Institute at the University of Oslo. Together with her research team, she has found a completely new way to use the immune system to attack cancer.
"We have found a niche that few other people are aware of. In order to achieve effective treatment the immune system must react strongly. This is difficult with the patient's own immune system."
Instead of making a vaccine that builds up the patient's own immune system, the vaccine utilises a strong immune response from healthy individuals.
"Our studies show that the healthy immune cells attack and kill the cancer cells very effectively."
Own immune cells offer poor resistance to cancer
In order to understand the innovation, it is first necessary to understand why it has been so difficult to produce a vaccine against cancer.
Vaccination against infectious diseases is one of the greatest advances in the history of medicine. The immune system recognises a virus or bacteria as dangerous and foreign. When we vaccinate against a virus for example, a message is sent to the foot soldiers, the T cells, so that they are prepared. Then, any later viral infection can be knocked out by the immune system so quickly that we do not notice.
"However, we have not been able to successfully transfer this technique to cancer," states Olweus in the research magazine Apollon.
Once the cancer has gained a foothold, it lives a relatively peaceful co-existence with the immune system, even though it would desirable for the immune system to react aggressively.
Olweus believes this peaceful co-existence can be explained from an evolutionary perspective.
"The existence of the human race has always been dependent on an immune system that defeats infections. But in contrast to infections, cancer generally affects people after they have had children when survival of the human race is no longer dependent on cancer being defeated by the immune system.
Immune cells commit suicide
Neither is it enough that immune cells identify cancer cells as foreign. Cancer cells must also be recognised as being dangerous. Unfortunately, cancer cells do not give enough danger signals because they only cause slight inflammation. Inflammation is important if the immune system is to react.
"A cancer cell must be both foreign and somewhat dangerous if the T cells are to react. When the T cells do not recognise the cancer cells as dangerous, the T-cells kill themselves. This happens primarily with the T cells which could have given the most effective response."
The explanation is that our immune system tries to protect us against over-reaction to our own tissues. Over-reaction can cause autoimmune diseases such as arthritis and multiple sclerosis.
And as if this wasn't enough, the cancer cells have the abominable property of excreting substances that inhibit the T cells that have survived.
Moreover, most of today's vaccines aim at triggering an immune response against proteins that are present in higher numbers in cancer cells than in normal cells.
The problem is: these are normal proteins that are not normally recognised as foreign, even though there may be a particularly large number of them present in cancer cells.
Difficult mutations
A cancer cell can have hundreds of mutations. A mutation is a change in the DNA strand. These mutations can be recognised as foreign by the T cells.
The problem is that it is very difficult to find the mutations that are common to all patients with one particular type of cancer.
Mutations in cancer cells are generally specific for the individual patient. Thus it becomes difficult to know what to "target."
"However, if it is possible to direct many "weak" T cell responses to a large number of mutations, this could possibly have an effect. This may be the explanation why, in trials on treatment of melanomas, antibodies that remove the "brake" for all types of T cells appear to have a promising effect. But this form of treatment is highly risky because the immune system can run "out of control."
Immune response from healthy people
Today, two types of immunotherapy are used as part of the standard treatment for cancer. These are based on immune responses that are produced outside the patient. When you transfer an immune response to a patient, it's able to function independently of the patient's own weakened immune system.
This has resulted in a number of success stories.
The first type of treatment uses therapeutic antibodies that are made by vaccinating animals with human cells. The antibodies recognise the proteins that are only found on a certain cell type. This treatment is particularly effective in lymphatic cancer, even though the antibodies also kill a certain type of healthy immune cells called B cells. These B cells are an important part of the immune system.
The second type of treatment is a bone marrow transplant from healthy individuals to patients with leukemia or lymphatic cancer. This treatment is highly challenging and can be the patient's only chance of survival.
The transplanted bone marrow contains both blood stem cells and healthy T cells from the donor. These T cells can attack the cancer cells and in the best case cure the patient.
In contrast to the patient's own T cells which have been significantly weakened by the disease, the new and healthy T cells from the donor have not been exposed to "tolerance" over a long period of time. Therefore the T cells do not commit suicide. They react instantly to the foreign immune cells. The explanation is that the chemotherapy and radiotherapy have triggered the inflammation and the danger signals.
"The T cells will be able to recognise the cancer cells as both foreign and dangerous and attack them.
The treatment is effective, but is also so dangerous that it is normally only given to patients younger than 60 who are in good health.
The side effects are large. In three of four cases, the added T cells also attack normal cells in the skin, liver and intestines. In the worst case, the patient can die from the treatment."
