Introduction
Long QT syndrome (LQTS) is defined by a prolonged QT interval accompanied by morphological abnormalities in the T and/or U waves on the electrocardiograph (ECG).1 The primary clinical symptom of LQTS is syncope produced by ventricular arrhythmias.24 The clinical diagnosis of LQTS is based on a combination of the patients medical and family history, as well as the 12-lead ECG.5 According to the guidelines, LQTS diagnosis can be made in case the QTc is more than 460ms, and the patient presents some antecedents, most notably a family history of SCD and unexplained syncope.6
LQTS can be classified into two types based on its etiology: congenital LQTS (cLQTS) and acquired LQTS (aLQTS). While the former is a relatively rare genetic cardiovascular disease with a low incidence rate (1/2000-1/3000),7 the latter is frequently subsequent to electrolyte disorders, cardiomyopathy, cerebrovascular accidents, and autonomic dysfunction.
The pathogenesis of cLQTS is related to the mutation of genes encoding for ion channels, such as KCNH2,3,8 KCNQ1,2,9 TRPM4,1012 and so on, and causing ion channel dysfunction with reduced repolarization ion flow and/or increased delocalization ion flow, which in turn leads to prolonged repolarization. Among ion channel genes, mutations in KCNQ1 and KCNH2, which encode voltage-gated K+ channels involved in cardiac action potential (AP) repolarization are most common,10 followed by mutations in SCN5A which encode voltage-gated Na (1.78%), while mutations in other genes including TRPM4 are rare (below 1% of LQTS).11 Dr. Hof and colleagues were the first to hypothesize that TRPM4 mutations cause long QT syndrome, and they detected four TRPM4 variants, including c.1321 G >A, c.1495 C >T, c.1496 G >C, and c.2531 G >A, with no changes in the key LQTS genes.11
Herein, we reported a Chinese proband with cLQTS with a new mutation (NM_017636: exon4: c.434delC, p. Ala145ValfsTer133) in the TRPM4 with the hope that this report may be helpful in future genetic studies and prospective, genetically informed research.
A 75-year-old male was implanted with a permanent pacemaker 18 years ago due to a local diagnosis of bradycardia characterized by recurrent syncope since the age of 20, yet postoperative syncope continued to occur. Syncope occurred again a day before admission, and then he was taken to our hospital. Electrocardiography (ECG) at disease onset indicated sinus bradycardia, anterior wall T wave changes with visible u waves (Figure 1).
Figure 1 The admission ECG showed sinus bradycardia with QTc interval 432ms and U wave.
On admission, the following vital signs were recorded: blood pressure of 135/88mmHg, pulse rate of 59 beats per minute, the body temperature of 36.4C, and breathing rate of 18 beats per minute. Physical examination revealed no evidence of heart failure or pathological nervous system features.
After admission, repeated electrocardiograms suggested prolonged QT intervals, sinus bradycardia, and T wave changes (Figure 2). Ambulatory ECG also showed sinus bradycardia (mean heart rate 59 beats), prolonged QT interval (540ms), and torsade de pointes (Figure 3). Whats more, the electrodes on the patients pacemaker were discovered to be depleted for nearly five years. Laboratory data showed a slightly elevated level of troponin, as well as N-terminal-pro-brain natriuretic peptide, while other laboratory indexes including hepatic and renal function, electrolytes, coagulation, and inflammatory indexes were normal. We also performed a cranial MRI on this patient, and no neurological lesion was found that could cause syncope. Echocardiography indicated no abnormalities in cardiac structure, and the left ventricular ejection fraction was 61%. Moreover, selective coronary angiography was performed, indicating that the patient has no apparent pathological stenosis in the coronary arteries.
Figure 2 (AC) During the hospitalization, the ECG showed the dynamic changes of T wave; the longest QTc interval was 540ms.
Figure 3 Electrocardiogram monitoring shows torsion de pointes tachycardia.
According to the above results and the diagnostic criteria of LQTS, a highly suspected diagnosis of LQTS was finally made (Rating 6.5 out of 5).1,13,14
Then the etiology of LQTS was further explored. For no acquired LQTS associated risk factors such as electrolyte disorders, cardiomyopathy, cerebrovascular accidents, and autonomic dysfunction were found in the patients previous medical history and related examinations after admission, we are suspicious of the patients Genetics of LQTS.
After obtaining the informed consent, we conducted whole-exome sequencing (WES) on the patient and his family to confirm our diagnosis. Gene testing revealed that the patient carried a TRPM4 heterozygous shift mutation (NM_017636: exon4: c.434delC, p. Ala145ValfsTer133). Moreover, WES analysis of his family members revealed that his sister carried the same TRPM4 mutation as the patient (Figure 4), but his two brothers and son did not. Regrettably, the probands parents have all died, and hence their genes have not been obtained.
