In the summer, a mother in Nashville with a seemingly incurable genetic disorder finally found an end to her suffering -- by editing her genome.
Victoria Gray's recovery from sickle cell disease, which had caused her painful seizures, came in a year of breakthroughs in one of the hottest areas of medical research -- gene therapy.
"I have hoped for a cure since I was about 11," the 34-year-old told AFP in an email.
"Since I received the new cells, I have been able to enjoy more time with my family without worrying about pain or an out-of-the-blue emergency."
Over several weeks, Gray's blood was drawn so doctors could get to the cause of her illness -- stem cells from her bone marrow that were making deformed red blood cells.
The stem cells were sent to a Scottish laboratory, where their DNA was modified using Crispr/Cas9 -- pronounced "Crisper" -- a new tool informally known as molecular "scissors."
The genetically edited cells were transfused back into Gray's veins and bone marrow. A month later, she was producing normal blood cells.
Medics warn that caution is necessary but, theoretically, she has been cured.
"This is one patient. This is early results. We need to see how it works out in other patients," said her doctor, Haydar Frangoul, at the Sarah Cannon Research Institute in Nashville.
"But these results are really exciting."
In Germany, a 19-year-old woman was treated with a similar method for a different blood disease, beta thalassemia. She had previously needed 16 blood transfusions per year.
Nine months later, she is completely free of that burden.
For decades, the DNA of living organisms such as corn and salmon has been modified.
But Crispr, invented in 2012, made gene editing more widely accessible. It is much simpler than preceding technology, cheaper and easy to use in small labs.
The technique has given new impetus to the perennial debate over the wisdom of humanity manipulating life itself.
"It's all developing very quickly," said French geneticist Emmanuelle Charpentier, one of Crispr's inventors and the cofounder of Crispr Therapeutics, the biotech company conducting the clinical trials involving Gray and the German patient.
Crispr is the latest breakthrough in a year of great strides in gene therapy, a medical adventure started three decades ago, when the first TV telethons were raising money for children with muscular dystrophy.
Scientists practising the technique insert a normal gene into cells containing a defective gene.
It does the work the original could not -- such as making normal red blood cells, in Victoria's case, or making tumor-killing super white blood cells for a cancer patient.
Crispr goes even further: instead of adding a gene, the tool edits the genome itself.
After decades of research and clinical trials on a genetic fix to genetic disorders, 2019 saw a historic milestone: approval to bring to market the first gene therapies for a neuromuscular disease in the US and a blood disease in the European Union.
They join several other gene therapies -- bringing the total to eight -- approved in recent years to treat certain cancers and an inherited blindness.
Serge Braun, the scientific director of the French Muscular Dystrophy Association, sees 2019 as a turning point that will lead to a medical revolution.
"Twenty-five, 30 years, that's the time it had to take," he told AFP from Paris.
"It took a generation for gene therapy to become a reality. Now, it's only going to go faster."
Just outside Washington, at the National Institutes of Health (NIH), researchers are also celebrating a "breakthrough period."
"We have hit an inflection point," said Carrie Wolinetz, NIH's associate director for science policy.
These therapies are exorbitantly expensive, however, costing up to $2 million -- meaning patients face grueling negotiations with their insurance companies.
They also involve a complex regimen of procedures that are only available in wealthy countries.
Gray spent months in hospital getting blood drawn, undergoing chemotherapy, having edited stem cells reintroduced via transfusion -- and fighting a general infection.
"You cannot do this in a community hospital close to home," said her doctor.
However, the number of approved gene therapies will increase to about 40 by 2022, according to MIT researchers.
They will mostly target cancers and diseases that affect muscles, the eyes and the nervous system.
Another problem with Crispr is that its relative simplicity has triggered the imaginations of rogue practitioners who don't necessarily share the medical ethics of Western medicine.
Last year in China, scientist He Jiankui triggered an international scandal -- and his excommunication from the scientific community -- when he used Crispr to create what he called the first gene-edited humans.
