In 1944, a Columbia University doctoral student in genetics named Evelyn Witkin made a fortuitous mistake. During her first experiment in a laboratory at Cold Spring Harbor, in New York, she accidentally irradiated millions of E. coli with a lethal dose of ultraviolet light. When she returned the following day to check on the samples, they were all deadexcept for one, in which four bacterial cells had survived and continued to grow. Somehow, those cells were resistant to UV radiation. To Witkin, it seemed like a remarkably lucky coincidence that any cells in the culture had emerged with precisely the mutation they needed to surviveso much so that she questioned whether it was a coincidence at all.
Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
For the next two decades, Witkin sought to understand how and why these mutants had emerged. Her research led her to what is now known as the SOS response, a DNA repair mechanism that bacteria employ when their genomes are damaged, during which dozens of genes become active and the rate of mutation goes up. Those extra mutations are more often detrimental than beneficial, but they enable adaptations, such as the development of resistance to UV or antibiotics.
The question that has tormented some evolutionary biologists ever since is whether nature favored this arrangement. Is the upsurge in mutations merely a secondary consequence of a repair process inherently prone to error? Or, as some researchers claim, is the increase in the mutation rate itself an evolved adaptation, one that helps bacteria evolve advantageous traits more quickly in stressful environments?
The scientific challenge has not just been to demonstrate convincingly that harsh environments cause nonrandom mutations. It has also been to find a plausible mechanism consistent with the rest of molecular biology that could make lucky mutations more likely. Waves of studies in bacteria and more complex organisms have sought those answers for decades.
The latest and perhaps best answerfor explaining some kinds of mutations, anywayhas emerged from studies of yeast, as reported in June in PLOS Biology. A team led by Jonathan Houseley, a specialist in molecular biology and genetics at the Babraham Institute in Cambridge, proposed a mechanism that drives more mutation specifically in regions of the yeast genome where it could be most adaptive.
Its a totally new way that the environment can have an impact on the genome to allow adaptation in response to need. It is one of the most directed processes weve seen yet, said Philip Hastings, professor of molecular and human genetics at Baylor College of Medicine, who was not involved in the Houseley groups experiments. Other scientists contacted for this story also praised the work, though most cautioned that much about the controversial idea was still speculative and needed more support.
Rather than asking very broad questions like are mutations always random? I wanted to take a more mechanistic approach, Houseley said. He and his colleagues directed their attention to a specific kind of mutation called copy number variation. DNA often contains multiple copies of extended sequences of base pairs or even whole genes. The exact number can vary among individuals because, when cells are duplicating their DNA before cell division, certain mistakes can insert or delete copies of gene sequences. In humans, for instance, 5 to 10 percent of the genome shows copy number variation from person to personand some of these variations have been linked to cancer, diabetes, autism and a host of genetic disorders. Houseley suspected that in at least some cases, this variation in the number of gene copies might be a response to stresses or hazards in the environment.
Jonathan Houseley leads a team that studies genome change at the Babraham Institute in Cambridge. Based on their studies of yeast, they recently proposed a mechanism that would increase the odds for adaptive mutations in genes that are actively responding to environmental challenges.
Jon Houseley/QUANTA MAGAZINE
In 2015, Houseley and his colleagues described a mechanism by which yeast cells seemed to be driving extra copy number variation in genes associated with ribosomes, the parts of a cell that synthesize proteins. However, they did not prove that this increase was a purposefully adaptive response to a change or constraint in the cellular environment. Nevertheless, to them it seemed that the yeast was making more copies of the ribosomal genes when nutrients were abundant and the demand for making protein might be higher.
Houseley therefore decided to test whether similar mechanisms might act on genes more directly activated by hazardous changes in the environment. In their 2017 paper, he and his team focused on CUP1, a gene that helps yeast resist the toxic effects of environmental copper. They found that when yeast was exposed to copper, the variation in the number of copies of CUP1 in the cells increased. On average, most cells had fewer copies of the gene, but the yeast cells that gained more copiesabout 10 percent of the total population became more resistant to copper and flourished. The small number of cells that did the right thing, Houseley said, were at such an advantage that they were able to outcompete everything else.
But that change did not in itself mean much: If the environmental copper was causing mutations, then the change in CUP1 copy number variation might have been no more than a meaningless consequence of the higher mutation rate. To rule out that possibility, the researchers cleverly re-engineered the CUP1 gene so that it would respond to a harmless, nonmutagenic sugar, galactose, instead of copper. When these altered yeast cells were exposed to galactose, the variation in their number of copies of the gene changed, too.
