Before bacteria colonize a tissue in the human body, such as the intestine, they have to attach. Not only that, they have to achieve firm adhesion under hydrodynamic flow. New research reports a molecular mechanism behind an ultrastable protein complex responsible for resisting shear forces and adhering bacteria to cellulose fibers in the human gut. The results explain how gut microbes regulate cell adhesion strength at high shear stress through intricate molecular mechanisms including dual-binding modes, mechanical allostery, and catch bonds.
The researchers used single-molecule force spectroscopy (SMFS), single-molecule FRET (smFRET), and molecular dynamics (MD) simulations to uncover that two different binding modes allow bacteria to withstand the shear forces in the body. The findings are published in Nature Communications in the paper titled, High force catch bond mechanism of bacterial adhesion in the human gut.
Cellulose is a major building block of plant cell walls, consisting of molecules linked together into solid fibers. For humans, cellulose is indigestible, and the majority of gut bacteria lack the enzymes required to break down cellulose.
However, recently genetic material from the cellulose-degrading bacterium R. champanellensis was detected in human gut samples. Bacterial colonization of the intestine is essential for human physiology, and understanding how gut bacteria adhere to cellulose broadens our knowledge of the microbiome and its relationship to human health.
The bacterium under investigation uses an intricate network of scaffold proteins and enzymes on the outer cell wall, referred to as a cellulosome network, to attach to and degrade cellulose fibers. These cellulosome networks are held together by families of interacting proteins.
Of particular interest is the cohesin-dockerin interaction responsible for anchoring the cellulosome network to the cell wall. This interaction needs to withstand shear forces in the body to adhere to fiber. This vital feature motivated the researchers to investigate in more detail how the anchoring complex responds to mechanical forces.
By using a combination of single-molecule atomic force microscopy, single-molecule fluorescence, and molecular dynamics simulations, Michael Nash, PhD, assistant professor with joint appointments at the University of Basel, department of chemistry, and at ETH Zurich, department of biosystems science & engineering, along with collaborators from LMU Munich and Auburn University, studied how the complex resists external force.
Two binding modes allow bacteria to stick to surfaces under shear flow
They were able to show that the complex exhibits a rare behavior called dual binding mode, where the proteins form a complex in two distinct ways. The researchers found that the two binding modes have very different mechanical properties, with one breaking at low forces of around 200 piconewtons and the other exhibiting a much higher stability breaking only at 600 piconewtons of force.
Further analysis showed that the protein complex displays a behavior called a catch bond, meaning that the protein interaction becomes stronger as force is ramped up. The dynamics of this interaction are believed to allow the bacteria to adhere to cellulose under shear stress and release the complex in response to new substrates or to explore new environments.
We clearly observe the dual binding modes, but can only speculate on their biological significance. We think the bacteria might control the binding mode preference by modifying the proteins. This would allow switching from a low to high adhesion state depending on the environment, Nash explained.
By shedding light on this natural adhesion mechanism, these findings set the stage for the development of artificial molecular mechanisms that exhibit similar behavior but bind to disease targets. Such materials could have applications in bio-based medical superglues or shear-enhanced binding of therapeutic nanoparticles inside the body. For now, we are excited to return to the laboratory and see what sticks, said Nash.