The biophysicist said he had altered the DNA of human embryos that became twin girls Lulu and Nana.
His goal was to create a mutation that would prevent the girls from contracting HIV, even though there was no specific reason to put them through the process.
"That technology is not safe," said Kiran Musunuru, a genetics professor at the University of Pennsylvania, explaining that the Crispr "scissors" often cut next to the targeted gene, causing unexpected mutations.
"It's very easy to do if you don't care about the consequences," Musunuru added.
Despite the ethical pitfalls, restraint seems mainly to have prevailed so far.
The community is keeping a close eye on Russia, where biologist Denis Rebrikov has said he wants to use Crispr to help deaf parents have children without the disability.
There is also the temptation to genetically edit entire animal species -- malaria-causing mosquitoes in Burkina Faso or mice hosting ticks that carry Lyme disease in the US.
The researchers in charge of those projects are advancing carefully, however, fully aware of the unpredictability of chain reactions on the ecosystem.
6 Nov, 2019
6 Nov, 2019
6 Nov, 2019
6 Nov, 2019
6 Nov, 2019
Charpentier doesn't believe in the more dystopian scenarios predicted for gene therapy, including American "biohackers" injecting themselves with Crispr technology bought online.
"Not everyone is a biologist or scientist," she said.
And the possibility of military hijacking to create soldier-killing viruses or bacteria that would ravage enemies' crops?
Charpentier thinks that technology generally tends to be used for the better.
"I'm a bacteriologist -- we've been talking about bioterrorism for years," she said. "Nothing has ever happened."
See original here:
A #ReUp of 2019: The year when gene therapy, DNA modifications came of age & saved lives - Economic Times
- Patient Dies of Acute Liver Failure After Treatment With Sareptas DMD Gene Therapy Elevidys - CGTLive - March 19th, 2025
- Patient dies following muscular dystrophy gene therapy, Sarepta reports - The Associated Press - March 19th, 2025
- Duchenne patient dies after receiving Sarepta gene therapy - March 19th, 2025
- Liver Failure-Associated Death Reported in Patient Treated With Sarepta Gene Therapy Elevidys - MedCity News - March 19th, 2025
- DoD grant funds Hollings researcher's idea to pursue gene therapy for cancer - Medical University of South Carolina - March 19th, 2025
- Recon: Sarepta reports death of teen who received Duchenne gene therapy; Novartis to slash 427 jobs while revamping cardiovascular business -... - March 19th, 2025
- Data Gaps Leave Long-Term Impact of Ex Vivo Gene Therapy in DMD Uncertain - AJMC.com Managed Markets Network - March 19th, 2025
- CHO Plus Obtains U.S. Patent for Improved Production of Viral Vectors for Gene Therapy - Business Wire - March 19th, 2025
- Sarepta Shares Fall on Report of Patient Death After Gene Therapy - Bloomberg - March 19th, 2025
- Hologen AI commits up to $430M to help take MeiraGTx's Parkinson's gene therapy through phase 3 and beyond - Fierce Biotech - March 19th, 2025
- Duchenne patient on Sareptas gene therapy dies - The Business Journals - March 19th, 2025
- Im Unstoppable: New gene therapy cures first New Yorker of sickle cell anemia - PIX11 New York News - March 19th, 2025
- Boost in cancer treatment: PGI working on lab for stem cell, gene therapies - The Times of India - March 19th, 2025
- Man Cured Of Sickle Cell Disease In New York Thanks To New Gene Therapy - Forbes - March 19th, 2025
- Sarepta says teen died after its gene therapy treatment By Reuters - Investing.com - March 19th, 2025
- Innovative Gene Therapy Approach Drives Buy Rating for Insmed in DMD Treatment - TipRanks - March 19th, 2025