The cells seemed to be directing greater variation to the exact place in their genome where it would be useful. After more work, the researchers identified elements of the biological mechanism behind this phenomenon. It was already known that when cells replicate their DNA, the replication mechanism sometimes stalls. Usually the mechanism can restart and pick up where it left off. When it cant, the cell can go back to the beginning of the replication process, but in doing so, it sometimes accidentally deletes a gene sequence or makes extra copies of it. That is what causes normal copy number variation. But Houseley and his team made the case that a combination of factors makes these copying errors especially likely to hit genes that are actively responding to environmental stresses, which means that they are more likely to show copy number variation.
The key point is that these effects center on genes responding to the environment, and that they could give natural selection extra opportunities to fine-tune which levels of gene expression might be optimal against certain challenges. The results seem to present experimental evidence that a challenging environment could galvanize cells into controlling those genetic changes that would best improve their fitness. They may also seem reminiscent of the outmoded, pre-Darwinian ideas of the French naturalist Jean-Baptiste Lamarck, who believed that organisms evolved by passing their environmentally acquired characteristics along to their offspring. Houseley maintains, however, that this similarity is only superficial.
What we have defined is a mechanism that has arisen entirely through Darwinian selection of random mutations to give a process that stimulates nonrandom mutations at useful sites, Houseley said. It is not Lamarckian adaptation. It just achieves some of the same ends without the problems involved with Lamarckian adaptation.
Ever since 1943, when the microbiologist Salvador Luria and the biophysicist Max Delbrck showed with Nobel prize-winning experiments that mutations in E. coli occur randomly, observations like the bacterial SOS response have made some biologists wonder whether there might be important loopholes to that rule. For example, in a controversial paper published in Nature in 1988, John Cairns of Harvard and his team found that when they placed bacteria that could not digest the milk sugar lactose in an environment where that sugar was the sole food source, the cells soon evolved the ability to convert the lactose into energy. Cairns argued that this result showed that cells had mechanisms to make certain mutations preferentially when they would be beneficial.
Budding yeast (S. cerevisiae) grow as colonies on this agar plate. If certain recent research is correct, a mechanism that helps to repair DNA damage in these cells may also promote more adaptive mutations, which could help the cells to evolve more quickly under harsh circumstances.
Jon Houseley/QUANTA MAGAZINE
Experimental support for that specific idea eventually proved lacking, but some biologists were inspired to become proponents of a broader theory that has come to be known as adaptive mutation. They believe that even if cells cant direct the precise mutation needed in a certain environment, they can adapt by elevating their mutation rate to promote genetic change.
The work of the Houseley team seems to bolster the case for that position. In the yeast mechanism theres not selection for a mechanism that actually says, This is the gene I should mutate to solve the problem, said Patricia Foster, a biologist at Indiana University. It shows that evolution can get speeded up.
Hastings at Baylor agreed, and praised the fact that Houseleys mechanism explains why the extra mutations dont happen throughout the genome. You need to be transcribing a gene for it to happen, he said.
Adaptive mutation theory, however, finds little acceptance among most biologists, and many of them view the original experiments by Cairns and the new ones by Houseley skeptically. They argue that even if higher mutation rates yield adaptations to environmental stress, proving that the higher mutation rates are themselves an adaptation to stress remains difficult to demonstrate convincingly. The interpretation is intuitively attractive, said John Roth, a geneticist and microbiologist at the University of California, Davis, but I dont think its right. I dont believe any of these examples of stress-induced mutagenesis are correct. There may be some other non-obvious explanation for the phenomenon.
I think [Houseleys work] is beautiful and relevant to the adaptive mutation debate, said Paul Sniegowski, a biologist at the University of Pennsylvania. But in the end, it still represents a hypothesis. To validate it more certainly, he added, theyd have to test it in the way an evolutionary biologist wouldby creating a theoretical model and determining whether this adaptive mutability could evolve within a reasonable period, and then by challenging populations of organisms in the lab to evolve a mechanism like this.
Notwithstanding the doubters, Houseley and his team are persevering with their research to understand its relevance to cancer and other biomedical problems. The emergence of chemotherapy-resistant cancers is commonplace and forms a major barrier to curing the disease, Houseley said. He thinks that chemotherapy drugs and other stresses on tumors may encourage malignant cells to mutate further, including mutations for resistance to the drugs. If that resistance is facilitated by the kind of mechanism he explored in his work on yeast, it could very well present a new drug target. Cancer patients might be treated both with normal courses of chemotherapy and with agents that would inhibit the biochemical modifications that make resistance mutations possible.
We are actively working on that, Houseley said, but its still in the early days.
Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
See the article here:
Bacteria May Rig Their DNA to Speed Up Evolution - WIRED
- Molecular Genetics Testing - StatPearls - NCBI Bookshelf - November 16th, 2024
- Working with Molecular Genetics (Hardison) - Biology LibreTexts - November 16th, 2024
- Molecular Underpinnings of Genetic and Rare Diseases: From ... - Frontiers - November 16th, 2024
- The molecular genetics of schizophrenia: New findings promise new insights. - November 16th, 2024
- 8: Techniques of Molecular Genetics - Biology LibreTexts - September 4th, 2024
- 1.5: Molecular Genetics - Biology LibreTexts - September 4th, 2024
- Molecular genetics made simple - PMC - National Center for ... - September 4th, 2024
- 4 Introduction to Molecular Genetics - University of Minnesota Twin Cities - September 4th, 2024
- Molecular genetics - Definition and Examples - Biology Online - September 4th, 2024
- A Detailed Look at the Science of Molecular Genetics - KnowYourDNA - September 4th, 2024
- Molecular Genetics | NHLBI, NIH - September 4th, 2024
- Molecular biology - Wikipedia - September 4th, 2024
- Genetics, Molecular & Cellular Biology Admissions - September 4th, 2024
- Researchers map 50,000 of DNAs mysterious knots in the human genome - EurekAlert - September 4th, 2024
- Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean - Nature.com - September 4th, 2024
- Mainz Biomed Expands Corporate Health Program for ColoAlert with the Addition of Three New Companies in Germany - Marketscreener.com - April 7th, 2023
- Molecular Genetics and Metabolism | Journal - ScienceDirect - December 11th, 2022
- People don't mate randomly but the flawed assumption that they do is an essential part of many studies linking genes to diseases and traits - The... - November 25th, 2022
- Molecular and Cell Biology and Genetics - Master of Science / PhD ... - October 7th, 2022
- NIPD Genetics: Leading Genetic Testing Company - October 7th, 2022
- Skeletal Biology and Regeneration Students Recognized For Research Excellence - UConn Today - University of Connecticut - October 7th, 2022
- Mary Munson elected fellow of the American Society for Cell Biology - UMass Medical School - October 7th, 2022
- Every Body's Talking at Them: an Interview with Jon Lieff - CounterPunch - October 7th, 2022
- TriBeta invites students to explore opportunities to work with faculty at research fair on Oct. 11 - Ohio University - October 7th, 2022
- Genetics: the Vatican Does Not Intend to Be Behind the Times - FSSPX.News - October 7th, 2022
- Yield10 Bioscience Appoints Willie Loh, Ph.D., to the Board of Directors - citybiz - October 7th, 2022
- Molecular pathways of major depressive disorder converge on the synapse | Molecular Psychiatry - Nature.com - October 7th, 2022
- Sigyn Therapeutics Strengthens Board of Directors With the Appointments of Richa Nand, Jim Dorst and Christopher Wetzel - Yahoo Finance - October 7th, 2022
- UTHSC Researcher Co-Leads Study of Genes that Modulate Aging, Lifespan - UTHSC News - UTHSC News - October 7th, 2022
- GATC Health Investor Conference to Feature First Public Demonstration of Its AI Platform's Drug Discovery Capabilities - PR Newswire - October 7th, 2022
- Three Professors Conferred Tenure and Eleven Promoted - Wesleyan Argus - October 7th, 2022
- Who will get the call from Stockholm? It's time for STAT's 2022 Nobel Prize predictions - STAT - October 7th, 2022
- Dalhousie to present exhibition celebrating Gerhard Herzberg and his legacy - Dal News - October 7th, 2022
- Why Some People Should Rethink Their Morning Cup Of Coffee - Health Digest - October 7th, 2022
- Cell and Gene Therapy: Rewriting the Future of Medicine - Technology Networks - October 7th, 2022
- UofL researchers lead the call to increase genetic diversity in immunogenomics - uoflnews.com - July 6th, 2021
- In Brief This Week: Foundation Medicine, Myriad Genetics, Genetron Health, and More - GenomeWeb - July 6th, 2021
- More filling? Tastes great? How flies, and maybe people, choose their food - Yale News - July 6th, 2021
- Genetic mapping of subsets of patients with fragile X syndro | TACG - Dove Medical Press - July 6th, 2021
- What is The Babydust Method? Danielle Lloyd swears method helped her conceive girl - The Mirror - July 6th, 2021
- Datar Cancer Genetics joins hands with US based Iylon Precision Oncology to offer personalized Precision Oncology cancer treatment solutions - PR Web - July 6th, 2021
- Mapping a pathway to competitive production - hortidaily.com - hortidaily.com - July 6th, 2021
- Associations between pancreatic expression quantitative traits and risk of pancreatic ductal adenocarcinoma. - Physician's Weekly - July 6th, 2021
