A central promise of regenerative medicine is the ability to repair aged or diseased organs using stem cells (SCs). This approach will likely become an effective strategy for organ rejuvenation, holding the potential to increase human health by delaying age-related diseases (1). The successful translation of this scientific knowledge into clinical practice will require a better understanding of the basic mechanisms of aging, along with an integrated view of the process of tissue repair (1).
The advent of SC therapies, now progressing into clinical trials, has made clear the many challenges limiting the application of SCs to treat disease. Our duty, as scientists, is to anticipate such limitations and propose solutions to effectively deliver on the promise of regenerative medicine.
Degenerating tissues have difficulty engaging a regulated repair response that can support efficient cell engraftment and restoration of tissue function (2). This problem, which I encountered when trying to apply SC-based interventions to treat retinal disease, will likely be an important roadblock to the clinical application of regenerative medicine approaches in elderly patients, those most likely to benefit from such interventions. I therefore hypothesized that the inflammatory environment present in aged and diseased tissues would be a major roadblock for efficient repair and that finding immune modulators with the ability to resolve chronic inflammation and promote a prorepair environment would be an efficient approach to improve the success of SC-based therapies (2, 3).
Immune cells, as sources and targets of inflammatory signals, emerged naturally as an ideal target for intervention. I chose to focus on macrophages, which are immune cells of myeloid origin that exist in virtually every tissue of the human body and which are able to reversibly polarize into specific phenotypes, a property that is essential to coordinate tissue repair (3, 4).
If there is an integral immune modulatory component to the process of tissue repair that has evolved to support the healing of damaged tissues, then it should be possible to find strategies to harness this endogenous mechanism and improve regenerative therapies. Anchored in the idea that tissue damage responses are evolutionarily conserved (5), I started my research on this topic using the fruit fly Drosophila as a discovery system.
The fruit fly is equipped with an innate immune system, which is an important player in the process of tissue repair. Using a well-established model of tissue damage, I sought to determine which genes in immune cells are responsible for their prorepair activity. MANF (mesencephalic astrocyte-derived neurotrophic factor), a poorly characterized protein initially identified as a neurotrophic factor, emerged as a potential candidate (6). A series of genetic manipulations involving the silencing and overexpression of MANF and known interacting partners led me to the surprising discovery that, instead of behaving as a neurotrophic factor, MANF was operating as an autocrine immune modulator and that this activity was essential for its prorepair effects (2). Using a model of acute retinal damage in mice and in vitro models, I went on to show that this was an evolutionarily conserved mechanism and that MANF function could be harnessed to limit retinal damage elicited by multiple triggers, highlighting its potential for clinical application in the treatment of retinal disease (2).
Having discovered a new immune modulator that sustained endogenous tissue repair, I set out to test my initial hypothesis that this factor might be used to improve the success of SC-based therapies applied to a degenerating retina. Indeed, the low integration efficiency of replacement photoreceptors transplanted into congenitally blind mice could be fully restored to match the efficiency obtained in nondiseased mice by supplying MANF as a co-adjuvant with the transplants (2). This intervention improved restoration of visual function in treated mice, supporting the utility of this approach in the clinic (7).
Next, my colleagues and I decided to address the question of whether the immune modulatory mechanism described above was relevant for aging biology and whether we could harness its potential to extend health span. We found that MANF levels are systemically decreased in aged flies, mice, and humans. Genetic manipulation of MANF expression in flies and mice revealed that MANF is necessary to limit age-related inflammation and maintain tissue homeostasis in young organisms. Using heterochronic parabiosis, an experimental paradigm that involves the surgical joining of the circulatory systems of young and old mice, we established that MANF is one of the circulatory factors responsible for the rejuvenating effects of young blood. Finally, we showed that pharmacologic interventions involving systemic delivery of MANF protein to old mice are effective therapeutic approaches to reverse several hallmarks of tissue aging (8).
A confocal fluorescence microscope image of a giant macrophage shows MANF (mesencephalic astrocyte-derived neurotrophic factor) expression in red.
The biological process of aging is multifactorial, necessitating combined and integrated interventions that can simultaneously target several of the underlying problems (9). The potential of immune modulatory interventions as rejuvenating strategies is emerging and requires a deeper understanding of its underlying molecular and cellular mechanisms.
One expected outcome of reestablishing a regulated inflammatory response is the optimization of tissue repair capacity that naturally decreases during aging (3). Combining these interventions with SCbased therapeutics holds potential to deliver on the promise of regenerative medicine as a path to rejuvenation (1).
PHOTO: COURTESY OF J. NEVES
GRAND PRIZE WINNER
Joana Neves
Joana Neves received undergraduate degrees from NOVA University in Lisbon and a Ph.D. from the Pompeu Fabra University in Barcelona. After completing her postdoctoral fellowship at the Buck Institute for Research on Aging in California, Neves started her lab in the Instituto de Medicina Molecular (iMM) at the Faculty of Medicine, University of Lisbon in 2019. Her research uses fly and mouse models to understand the immune modulatory component of tissue repair and develop stem cellbased therapies for age-related disease.
PHOTO: COURTESY OF A. SHARMA
FINALIST
Arun Sharma
Arun Sharma received his undergraduate degree from Duke University and a Ph.D. from Stanford University. Having completed a postdoctoral fellowship at the Harvard Medical School, Sharma is now a senior research fellow jointly appointed at the Smidt Heart Institute and Board of Governors Regenerative Medicine Institute at the Cedars-Sinai Medical Center in Los Angeles. His research seeks to develop in vitro platforms for cardiovascular disease modeling and drug cardiotoxicity assessment. http://www.sciencemag.org/content/367/6483/1206.1
FINALIST
Adam C. Wilkinson
Adam C. Wilkinson received his undergraduate degree from the University of Oxford and a Ph.D. from the University of Cambridge. He is currently completing his postdoctoral fellowship at the Institute for Stem Cell Biology and Regenerative Medicine at Stanford University, where he is studying normal and malignant hematopoietic stem cell biology with the aim of identifying new biological mechanisms underlying hematological diseases and improving the diagnosis and treatment of these disorders. http://www.sciencemag.org/content/367/6483/1206.2
Read this article:
Aging eyes and the immune system - Science Magazine
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021
- Genomes, Maps, And How They Affect You - IFLScience - February 1st, 2021
- SMART Study Finds 22q11.2 Microdeletion Prevalence Much Higher than Expected - PRNewswire - February 1st, 2021
- Are Phages Overlooked Mediators of Health and Disease? - The Scientist - February 1st, 2021
- When Your Chance for a Covid Shot Comes, Dont Worry About the Numbers - Kaiser Health News - February 1st, 2021
- Global CRISPR Gene Editing Market: Focus on Products, Applications, End Users, Country Data (16 Countries), and Competitive Landscape - Analysis and... - February 1st, 2021
- The First Targeted Therapy For Lung Cancer Patients With The KRAS Gene MutationExtraordinary Results With Sotorasib - SurvivorNet - February 1st, 2021
- Genetic Testing: MedlinePlus - January 29th, 2021
- 21 Common Genetic Disorders: Types, Symptoms, Causes ... - January 29th, 2021
- Genetic Counseling Online Course - School of Medicine ... - January 29th, 2021