- Sarepta says patient dies after treatment with gene therapy - TradingView - March 19th, 2025
- Sarepta tumbles after patient dies following gene therapy treatment - TradingView - March 19th, 2025
- MeiraGTx teams with cryptic AI startup, co-founded by Eric Schmidt, to advance Parkinson's gene therapy - Endpoints News - March 19th, 2025
- Sickle cell anemia patient reunites with Long Island doctors whose gene therapy treatments made him symptom-free - Newsday - March 19th, 2025
- Extracellular vesicles for the delivery of gene therapy - Nature.com - March 9th, 2025
- Around the Helix: Cell and Gene Therapy Company Updates March 5, 2025 - CGTLive - March 9th, 2025
- Inside the secret island where wealthy people go to alter their DNA - Daily Mail - March 9th, 2025
- Regenerons Gene Therapy DB-OTO Trial Shows Promising Hearing Improvement - The Hearing Review - March 9th, 2025
- Global Cell and Gene Therapy Manufacturing Market to Reach ~USD 10 Billion by 2032 | DelveInsight - GlobeNewswire - March 9th, 2025
- College Station gene therapy company partners with nonprofit to develop treatments for rare diseases - KBTX - March 9th, 2025
- World Hearing Day 2025: Looking Back at Progress in Gene Therapy - CGTLive - March 9th, 2025
- Reflecting on a milestone year for cell and gene therapies - Pharmaceutical Technology - March 9th, 2025
- Q&A: Whats Next for Hemophilia Gene Therapy? | Newswise - Newswise - March 9th, 2025
- 'Llife-changing' gene therapy in London partially restores CT child's sight - CT Insider - March 9th, 2025
- The Genesis of Cell Therapy: Bridging Traditional Pharmacology and Gene Therapy - Technology Networks - March 9th, 2025
- Regenxbio at TD Cowen Conference: Gene Therapy Advancements - Investing.com - March 9th, 2025
- Anova Announces First Patient Enrolled to Phase 1/2a Study of DB107 for the Treatment of High-Grade Gliomas - Business Wire - March 9th, 2025
- Apertura Gene Therapy Supports the Broad Institute in Development of Gene Therapy for Prion Disease Using Engineered AAV Capsid Targeting TfR1 for CNS... - March 9th, 2025
- Gene therapy research offers hope for people with chronic kidney disease - Medical Xpress - January 6th, 2025
- Sangamo Therapeutics to Regain Full Rights to Hemophilia A Gene Therapy Program Following Pfizers Decision to Cease Development of Giroctocogene... - January 6th, 2025
- JCR Pharmaceuticals and Modalis Therapeutics Announce Transition to the Next Phase of Joint Research Agreement for Development of Novel Gene Therapy -... - January 6th, 2025
- Gene therapy targets the retina to treat eye disease - Nature.com - January 6th, 2025
- Sangamos Stock Plummets as Pfizer Axes Hemophilia Gene Therapy Pact - BioSpace - January 6th, 2025
- How Increased Use of Gene Therapy Treatment for Sickle Cell Disease Could Affect the Federal Budget - Congressional Budget Office - January 6th, 2025
- The Future of Regulatory Processes in Cell and Gene Therapy - Pharmaceutical Executive - January 6th, 2025
- CGTLive's 2024 Pillars of Progress: Most-Watched Conference Interviews - CGTLive - January 6th, 2025
- Pfizer cuts losses on near-approval hemophilia gene therapy, adding to troubled Sangamo's woes - Fierce Biotech - January 6th, 2025
- JCR Pharmaceuticals and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- JCR and Modalis Advance Joint Gene Therapy Research - TipRanks - January 6th, 2025
- Novartis Gene Therapy Shows Promise in Treating SMA - Yahoo Finance - January 6th, 2025
- Gene Therapy Market to Hit Valuation of US$ 42.26 Billion By 2033 | Astute Analytica - Yahoo Finance - January 6th, 2025
- Novartis gene therapy helps children with rare muscle disorder in study - Reuters - January 6th, 2025