Figure 4 The results of genetic testing showed the proband and his sister carried a TRPM4 heterozygous shift mutation (NM_017636: exon4: c.434delC, p. Ala145ValfsTer133) (A), while his two brothers and son did not (B).
Because of the high risk of sudden cardiac death, we recommend implanting a cardioverter defibrillator (ICD) for the patient. Due to economic reasons, the patient refused. Due to the patients strong preference for cautious treatment, we administered Shengsong Yangxin Capsule as a placebo.
cLQTS is a rare cardiac disorder inherited in an autosomal trait, with an estimated incidence of 1:20001:3000.7 It is accepted that cLQTS is a rare ion channelopathy, and a host of genes were described to be responsible for LQTS. So far, 15 genes with more than 7000 mutations have been considered to be associated with cLQTS.15 Among the six genes encode for a pore-forming ion channel, while others encode for regulatory subunits or proteins. Mutations in KCNQ1 (3035%) and KCNH2 (2530%) encoding voltage-gated K+ channels involved in cardiac action potential (AP) repolarization are the most common among ion channel genes,10,14 followed by mutations in SCN5A, which encode voltage-gated Na+ (1.78%).11,14 In comparison, mutations in other genes, including TRPM4 are rare (below 1% of LQTS).11,12,14
As far as the pathology of LQTS, it is generally known that QT duration depends on both ventricular AP duration and AP propagation within the ventricle and ion channel dysfunction with reduced repolarization ion flow and/or increased delocalization ion flow leads to prolonged repolarization. According to a sack of animal experiments on TRPM4, TRPM4 affects cardiac electrophysiological activity through nonselective cation permeability, which leads to cLQTS.11 Unfortunately, additional research is required to decipher the biological mechanism underlying TRPM4-induced loss of function of nonselective cation permeability.
Above all, gene test counts for cLQTS. The importance of gene detection for cLQTS lies in exploring its pathogenic mechanism and its treatment, for the drugs targeted specific ion channels can be used with exerting maximal effects.
In our case, a new mutation site on TRPM4 (NM_017636: exon4: c.434delC, p. Ala145ValfsTer133) was discovered through whole-exon detection, which can provide a brand-new direction for gene screening of patients with cLQTS and further complements its diagnostic criteria. As for the detail of gene tests, we used PolyPhen2 to predict whether a new mutation is damaging to the resultant protein function. And then, according to the relevant literature, we did consider that TRPM4 is as same amino acid change as a previously established pathogenic variant regardless of nucleotide change after searching the OMIM database. But the absence of the literature for molecular pathology makes us failure to achieve the information of damaged protein. At last, combined clinical history, ECG, and the results of gene test, it was suspected that TRPM4 mutation (NM_017636: exon4: c.434delC, p. Ala145ValfsTer133) was the pathogenic variant.
In the treatment of cLQTS, beta-blockers effectively prevent cardiovascular disease and ventricular arrhythmia, and ICD implantation is regarded as the ultimate therapy.16 Because of the high risk of sudden cardiac death, we recommend implanting a cardioverter defibrillator (ICD) for the patient. Due to economic reasons, the patient refused, and we administered a placebo.
The incidence of cLQTS is very low, with the incidence of LQTS caused by TRPM4 being even lower, leading to less research on the gene TRPM4. Therefore, we reported a new mutation in TRPM4 (NM_017636: exon4: c.434delC, p. Ala145ValfsTer133) to provide more evidence for gene screening, to improve the detection rate of healthy gene carriers or patients in the early incubation stage, thereby providing further complements to the clinical data of the study about TRPM4. Notwithstanding its limitation such as lack of this patients past clinical data that can help to compare the symptom before and after the permanent pacemaker implantation, detailed information of the pedigree of this patients parents and so on, this report does hopefully serve as useful feedback information for genetic pathogenesis of cLQTS caused by TRPM4 variants.
cLQTS, congenital long QT syndrome; LQTS, long QT syndrome; ECG, electrocardiograph; AP, action potential; ICD, implanting cardioverter defibrillator; WES, whole-exome sequencing; TRPM4, transient receptor potential melastatin 4; aLQTS, acquired LQTS.
All relevant data supporting the conclusions of this article are included within the article.
The need for institutional ethics approval for this case report was waived. Written informed consent was obtained from the patient for publication of this case report and accompanying images.
The patient has provided informed consent for the publication of the case. A copy of the written consent is available for review by the Editor-in-Chief of this journal.