Read the original here:
Bacterial Superglue Allows Adhesion to the Gut - Genetic Engineering & Biotechnology News
- Genetic Engineering and Its Applications StudyBullet.com - March 9th, 2025
- The Future of Gene-Editing Treatments for Rare Diseases - March 9th, 2025
- Biotechnology & Genetic Engineering: An Overview - Sciencing - March 9th, 2025
- Hoping to revive mammoths, scientists create 'woolly mice' - NPR - March 9th, 2025
- CRISPR Breakthrough Unlocks the Genetic Blueprint for ... - SciTechDaily - March 9th, 2025
- Mice have been genetically engineered to look like mammoths - The Economist - March 9th, 2025
- Gene modification can create bigger, better tomatoes, but should we do it? - Earth.com - March 9th, 2025
- "Colossal woolly mouse" created by scientists in effort to reconstruct the woolly mammoth - CBS News - March 9th, 2025
- Biotech company hoping to revive woolly mammoth, creates woolly mouse: Study - Straight Arrow News - March 9th, 2025
- Colossal Creates the Colossal Woolly Mouse, Showcasing Breakthroughs in Multiplex Genome Editing and Trait Engineering on the Path to a Mammoth -... - March 9th, 2025
- Colossal Biosciences is one step further in quest to bring back the woolly mammoth - Austin American-Statesman - March 9th, 2025
- Biotech Company Creates 'Woolly Mouse' as a Step in Its Quest to Resurrect Woolly Mammoths Through Gene Editing - Smithsonian Magazine - March 9th, 2025
- 'We didn't know they were going to be this cute': Scientists unveil genetically engineered 'woolly mice' - Livescience.com - March 9th, 2025
- These Genetically Engineered Mice Have Thick Woolly Mammoth Hair - ExtremeTech - March 9th, 2025
- Genetically altered mouse to pave way for resurrection of wolly mammoth? - Hindustan Times - March 9th, 2025
- Turning back the aging clock: Billions of dollars are probably being wasted on genetic manipulation techniques that likely wont work - Genetic... - March 9th, 2025
- OF WOOLLY MICE AND MAMMOTHS - Particle - March 9th, 2025
- Woolly mouse unveiled by firm hoping to bring more extinct animals back to life - The National - March 9th, 2025
- How scientists created woolly mice as part of their quest to bring back the woolly mammoth - The Indian Express - March 9th, 2025
- A Woolly What? - Brownstone Research - March 9th, 2025
- $1 Million Awarded to Continue to Develop Genetically Engineered Stem Cell Products to Fight Gastroesophageal Cancer - PR Newswire - February 15th, 2025
- Engineered animals show new way to fight mercury pollution - EurekAlert - February 15th, 2025
- Genetically modified foods: benefits and applications - Meer - February 15th, 2025
- Genetically modified zebrafish and fruit flies munch on mercury to make it less toxic - Yahoo - February 15th, 2025
- Principles of Genetic Engineering - PubMed Central (PMC) - February 7th, 2025
- The next 'big thing' in genetically modified crops: Drought-tolerant and herbicide resistant wheat. Here's what you need to know - Genetic Literacy... - February 7th, 2025
- Genetic engineering and biotechnology: The future of food is here - Yourweather.co.uk - February 7th, 2025
- Scientists Just Achieved a Major Milestone in Creating Synthetic Life - Yahoo! Voices - February 7th, 2025
- Two males give birth to child in incredible science experiment; the baby is now an adult | Mint - Mint - February 7th, 2025
- Genetic Engineering - The Definitive Guide | Biology Dictionary - January 27th, 2025
- Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei - Nature.com - January 27th, 2025
- What is Genetic Engineering? - Baker Institute - January 27th, 2025
- ARCUS breakthrough: An advanced gene editing tool appears to have cured an infant of an early onset metabolic disorder - Genetic Literacy Project - January 27th, 2025
- Your cells are dying. All the time. - Genetic Literacy Project - January 27th, 2025
- How Genetic Modification is Changing the Future of Conservation - MSN - January 27th, 2025
- Researchers genetically engineer yeast to produce healthy fatty acid - University of Alberta - January 27th, 2025
- genetic engineering summary | Britannica - September 13th, 2024
- The great gene editing debate: can it be safe and ethical? - BBC.com - September 13th, 2024
- Anti-biotechnology campaigners embrace classic crops, are suspicious of hybrid varieties and claim genetic modification violates nature. Heres a... - September 13th, 2024
- Will IL-11 Control Extend Human Life One Day? Early Results are Tantalizing - Securities.io - September 13th, 2024
- Viewpoint: As New Zealand edges toward relaxing its ban on gene edited foods, experts weigh in - Genetic Literacy Project - September 13th, 2024