Can remove undesired effects
The research group led by Olweus has managed to produce a method that distinguishes between desired and undesired effects.
The results have been published in a number of journals including Leukemia.
"Our method is now being used to produce T cells that kill certain types of cancer cells," researchers say.
In order to produce the desired T cells, they use cells from healthy volunteers. The T cells target a certain protein.
"Then we can use the same principle as that used so successfully in antibody therapy. We target the attack at a given cell type by making these T cells recognise parts of a protein that is only found in this cell type.
The T cells can then kill all cells that contain this protein, both healthy and sick. Normally, T cells do not react to these normal proteins.
"The reason that we can get T cells to recognise such proteins as foreign is our innovative trick: We combine the T cells with foreign tissue type molecules.
Tissue type molecules are found in nearly all cells. They are located on the surface and tell the immune system what is happening in the cell. Thus immune cells, just like the T cells, can receive a message that there is something foreign in the cell that must be killed.
If a patient has a type of lymphatic cancer called B cell cancer, prostate cancer or ovarian cancer, the patient can tolerate that the treatment also kills the healthy cells.
It is fully possible to continue living without B cells, a prostate or ovaries.
Prize-winning target-seeking missile
However, Olweus wants to take it a step further.
"T cells kill in a different way to antibodies or chemotherapy. T cells can thus be highly effective when antibody treatment or chemotherapy does not work. But all treatments involving cells have a high resource consumption. Another goal for our immunotherapy is therefore to use the T cell receptors that work as "Target-seeking missiles."
The research group led by Olweus has found a method to isolate the DNA code for the "target-seeking missiles" and produce them as soluble molecules. This means the treatment can be administered intravenously. A patent has been applied for, and last year the method was awarded the annual innovation prize from the Innovation company Invent2 from the UiO and South-Eastern Norway Regional Health Authority.
T cells have the potential to be a far better attack weapon than antibodies. Treatment with antibodies primarily prolongs life expectancy. Few of them cure.
"Antibodies have a substantial limitation. They only recognise proteins on the cell surface. In contrast, T cells also recognise proteins inside the cells. The vast majority of proteins are found only inside the cells. The new therapy can be directed at the proteins inside the cells that are important for the survival of the cancer cells. This can be an important innovation in the battle against cancer.
Combined treatment
Johanna Olweus anticipates that this treatment can be given in combination with antibodies, chemotherapy and radiotherapy.
In order to determine which proteins the treatment has to attack, the research team has mined databases which compare protein collections in cancer cells and organs from thousands of patients.
"If there is a high concentration of one protein in the organ in which the cancer originates and the protein is practically absent from the other normal organs, we can use this protein as a target for the T cells.
Hope to eradicate cancer
The treatment could solve one of today's greatest problems in cancer therapies. After chemotherapy and radiotherapy, loose cancer cells continue to circulate around the body.
"This immune therapy offers the possibility to also destroy these cancer cells, without harming neighbouring cells. This is important. Our hope for the future is that cancer can be eradicated for good, but we must take this step by step. We anticipate that this treatment can be tailored for all types of cancers in organs that are not essential for us to live such as the prostate, ovaries and breasts. We also anticipate that the treatment can also work against cancer in those organs which today can be transplanted such as blood, kidneys and liver. The hope is that our new treatment can be trialled on patients within a few years," states Johanna Olweus.
Recommend this story on Facebook, Twitter,
and Google +1:
Other bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by University of Oslo, via AlphaGalileo. The original article was written by Yngve Vogt.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
I W Abrahamsen, E Stronen, S Wälchli, J N Johansen, S Kjellevoll, S Kumari, M Komada, G Gaudernack, G Tjonnfjord, M Toebes, T N Schumacher, F Lund-Johansen, J Olweus. Targeting B cell leukemia with highly specific allogeneic T cells with a public recognition motif. Leukemia, 2010; 24 (11): 1901 DOI: 10.1038/leu.2010.186
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
See the original post:
Can immune cells from healthy people pulverize cancer?