Dr. Rui Huang and Dr. Yinhua Luo are co-first authors for this study.
All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work.
This work was supported in part by the National Natural Science Foundation of China (82160072) and the Science and Technology Support Project of Enshi Science and Technology Bureau (D20210024).
The authors declare that they have no conflicts of interest.
1. Vohra J. The long QT syndrome. Heart Lung Circ. 2007;16(Suppl 3):S5S12. doi:10.1016/j.hlc.2007.05.008
2. Beiyin G, Tingliang L, Lei Y, et al. Head-up tilt test induces T-wave alternans in long QT syndrome with KCNQ1 gene mutation: case report CARE-compliant article. Medicine. 2020;99(20):e19818.
3. Henk-Jan B, Lucia B. Orgasm induced torsades de pointes in a patient with a novel mutation with long-QT syndrome type 2: a case report. Eur Heart J Case Rep. 2018;2(2):yty062.
4. Joel G, Kinsley H, Amanda W, et al. Recurrent torsades with refractory QT prolongation in a 54-year-old man. Am J Case Rep. 2018;19:1515.
5. Priori SG, Wilde AA, Horie M, et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. Heart Rhythm. 2013;10(12):19321963. doi:10.1016/j.hrthm.2013.05.014
6. Priori SG, Blomstrm-Lundqvist C, Mazzanti A, et al. [2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death]. Kardiol Pol. 2015;73(10):795900. Croatian. doi:10.5603/KP.2015.0190
7. Zumhagen S, Stallmeyer B, Friedrich C, et al. Inherited long QT syndrome: clinical manifestation, genetic diagnostics, and therapy. Herzschrittmacherther Elektrophysiol. 2012;23(3):211219. doi:10.1007/s00399-012-0232-8
8. Du F, Wang G, Wang D, et al. Targeted next generation sequencing revealed a novel deletion-frameshift mutation of KCNH2 gene in a Chinese Han family with long QT syndrome: a case report and review of Chinese cases. Medicine. 2020;99(16):e19749. doi:10.1097/MD.0000000000019749
9. Motoi N, Marehiko U, Ryota E, et al. A novel KCNQ1 nonsense variant in the isoform-specific first exon causes both jervell and Lange-Nielsen syndrome 1 and long QT syndrome 1: a case report. BMC Med Genet. 2017;18(1):16.
10. Amin AS, Pinto YM, Wilde AA. Long QT syndrome: beyond the causal mutation. J Physiol. 2013;591(17):41254139. doi:10.1113/jphysiol.2013.254920
11. Hof T, Liu H, Sall L, et al. TRPM4 non-selective cation channel variants in long QT syndrome. BMC Med Genet. 2017;18(1):31. doi:10.1186/s12881-017-0397-4
12. Guinamard R, Bouvagnet P, Hof T, et al. TRPM4 in cardiac electrical activity. Cardiovasc Res. 2015;108(1):2130. doi:10.1093/cvr/cvv213
13. Hayashi K, Konno T, Fujino N, et al. Impact of updated diagnostic criteria for long QT syndrome on clinical detection of diseased patients: results from a study of patients carrying gene mutations. JACC Clin Electrophysiol. 2016;2(3):279287. doi:10.1016/j.jacep.2016.01.003
14. Neira V, Enriquez A, Simpson C, et al. Update on long QT syndrome. J Cardiovasc Electrophysiol. 2019;30(12):30683078. doi:10.1111/jce.14227
15. Tester DJ, Ackerman MJ. Genetics of long QT syndrome. Methodist Debakey Cardiovasc J. 2014;10(1):2933. doi:10.14797/mdcj-10-1-29
16. Betge S, Schulze-Bahr E, Fitzek C, et al. [Long QT syndrome causing grand mal epilepsy: case report, pedigree, therapeutic options, and review of the literature]. Nervenarzt. 2006;77(10):12101217. German. doi:10.1007/s00115-006-2118-7
Follow this link:
A Novel Mutation in the TRPM4 Gene | RRCC - Dove Medical Press
- Department of Genetic Medicine - January 6th, 2025
- Research Services | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Patient Care | Johns Hopkins Department of Genetic Medicine - January 6th, 2025
- Specialty Clinics | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Pediatric Genetic Medicine at Johns Hopkins Children's Center - January 6th, 2025
- Research Centers | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- About Us - Johns Hopkins Medicine - January 6th, 2025
- Graduate Programs & Training | Johns Hopkins Medicine - January 6th, 2025
- Request an Appointment | Johns Hopkins Institute of Genetic Medicine - January 6th, 2025
- Clemson professor Trudy Mackay elected to the National Academy of Medicine - Clemson News - October 22nd, 2024
- Research sheds new light on the behavior of KRAS gene in pancreatic and colorectal cancer - News-Medical.Net - October 22nd, 2024