- Capricor Puts Rolling BLA for DMD Cardiomyopathy Cell Therapy Deramiocel in Front of the FDA - CGTLive - January 6th, 2025
- Positive data could expand use of Novartis gene therapy for SMA - Yahoo Finance - January 6th, 2025
- Sangamo spirals after Pfizer halts hemophilia A gene therapy partnership - MM+M Online - January 6th, 2025
- Cell Therapy and Gene Therapy CDMO Market to Reach USD 11.11 Billion by 2030 | Discover Growth Trends and Insights | Valuates Reports - PR Newswire - January 6th, 2025
- Struggling With Adoption, Sickle Cell Gene Therapy Manufacturers Embrace CMS Model - News & Insights - January 6th, 2025
- Sangamo Therapeutics to Regain Rights to Gene Therapy Program from Pfizer - Contract Pharma - January 6th, 2025
- Researchers Create Gene Therapy with Potential to Treat Peripheral Pain ... - December 28th, 2024
- How CRISPR Is Changing Cancer Research and Treatment - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - December 28th, 2024
- 100 cell and gene therapy leaders to watch in 2025 - December 28th, 2024
- Can a new gene therapy reverse heart failure? - Futurity - December 28th, 2024
- Sustained visual improvements in LHON patients treated with AAV gene therapy - Medical Xpress - December 28th, 2024
- Nebraska Medicine administers novel gene therapy to first hemophilia ... - December 28th, 2024
- Gene Therapy for Cardiomyopathies Presents Promising Alternative to Current Treatment - Managed Healthcare Executive - December 28th, 2024
- Stem Cell Transplantation Still the Main Treatment Option for Beta-Thalassemia - Medpage Today - December 28th, 2024
- Caribou Overhyped Gene-Therapy Testing, Investor Class Suit Says - Bloomberg Law - December 28th, 2024
- WuXi AppTec sells off cell and gene therapy operations in US, UK - FirstWord Pharma - December 28th, 2024
- Top 5 Print Publication Articles of 2024 - Managed Healthcare Executive - December 28th, 2024
- Gene Therapy Shows Long-Term Vision Benefits in Rare Eye Disease - Medpage Today - December 28th, 2024
- UPenn gene therapy pioneers biotech gets $34 million in funding - The Philadelphia Inquirer - December 28th, 2024
- PHC Corporation to present LiCellGrow at Advanced Therapies Week 2025 - Drug Target Review - December 28th, 2024
- The Evolution of Cell & Gene Therapy: Development and Manufacturing Insights and the Role of CDMOs - Pharmaceutical Technology Magazine - December 28th, 2024
- Pig kidney transplants, new schizophrenia drug: Here are 5 of the biggest medical breakthroughs in 2024 - ABC News - December 28th, 2024
- Cell Therapy Manufacturing Trends And Advancements Continuing In 2025 - BioProcess Online - December 28th, 2024
- Can Gene Therapy Treat Chronic Pain? - LabRoots - December 28th, 2024
- Driving innovation: India's foray into gene and cell therapies - The Economic Times - December 28th, 2024
- Governor Hochul Celebrates the Opening Of New York's First Cell and Gene Therapy Hub at Roswell Park Comprehensive Cancer Center in Buffalo - PR Web - December 19th, 2024
- GenSight Biologics Provides Update on Regulatory Discussions and Financial Situation - Business Wire - December 19th, 2024
- Atsena completes dosing in part A of X-linked retinoschisis gene therapy trial - Healio - December 19th, 2024
- Astellas and Sangamo Therapeutics Announce Capsid License Agreement to Deliver Genomic Medicines for Neurological Diseases - StreetInsider.com - December 19th, 2024
- Ring Therapeutics lays off just under half of staff in 2nd wave of cuts this year, CEO set to step down - Fierce Biotech - December 19th, 2024
- Gov. Hochul celebrates opening of first cell and gene therapy hub in NYS - WIVB.com - News 4 - December 19th, 2024