- Neutrophil diversity and function in health and disease - Nature.com - December 6th, 2024
- Harnessing the Power of the Immune System for Breast Cancer Treatment - Breast Cancer Research Foundation - December 6th, 2024
- Study Examines Neoantigen Landscapes and Their Role in Immunotherapy Efficacy - Consult QD - December 6th, 2024
- The 5 Best Teas to Support Your Immune System This Cold & Flu Season - EatingWell - December 6th, 2024
- Engineered immune cells may be able to tame inflammation - Medical Xpress - December 6th, 2024
- Hybrid model of tumor growth, angiogenesis and immune response yields strategies to improve antiangiogenic therapy - Nature.com - December 6th, 2024
- Opioids interfere with cancer immunotherapy, but another type of drug could help - Medical Xpress - December 6th, 2024
- RANKL cytokine restores thymus cells in old mice, reducing tumor growth and improving T cell immune response - Fierce Biotech - December 6th, 2024
- Predictive role of neutrophil percentage-to-albumin ratio, neutrophil-to-lymphocyte ratio, and systemic immune-inflammation index for mortality in... - December 6th, 2024
- Immuno-Oncology Strategic Industry Research Report 2023-2024 & 2030: Approval of Pembrolizumab (Keytruda) and Nivolumab (Opdivo), which Target... - December 6th, 2024
- Study cracks the cold case of immunotherapy resistance - News-Medical.Net - December 6th, 2024
- New immune therapy improves survival and reduces tumor burden in glioblastoma - News-Medical.Net - December 6th, 2024
- Identification of immune-related hub genes and potential molecular mechanisms involved in COVID-19 via integrated bioinformatics analysis - Nature.com - December 6th, 2024
- Immune Cell Breakthrough: Scientists Discover a Hidden Ally in the Fight Against Cancer - SciTechDaily - December 6th, 2024
- Rising temperatures impact the immune system of wild monkeys - Earth.com - December 6th, 2024
- Study declaring Alzheimer's to be a "brain disease" proven to be fabricated - Earth.com - December 6th, 2024
- Warming temperatures impact immune performance of wild monkeys, U-M study shows - University of Michigan News - December 6th, 2024
- New study explores heart risks of cancer immunotherapy - News-Medical.Net - December 6th, 2024
- 'Incredible' way to boost your immune system naturally and ward of colds and flu this winter - The Mirror - December 6th, 2024
- Tis the Season to Boost Your Immune System - Mix93.3 - December 6th, 2024
- A mathematical model simulating the adaptive immune response in various vaccines and vaccination strategies - Nature.com - October 14th, 2024
- Fox Chase Cancer Center Researchers Find Gene That Triggers Immune Response in Treatment-Resistant Small-Cell Lung Cancer - Fox Chase Cancer Center - October 14th, 2024
- What Does It Mean to Be Immunocompromised? - The New York Times - October 14th, 2024
- Scientist hopes to cure Type 1 diabetes by disguising stem cells - The University of Arizona - October 14th, 2024
- Watching an infection unfold with a sphingolipid probe - Drug Discovery News - October 14th, 2024
- The cells that protect your brain against infection could also be behind some chronic diseases - BBC.com - October 14th, 2024
- On Nutrition: Foods that help strengthen the immune system - LimaOhio.com - October 14th, 2024
- An integral T cell pathway has implications for understanding sex-based immune response - Medical Xpress - October 14th, 2024
- Immune Response Linked to Lewy Body Formation - Neuroscience News - October 14th, 2024
- Are vaccines the future of cancer prevention? - Genetic Literacy Project - October 14th, 2024
- The Gut Microbiome and Autoimmunity - Inside Precision Medicine - October 14th, 2024
- Researchers discover how oral cancer cells may block the body's immune response - News-Medical.Net - September 21st, 2024
- Are Vaccines More Effective When You Believe in Them? - Greater Good Science Center at UC Berkeley - September 21st, 2024
- Researchers discover immune response to dengue can predict risk of severe reinfections - Medical Xpress - September 21st, 2024
- Texas Researchers Find Acid Walls That Shield Cancer Tumors from Bodys Immune System Response - DARKDaily.com - Laboratory News - September 21st, 2024
- Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis - Nature.com - September 21st, 2024
- A new way to reprogram immune cells and direct them toward anti-tumor immunity - MIT News - September 21st, 2024
- Unravelling the many mysteries of the immune system - Cosmos - September 21st, 2024
- Long COVID patients maintain robust immune memory two years after infection - News-Medical.Net - September 21st, 2024
- Nutraceuticals and pharmacological to balance the transitional microbiome to extend immunity during COVID-19 and other viral infections - Journal of... - September 21st, 2024