- Pushing the boundaries of rare disease diagnostics with the help of the first Undiagnosed Hackathon - Nature.com - October 22nd, 2024
- Tailored Genetic Medicine: AAV Gene Therapy and mRNA Vaccines Redefine Healthcare's Future - Intelligent Living - October 22nd, 2024
- The Genetic Link to Parkinson's Disease - Hopkins Medicine - August 27th, 2022
- Epic Bio makes gene therapies by editing the epigenome - Labiotech.eu - August 27th, 2022
- Ovid turns to gene therapy startup to restock drug pipeline - BioPharma Dive - August 27th, 2022
- Whole-exome analysis of 177 pediatric patients with undiagnosed diseases | Scientific Reports - Nature.com - August 27th, 2022
- First Gene Therapy for Adults with Severe Hemophilia A, BioMarin's ROCTAVIAN (valoctocogene roxaparvovec), Approved by European Commission (EC) -... - August 27th, 2022
- Arbor Biotechnologies Enters into Agreement with Acuitas Therapeutics for Lipid Nanoparticle Delivery System for Use in Rare Liver Diseases - BioSpace - August 27th, 2022
- ElevateBio Partners with the California Institute for Regenerative Medicine to Accelerate the Development of Regenerative Medicines - Business Wire - August 27th, 2022
- ElevateBio and the University of Pittsburgh Announce Creation of Pitt BioForge BioManufacturing Center at Hazelwood Green to Accelerate Cell and Gene... - August 27th, 2022
- Genetic variants cause different reactions to psychedelic therapy - The Well : The Well - The Well - August 27th, 2022
- Personalized Medicine for Prostate Cancer: What It Is and How It Works - Healthline - August 27th, 2022
- Four radical new fertility treatments just a few years away from clinics - The Guardian - August 27th, 2022
- Why are Rats Used in Medical Research? - MedicalResearch.com - August 27th, 2022
- The Columns Stepping Stones in STEM Washington and Lee University - The Columns - August 27th, 2022
- Study points to new approach to clearing toxic waste from brain Washington University School of Medicine in St. Louis - Washington University School... - August 27th, 2022
- ALS Gene Therapy SynCav1 Found to Extend Survival in Mouse Model |... - ALS News Today - August 27th, 2022
- A New Kind of Chemo | The UCSB Current - The UCSB Current - August 27th, 2022
- Unraveling the mystery of who gets lung cancer and why - Genetic Literacy Project - June 16th, 2022
- How diet and the microbiome affect colorectal cancer - EurekAlert - June 16th, 2022
- Akouos Presents Nonclinical Data Supporting the Planned Clinical Development of AK-OTOF and Strategies for Regulated Gene Expression in the Inner Ear... - May 20th, 2022
- Money on the Move: SwanBio, Remix, Locus, Mirvie and More - BioSpace - May 20th, 2022
- DiNAQOR Opens DiNAMIQS Subsidiary to Partner with Gene Therapy Companies Bringing New Treatments to Patients - PR Newswire - May 20th, 2022
- Brain tumor growth may be halted with breast cancer drug - Medical News Today - May 20th, 2022
- LogicBio Therapeutics to Present at HC Wainwright Global Investment Conference - PR Newswire - May 20th, 2022
- Genascence Announces Data From Phase 1 Clinical Trial on GNSC-001, Company's Lead Program in Osteoarthritis, Presented at American Society of Gene... - May 20th, 2022
- Encoded Therapeutics Presents Nonclinical Data Showing Genomic Medicine Platform Yields Selective Expression to Optimize Gene Therapy Performance at... - May 20th, 2022
- California, Other States to Cover Rapid WGS of Newborns Under Medicaid, but Questions of Access Loom - GenomeWeb - May 20th, 2022
- Researchers Identify Role of 'Sonic the Hedgehog' Gene in Bone Repair - BioSpace - May 20th, 2022
- Targeting the Uneven Burden of Kidney Disease on Black Americans - The New York Times - May 20th, 2022
- ASC Therapeutics, U Mass Medical School, and the Clinic for Special Children Announce Podium Presentation of Safety and Efficacy in Murine and Bovine... - May 20th, 2022
- UC Davis Looks to Expand Genetic Breast Cancer Risk Education, Outreach for Hispanic Women - Precision Oncology News - May 20th, 2022
- Fly Researchers Find Another Layer to the Code of Life - Duke Today - May 20th, 2022
- CANbridge-UMass Chan Medical School Gene Therapy Research Presented at the American Society of Gene and Cell Therapy (ASGCT) Annual Meeting - Business... - May 20th, 2022