- Global Genomics Market | Rising Incidence of Chronic and Genetic Diseases are Key Factors to Grow Market During 2021-2029 | 23andMe, Agilent... - July 6th, 2021
- The Babydust Method Danielle Lloyd used to conceive a girl after four sons and how it works - RSVP Live - July 6th, 2021
- In the beginning science and faith - The Irish Times - June 24th, 2021
- Ancient Maya Maintained Native Tropical Forest Plants around Their Water Reservoirs | Archaeology - Sci-News.com - June 24th, 2021
- Local foundation awards $1.25 million to MIND Institute to study rare genetic condition - UC Davis Health - June 24th, 2021
- Xlife Sciences AG: Collaboration with the University of Marburg - Yahoo Finance - June 24th, 2021
- Genetics diagnostics in India is on the verge of transformation: Neeraj Gupta, Founder and CEO of Genes2me - The Financial Express - June 24th, 2021
- Precision Medicine: Improving Health With Personalized Solutions - BioSpace - June 24th, 2021
- Half of Portland areas 22 top National Merit winners hail from just 2 schools - OregonLive - June 24th, 2021
- Investing in stem cells, the building blocks of the body - MoneyWeek - June 24th, 2021
- New study finds low levels of a sugar metabolite associates with disability and neurodegeneration in multiple sclerosis - Newswise - May 14th, 2021
- Cernadas-Martn Is a Champion for Marine and Human Diversity | | SBU News - Stony Brook News - May 14th, 2021
- Four Penn Faculty: Election to the National Academy of Sciences - UPENN Almanac - May 14th, 2021
- Is there a difference between a gene-edited organism and a 'GMO'? The question has important implications for regulation - Genetic Literacy Project - May 14th, 2021
- 5 Students Inducted Into American Society for Biochemistry and Molecular Biology Honor Society - Wesleyan Connection - May 14th, 2021
- The Science of Aliens, Part 2: What Kind of Genetic Code Would Extraterrestrials Have? - Air & Space Magazine - May 14th, 2021
- UT Austin Faculty Member Receives 2021 Piper Professor Award - Office of the Executive Vice President and Provost - UT News | The University of Texas... - May 14th, 2021
- Distinguished University of Birmingham plant scientist elected to the Royal Society - University of Birmingham - May 14th, 2021
- Double Hoo Research: Undergrads and Grads Team Up to Create Knowledge - University of Virginia - May 14th, 2021
- Global Genetic Testing Market Top Countries Analysis and Manufacturers With Impact of COVID-19 | 2021-2028 Detail Analysis focusing on Application,... - May 14th, 2021
- Morag Park named to the Order of Quebec - McGill Reporter - McGill Reporter - May 14th, 2021
- Third Rock Ventures Launches Flare Therapeutics With $82 Million Series A - BioSpace - May 14th, 2021
- The Royal Society announces election of new Fellows 2021 - Cambridge Network - May 14th, 2021
- Researchers Decode the "Language" of Immune Cells - Technology Networks - May 14th, 2021
- RepliCel Launches the Next Stage of a Research Project with the University of British Columbia to Build World-Class Hair Follicle Cell Data Map -... - May 14th, 2021
- Mice Sperm Sabotage Other Swimmers With Poison | Smart News - Smithsonian Magazine - February 14th, 2021
- Study Identifies Never-Before-Seen Dual Function in Enzyme Critical for Cancer Growth - Newswise - February 14th, 2021
- Devious sperm 'poison' their rivals, forcing them to swim in circles until they die - Livescience.com - February 14th, 2021
- More needs to be done to find and fight COVID-19 variants, says Colorado researcher - FOX 31 Denver - February 14th, 2021
- Selfish sperm genes 'poison' the competition for the win - Big Think - February 14th, 2021
- Some sperm cells swim faster and even poison their competition to climb to the top - ZME Science - February 14th, 2021
- We are scientists: U of T researchers reach out to girls and women around the world - News@UofT - February 14th, 2021
- Mutations in frogs point to autism genes' shared role in neurogenesis - Spectrum - February 14th, 2021
- Global Genetic Testing Market Insights, Size Estimation, Research Insights, COVID-19 Impact and Future Trends By 2028 KSU | The Sentinel Newspaper -... - February 14th, 2021
- Acer Therapeutics Announces Topline Results from its Bioequivalence Trial of ACER-001 Compared to BUPHENYL Under Fed Conditions - GlobeNewswire - February 14th, 2021
- GeneSight Psychotropic Test's Combinatorial Approach Proves Better than Single-Gene Testing at Predicting Patient Outcomes and Medication Blood Levels... - February 14th, 2021
- Gu Ailing Eileen: I've learned to win for myself, not other people - Olympic Channel - February 14th, 2021