- Which adults benefit from the pneumococcal vaccine? - Mayo Clinic Press - September 21st, 2024
- UAMS receives $2.2 million grant to study immune response to eye disease - talkbusiness.net - September 21st, 2024
- Low oxygen levels in tumors could enhance some of the body's immune responses against cancer - Medical Xpress - September 21st, 2024
- Overview of the Immune System - The Merck Manuals - March 18th, 2024
- What are the organs of the immune system? - InformedHealth.org - NCBI ... - January 17th, 2024
- Mom who homeschools her children reveals she lets her one-year-old play in and EAT mud - but insists it is goo - Daily Mail - November 26th, 2023
- The limits of nutritional supplements: they dont cure or prevent ailments, nor are they harmless - EL PAS USA - November 26th, 2023
- Here's how your gut affects your mental health, immune function and even cardiovascular health - indulgexpress - November 18th, 2023
- From fear to freedom: Anchor Paul LaGrone shares his story of sudden hair loss & the disease that caused it - ABC Action News Tampa Bay - May 9th, 2023
- Strengthen Your Immune System With 4 Simple Strategies - May 1st, 2023
- Immunodeficiency Awareness Month: What Is The Science Behind These Diseases? Know Warning Signs - ABP Live - May 1st, 2023
- Nearly 90% of patients with rare skin cancer respond to therapy that prevents tumors from evading the immune - cleveland.com - April 23rd, 2023
- University of Cincinnati researchers helping develop 'vaccine' to fight aggressive cancer - WKRC TV Cincinnati - April 23rd, 2023
- Sana Biotechnology Highlights Preclinical Hypoimmune Data for its Allogeneic CAR T Platform and Advancements with its In Vivo Fusogen Platform with... - April 23rd, 2023
- Immune System: Parts & Common Problems - Cleveland Clinic - March 21st, 2023
- Disorders of the Immune System | Johns Hopkins Medicine - March 21st, 2023
- Sometimes 15 Minutes Are More Than Enough To Improve Immune System, Sleep Quality And Depression - Revyuh - March 13th, 2023
- People produce endocannabinoids similar to compounds found in marijuana that are critical to many bodily functions - The Conversation Indonesia - February 24th, 2023
- Spending more time with your kids, grandkidsand their germsmay lower risk of a severe outcome from Covid-19, recent studies show - CNBC - December 20th, 2022
- Published in Journal for Immunotherapy of Cancer: Using Single-Cell Analysis to Assess the Effects of an Anti-OX40 Monoclonal Antibody in Its... - November 17th, 2022
- Man who had COVID-19 for 400 days finally cured after getting treated with antibodies, study says - msnNOW - November 17th, 2022
- Social Distancing: The Impact on Your Health and Immune System - Healthline - October 7th, 2022
- Unraveling the Mysteries of the Immune System - Duke University School of Medicine - October 7th, 2022
- When Will ISR Immune System Regulation Holding AB (publ) (STO:ISR) Become Profitable? - Simply Wall St - October 7th, 2022
- VitaGaming Introduces Immune Support and Collagen to help Gamers boost immunity and fight stress - PR Web - October 7th, 2022
- Ohio reports third U.S. death of person with monkeypox who had underlying health conditions - CNBC - October 7th, 2022
- How a select few people have been cured of HIV - PBS - October 7th, 2022
- BeniCaros Wins Nutrition Industry Executive 2022 Immune Health Award - GlobeNewswire - October 7th, 2022
- Seasonal superfoods to give your immune system a boost this autumn - Yahoo Entertainment - October 7th, 2022
- Whats Going Around: Flu cases confirmed locally - ABC27 - October 7th, 2022
- Contributor: How to Fight the Cold and the Flu This Season - AJMC.com Managed Markets Network - October 7th, 2022
- Updated COVID-19 Bivalent Booster Released in Time for Fall and Winter Omicron Wave - Cornell University The Cornell Daily Sun - October 7th, 2022
- Oralair pill that retrains the immune system to reduce risk of thunderstorm asthma - 7NEWS - October 7th, 2022
- COVID immune reaction could affect brain mechanisms and induce neurological symptoms - Sky News - October 7th, 2022
- 7 Surprising Health Benefits of Pumpkins - AARP - October 7th, 2022
- Why Do Some Allergies Go Away While Others Dont? - The Atlantic - October 7th, 2022
- 15 foods to boost the immune system - Medical News Today - September 4th, 2022
- The powerful supplement that could enhance your immune response to bacteria and viruses - Express - September 4th, 2022
- New research: Cancer-fighting viruses can boost body's immune response - The Indian Express - September 4th, 2022
- Long COVID: How researchers are zeroing in on the self-targeted immune attacks that may lurk behind it - The Conversation Indonesia - September 4th, 2022