- Farmers in Brazil and Argentina ramp up growing of genetically-modified drought tolerant wheat that can grow in subtropical regions - Genetic Literacy... - September 13th, 2024
- Scientist explains why we'll never have a real Jurassic Park - and people are crestfallen - indy100 - September 13th, 2024
- Genetic engineering techniques - Wikipedia - January 9th, 2024
- 20.3: Genetic Engineering - Biology LibreTexts - January 9th, 2024
- Genetic engineering - DNA Modification, Cloning, Gene Splicing - December 13th, 2023
- Global Gene Editing Market Poised for Significant Growth, Projected to Reach $14.28 Billion by 2027 - EIN News - December 13th, 2023
- Principles of Genetic Engineering - PMC - National Center for ... - May 17th, 2023
- Quitting: A Life Strategy: The Myth of Perseveranceand How the New Science of Giving Up Can Set You Free - Next Big Idea Club Magazine - May 17th, 2023
- 18 Human Genetic Engineering - Clemson University - March 29th, 2023
- Pros and Cons of Genetic Engineering - Benefits and Risks - March 29th, 2023
- How artificial skin is made and its uses, from treating burns to skin cancer - South China Morning Post - March 29th, 2023
- Genetic Engineering - Meaning, Applications, Advantages and Challenges ... - March 13th, 2023
- Revolutionary Specialty Enzymes Transform Industries, Projected to Reach $2.2 Billion by 2031 - Billion-Dollar - EIN News - March 5th, 2023
- Explained: What is genome editing technology and how is it different from GM technology? - The Indian Express - April 2nd, 2022
- Scribe Therapeutics to Participate in Upcoming Goldman Sachs The New Guard: Privates Leading the Disruption in Healthcare Investor Conference - Yahoo... - April 2nd, 2022
- San Antonio Zoo In Discussions on Woolly Mammoth Project - iHeart - April 2nd, 2022
- Xenotransplantation trials will require adjusting expectations, experts say - STAT - April 2nd, 2022
- 5 Interesting Startup Deals You May Have Missed In March: Restoring The Woolly Mammoth, Faux Seafood And Lots Of Bees - Crunchbase News - April 2nd, 2022
- Synlogic to Present Data on Phenylketonuria and Homocystinuria Programs at the Society for ... - KULR-TV - April 2nd, 2022
- The Bay Area food tech industry is creating more than vegan burgers. Heres whats next - San Francisco Chronicle - April 2nd, 2022
- Student Startup Teams to Compete For $110000 Cash Prize Pool in U of A's Heartland Challenge - University of Arkansas Newswire - April 2nd, 2022
- Should we test for differences in allergen content between varieties of crops and animal species? - Open Access Government - April 2nd, 2022
- Genetic Engineering - Courses, Subjects, Eligibility ... - December 22nd, 2021
- Scientists Used CRISPR Gene Editing to Choose the Sex of Mouse Pups - Singularity Hub - December 22nd, 2021
- Report calls for broad public deliberation on releasing gene-edited species in the wild - EurekAlert - December 22nd, 2021
- RNA and DNA Extraction Kit Market Study | Know the Post-Pandemic Scenario of the Industry - BioSpace - December 22nd, 2021
- Opinion: Allow Golden Rice to save lives - pnas.org - December 22nd, 2021
- It's time for an alliance of democracies | TheHill - The Hill - December 22nd, 2021
- Aridis Pharmaceuticals Announces a Pan-Coronavirus Monoclonal Antibody Cocktail That Retains Effectiveness Against the Omicron variant, other COVID-19... - December 22nd, 2021
- 2021: when the link between the climate and biodiversity crises became clear - The Guardian - December 22nd, 2021
- Wuhan lab leak now the most likely cause of Covid pandemic and the truth WILL come out, experts tell MPs... - The US Sun - December 22nd, 2021
- Biotech ETFs That Outperformed Last Week - Yahoo Finance - December 22nd, 2021
- Human genetic enhancement - Wikipedia - October 5th, 2021
- Viewpoint: Part 1 Opposition stirred by anti-GMO advocacy group propaganda fading in the developing world, as more countries embrace crop... - October 5th, 2021
- Amyris Partners with Inscripta to Enhance Development of Sustainable Ingredients Using the Onyx Genome Engineering Platform - WWNY - October 5th, 2021
- Kingdom Supercultures raises $25m to expand Non GMO suite of microbes to unlock new flavors, textures, and functionalities in food & beverage -... - October 5th, 2021
- Fact check: Genetically engineering your salad with the COVID-19 vaccines? We're not there yet. - USA TODAY - October 5th, 2021
- Making the Transition from an Academic to a Biobusiness Entrepreneur - Genetic Engineering & Biotechnology News - October 5th, 2021
- Is The New York Times Finally 'Learning To Love GMOS'? - American Council on Science and Health - October 5th, 2021