- Omicron BA.4 and BA.5: What to know about the new variants - Medical News Today - May 20th, 2022
- Krystal Biotech to Present Additional Data on B-VEC from the GEM-3 Phase 3 Study at the Society for Investigative Dermatology Annual Meeting -... - May 20th, 2022
- FDA approves Lilly's Mounjaro (tirzepatide) injection, the first and only GIP and GLP-1 receptor agonist for the treatment of adults with type 2... - May 20th, 2022
- Elucidating the developmental origin of life-sustaining adrenal glands | Penn Today - Penn Today - May 20th, 2022
- 5 questions facing gene therapy in 2022 - BioPharma Dive - January 17th, 2022
- In a First, Man Receives a Heart From a Genetically Altered Pig - The New York Times - January 17th, 2022
- Antibodies, Easy Single-Cell, Genomics for All: Notes from the JP Morgan Healthcare Conference - Bio-IT World - January 17th, 2022
- Using genetics to conserve wildlife - Pursuit - January 17th, 2022
- Genetics of sudden unexplained death in children - National Institutes of Health - January 17th, 2022
- Amicus Therapeutics Reports Preliminary 2021 Revenue and Provides 2022 Strategic Outlook and Revenue Guidance - Yahoo Finance - January 17th, 2022
- Maze Therapeutics Announces $190 Million Financing to Support the Advancement of Nine Precision Medicine Programs and Compass Platform for Genetically... - January 17th, 2022
- How The mRNA Vaccines Were Made: Halting Progress and Happy Accidents - The New York Times - January 17th, 2022
- Press Registration Is Now Open for the 2022 ACMG Annual Clinical Genetics Meeting - PRNewswire - January 17th, 2022
- Biomarkers and Candidate Therapeutic Drugs in Heart Failure | IJGM - Dove Medical Press - January 17th, 2022
- Genetic counseling program helps patients take control of their health - Medical University of South Carolina - June 24th, 2021
- One-year-old baby in UAE receives imported genetic medicine to treat rare disease - Gulf News - June 24th, 2021
- Black and non-Hispanic White Women Found to Have No Differences in Genetic Risk for Breast Cancer - Cancer Network - June 24th, 2021
- What's in your genes | The Crusader Newspaper Group - The Chicago Cusader - June 24th, 2021
- Immusoft Announces Formation of Scientific Advisory Board - Business Wire - June 24th, 2021
- Arrowhead Presents Positive Interim Clinical Data on ARO-HSD Treatment in Patients with Suspected NASH at EASL International Liver Congress - Business... - June 24th, 2021
- Pacific Biosciences and Rady Children's Institute for Genomic Medicine Announce its First Research Collaboration for Whole - GlobeNewswire - June 24th, 2021
- Despite the challenges of COVID-19, Yale-PCCSM section members continued their work on scientific papers - Yale School of Medicine - June 24th, 2021
- Veritas Intercontinental: Genetics makes it possible to identify cardiovascular genetic risk and prevent cardiac accidents such as those that have... - June 24th, 2021
- New Research Uncovers How Cancers with Common Gene Mutation Develop Resistance to Targeted Drugs - Newswise - June 24th, 2021
- Celebrate the Third Annual Medical Genetics Awareness Week April 13-16, 2021 - PRNewswire - February 14th, 2021
- How will WNY fare in the race between vaccines and coronavirus variants? - Buffalo News - February 14th, 2021
- Myriad Genetics to Participate in Multiple Upcoming Health and Technology Conferences - GlobeNewswire - February 14th, 2021
- ASCO GU 2021: The Landscape of Genetic Alterations Using ctDNA-based Comprehensive Genomic Profiling in Pat... - UroToday - February 14th, 2021
- The Human Genome and the Making of a Skeptical Biologist - Scientific American - February 14th, 2021
- Breast Cancer Gene Mutations Found in 30% of All Women - Medscape - February 1st, 2021
- Mysterious untreatable fevers once devastated whole families. This doctor discovered what caused them - CNN - February 1st, 2021
- CCMB team identifies variants of genes that metabolise drugs - BusinessLine - February 1st, 2021
- NeuBase Therapeutics Announces Acquisition of Gene Modulating Technology from Vera Therapeutics - GlobeNewswire - February 1st, 2021
- Copy number variations linked to autism have diverse but overlapping effects - Spectrum - February 1st, 2021
- Genomes, Maps, And How They Affect You - IFLScience - February 1st, 2021